Condensed Matter Physics, 2007, Vol. ?, No 7, pp. 1-9
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Using a system of Heisenberg's equation of motion for both the normal and
the anomalous correlation functions a two-fluid hydrodynamics for superfluid
helium-4 was constructed. The method is based on a gradient expansion of
the exact equations of motion for correlation functions about a local equilib-
rium together with explicit use of the local equilibrium statistical operator for
superfluid helium in the frame of reference, where condensate is rest.
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1. Introduction

Superfluid behavior is the most striking property of liquid helium-4. The super-
fluid “He is the quantum degenerate system with spontaneous broken symmetry. It’s
feature is macroscopic occupation the lowest-energy single-particle quantum state or
another words is presence of condensate. As a result, the state of statistical equilib-
rium of the system with spontaneous broken symmetry depends on eight quantities:
particle density p, energy density €, momentum density j and superfluid velocity .
Presence of additional velocity field leads to that hydrodynamics of the such system
is two-fluid.

The two-fluid hydrodynamic equations for the superfluid *He in the phenomeno-
logical consideration were constructed by Landau in 1941 | 1. These equations were
derived at the microscopic level by Bogolyubov in 1963 [ 2].

As a starting point in the Bogolyubