Phase diagrams of the AgIn₅Se₈–AgGaSe₂ and AgIn₅Se₈–Ga₂Se₃ systems of the quasi-ternary system Ag₂Se–Ga₂Se₃–In₂Se₃

Inna IVASHCHENKO¹, Iryna DANYLYUK¹*, Ivan OLEKSEYUK¹

¹ Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, Voli Ave. 13, 43000 Lutsk, Ukraine

* Corresponding author. Tel.: +380 966 553696; e-mail: danylyuk.iryna@gmail.com

Received February 2, 2012; accepted June 27, 2012; available on-line November 5, 2012

Using X-ray diffraction, differential-thermal and microstructural analyses and microhardness measurements, the quasi-binary systems $AgIn_5Se_8-AgGaSe_2$ and $AgIn_5Se_8-Ga_2Se_3$ were investigated. Based on the results of the research, their phase diagrams were constructed.

X-ray phase analysis / Differential-thermal analysis / Microstructural analysis / Microhardness / Phase diagram

Introduction

Investigation of the $AgIn_5Se_8-AgGaSe_2$ and $AgIn_5Se_8-Ga_2Se_3$ systems is a necessary step in the study of the quasiternary system $Ag_2Se-Ga_2Se_3-In_2Se_3$. These systems may form large areas of solid solutions based on binary and ternary compounds, which can be used in semiconductor devices.

The Ag₂Se–In₂Se₃ system features one compound, AgIn₅Se₈, which melts congruently at 1088 K. Its high-temperature modification crystallizes with tetragonal symmetry, space group (S.G.) *P*-42*m*, lattice parameters a =0.57934(4) nm, 1.16223(2) nm [1]. The microhardness of c = $AgIn_5Se_8$ is 3.5 ± 0.01 GPa [2]. The $Ag_2Se_3e_3$ system also features one compound, AgGaSe₂, which melts congruently at 1123 K and crystallizes with tetragonal symmetry, S.G. I-42m, lattice parameters 0.5992(5) nm, 1.0886(1) nm [3]. a =c =The microhardness of $AgIn_5Se_8$ is 4.4 ± 0.01 GPa [4]. The Ga–Se system features a compound, Ga₂Se₃, that melts congruently at 1293 K and crystallizes with cubic symmetry, S.G. F-43m, unit cell parameter a = 0.5429(4) nm [5]. The microhardness of Ga₂Se₃ is 3.5±0.01 GPa [6]. According to the literature data, all these compounds melt congruently, crystallize in the tetragonal or cubic system, and form solid solution ranges.

Experimental

Using the direct single-temperature method, 21 alloys of the $AgIn_5Se_8$ - $AgGaSe_2$ and $AgIn_5Se_8$ - Ga_2Se_3 systems were synthesized in evacuated quartz ampoules at 1150 K or 1290 K (depending on the

composition) from high-purity elements: Ag -99.99 wt.%, Ga, In - 99.999 wt.% and Se - 99.9999 wt.%. The alloys were investigated by X-ray diffraction analysis (XRD), which was performed using а DRON 4-13 diffractometer with Cu K_a-radiation (scan step 0.05° , exposure time 2 s), microstructure analysis (MSA) and microhardness measurements, using a Leica VMHT Auto microhardness tester. Differential thermal analysis (DTA) was performed using a device composed of a THERMODENT regulated heating furnace, an H-207 XY-recorder and a Pt-Pt/Rh thermocouple.

Results

Based on the XRD (Fig. 1) and DTA results, the phase diagram of the AgIn₅Se₈-AgGaSe₂ system was constructed. It belongs to the Roozeboom type V (Fig. 2). It contains an α -solid solution range of the high-temperature modification (HTM) of AgIn₅Se₈ and a β -solid solution range of AgGaSe₂. The lattice parameters (Fig. 3) in the AgIn₅Se₈ homogeneity region change from *a* = 0.57994(2) nm, c = 1.1622(1) nm for the compound AgIn₅Se₈ to a = 0.57767(2) nm, c = 1.1563(1) nm for the sample of composition 30 mol.% AgGaSe₂ - 70 mol.% $AgIn_5Se_8$. The lattice parameter *a* in the $AgGaSe_2$ homogeneity region decreases from 0.59807(4) nm to 0.57789(3) nm, and the lattice parameter c increases from 1.0804(3) nm to 1.1427(1) nm, while the tetrahedral distortion of the unit cell, $\delta = 2-c/a$, decreases from 0.194 to 0.023. This is due to the replacement of Ga^{3+} ($r(Ga^{3+}) = 0.062 \text{ nm}$ [6]) by larger In^{3+} ($r(\text{In}^{3+})=0.076 \text{ nm}$ [6]), which leads to cell lengthening along the direction c. The XRD results

Fig. 1 X-ray powder diffraction diagrams of the samples of the AgIn₅Se₈–AgGaSe₂ system annealed at 820 K:

- (1) 100 mol.% AgIn₅Se₈;
- (2) 90 mol.% AgIn₅Se₈-10 mol.% AgGaSe₂;
- (3) 80 mol.% AgIn₅Se₈-20 mol.% AgGaSe₂;
- (4) 70 mol.% $AgIn_5Se_8$ -30 mol.% $AgGaSe_2$;
- (5) 60 mol.% AgIn₅Se₈-40 mol.% AgGaSe₂;
- (6) 50 mol.% $AgIn_5Se_8-50$ mol.% $AgGaSe_2$;
- (7) 40 mol.% AgIn₅Se₈-60 mol.% AgGaSe₂;
 (8) 30 mol.% AgIn₅Se₈-70 mol.% AgGaSe₂;
- (9) 20 mol.% AgIn₅Se₈-80 mol.% AgGaSe₂;
- (10) 10 mol.% AgIn₅Se₈–90 mol.% AgGaSe₂; (11) 100 mol.% AgGaSe₂.

Fig. 2 Phase diagram of the AgIn₅Se₈-AgGaSe₂ system: (1) L; (2) L+α; (3) L+β; (4) α; (5) α+β; (6) β; (7) α+α'; (8) α'; (9) α'+β.

Fig. 3 Lattice parameters of the samples of the $AgIn_5Se_8-AgGaSe_2$ system.

were confirmed by MSA and microhardness measurements (Table 1).

There is a eutectic point $L\leftrightarrow\alpha+\beta$ in the system with the coordinates 75 mol.% AgGaSe₂ – 25 mol.% HT-AgIn₅Se₈, 998 K. The extent of the α -solid solution range at the eutectic temperature is 64 mol.% AgGaSe₂, that of the β -solid solution range is 20 mol.% AgIn₅Se₈. There is eutectoid dissolution of the α -solid solution, $\alpha\leftrightarrow\alpha'+\beta$ at 910 K, where α' is the solid solution of the low-temperature modification (LTM) of AgIn₅Se₈; the eutectoid point corresponds to a composition of 60 mol.% AgIn₅Se₈ – 40 mol.% AgGaSe₂. The extent of the α' -solid solution range decreases from 30 mol.% AgGaSe₂ at the eutectoid temperature to 25 mol.% AgGaSe₂ at 820 K. The extent of the β -solid solution range varies from 10 to 8 mol.% AgIn₅Se₈ with decreasing temperature.

Diffraction patterns of the alloys in the AgIn₅Se₈– Ga₂Se₃ system are plotted in Fig. 4. An α '-solid solution range of HT-AgIn₅Se₈ and a γ -solid solution range of Ga₂Se₃ form in this system. The lattice parameters in the α '-solid solution range change from a = 0.57994(2) nm, c = 1.1622(1) nm for AgIn₅Se₈ to a = 0.56922(3) nm, c = 1.1421(2) nm for the sample of composition 50 mol.% AgIn₅Se₈ – 50 mol.% Ga₂Se₃. The lattice parameters in the γ -solid solution range change from a = 0.5423(4) nm for Ga₂Se₃ to a = 0.55793(2) nm for the sample of composition 80 mol.% Ga₂Se₃ – 20 mol.% AgIn₅Se₈ (Fig. 5). The XRD results were confirmed by MSA and microhardness measurements (Table 2).

Based on the XRD and DTA results, the phase diagram of the AgIn₅Se₈–Ga₂Se₃ system, which belongs to type IV of Roozeboom's classification, was constructed (Fig. 6). There is a peritectic process $L+\gamma\leftrightarrow\alpha$ at 1115 K. The coordinates of the peritectic

No.	Nominal composition of the sample	Phase composition	Microhardness, GPa±0.01	
1	100 mol.% AgIn ₅ Se ₈	α	3.20	_
2	90 mol.% AgIn ₅ Se ₈ –10 mol.% AgGaSe ₂	α	3.25	—
3	80 mol.% AgIn ₅ Se ₈ –20 mol.% AgGaSe ₂	α	3.35	—
4	70 mol.% AgIn ₅ Se ₈ –30 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.48	(β) 3.88
5	60 mol.% AgIn ₅ Se ₈ –40 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.49	(β) 3.89
6	50 mol.% AgIn ₅ Se ₈ –50 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.49	(β) 3.89
7	40 mol.% AgIn ₅ Se ₈ –60 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.50	(β) 3.90
8	30 mol.% AgIn ₅ Se ₈ –70 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.49	(β) 3.92
9	20 mol.% AgIn ₅ Se ₈ –80 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.49	(β) 3.95
10	10 mol.% AgIn ₅ Se ₈ –90 mol.% AgGaSe ₂	$\alpha + \beta$	(α) 3.51	4.15
11	100 mol.% AgGaSe ₂	β	—	4.40

Table 1 Microhardness and phase composition of the alloys of the AgIn₅Se₈-AgGaSe₂ system.

Fig. 4 X-ray powder diffraction diagrams of the samples in the $AgIn_5Se_8-Ga_2Se_3$ system annealed at 820 K: (1) 100 mol.% $AgIn_5Se_8$; (2) 80 mol.% $AgIn_5Se_8-20$ mol.% Ga_2Se_3 ; (3) 60 mol.% $AgIn_5Se_8-40$ mol.% Ga_2Se_3 ; (4) 50 mol.% $AgIn_5Se_8-50$ mol.% Ga_2Se_3 ; (5) 40 mol.% $AgIn_5Se_8-60$ mol.% Ga_2Se_3 ; (6) 30 mol.% $AgIn_5Se_8-70$ mol.% Ga_2Se_3 ; (7) 20 mol.% $AgIn_5Se_8-80$ mol.% Ga_2Se_3 ; (8) 15 mol.% $AgIn_5Se_8-85$ mol.% Ga_2Se_3 ; (9) 10 mol.% $AgIn_5Se_8-90$ mol.% Ga_2Se_3 ; (10) 2 mol.% $AgIn_5Se_8-98$ mol.% Ga_2Se_3 ; (11) 100 % Ga_2Se_3 .

I. Ivashchenko et al., Phase diagrams of the AgIn₅Se₈–AgGaSe₂ and AgIn₅Se₈–Ga₂Se₃ systems ...

No.	Nominal composition of the sample	Phase composition	Microhardness, GPa±0.01	
1	100 mol.% AgIn ₅ Se ₈	α	3.20	_
2	80 mol.% AgIn ₅ Se ₈ –20 mol.% Ga ₂ Se ₃	α	2.40	-
3	60 mol.% AgIn ₅ Se ₈ –40 mol.% Ga ₂ Se ₃	α	1.70	-
4	50 mol.% AgIn ₅ Se ₈ –50 mol.% Ga ₂ Se ₃	$\alpha + \gamma$	(α) 1.44	(γ) 2.29
5	40 mol.% AgIn ₅ Se ₈ –60 mol.% Ga ₂ Se ₃	$\alpha + \gamma$	(α) 1.46	(γ) 2.31
6	30 mol.% AgIn ₅ Se ₈ –70 mol.% Ga ₂ Se ₃	$\alpha + \gamma$	(α) 1.45	(γ) 2.28
7	20 мол. % AgIn ₅ Se ₈ -80 mol.% Ga ₂ Se ₃	$\alpha + \gamma$	(α) 1.48	(γ) 2.27
8	15 mol.% AgIn ₅ Se ₈ –85mol.% Ga ₂ Se ₃	γ	_	2.35
9	10 mol.% AgIn ₅ Se ₈ –90 mol.% Ga ₂ Se ₃	γ	-	2.45
10	2 mol.% AgIn ₅ Se ₈ –98 mol.% Ga ₂ Se ₃	γ	-	2.55
11	100 mol.% Ga ₂ Se ₃	γ	—	3.00

Table 2 Microhardness and phase composition of the alloys of the AgIn₅Se₈–Ga₂Se₃ system.

Fig. 5 Lattice parameters of the samples of the $AgIn_5Se_8-Ga_2Se_3$ system.

point are 75 mol.% Ga₂Se₃, 1115 K. At this temperature the extent of the α -solid solution range is 80 mol.% AgGaSe₂, that of the γ -solid solution range is 15 mol.% AgIn₅Se₈. The peritectoid interaction of the α - and γ -solid solutions $\alpha+\gamma \leftrightarrow \alpha'$ takes place at 1030 K, with a coordinate of 50 mol.% Ga₂Se₃ for the peritectoid point. The extent of the α' -solid solution range is 45 mol.% Ga₂Se₃ at 820 K. At the same temperature the γ -solid solution extends to 18 mol.% AgIn₅Se₈.

The phase diagrams of the $AgIn_5Se_8$ – $AgGaSe_2$ and $AgIn_5Se_8$ – Ga_2Se_3 systems were constructed. They belong to type V and type IV of Roozeboom's classification, respectively, and reveal the formation of large solid solutions ranges, which may serve as new semiconductor materials.

Fig. 6 Phase diagram of the AgIn₅Se₈–Ga₂Se₃ system: (1) L; (2) L+ α ; (3) α ; (4) L+ γ ; (5) α + γ ; (6) γ ; (7) α + α '; (8) α '+ γ ; (9) α '.

References

- P. Benoit, P. Charpin, C. Djega-Mariadassou, *Mater. Res. Bull.* 18 (1983) 1047-1057.
- [2] L.S. Palatnyk, E.I. Rogachyova, *Inorg. Mater.* 2(3) (1966) 478-484.
- [3] P. Lottici, G. Antonidi, C. Rozzetti, J. Phys. Chem. Solids 50(9) (1989) 967-973.
- [4] L.Y. Berger, V.D. Prochuhan, *Triple Diamond Semiconductors*, Metallurgy, Moscow, 1968, 151 p. (in Russian).
- [5] H. Hahn, W.O. Klingler, Z. Anorg. Allg. Chem. 259 (1949) 135-142.
- [6] V.A. Rabinovich, Z.Ya. Havin, *Short Chemical Handbook*, Khimiya, Leningrad, 1978, 432 p. (in Russian).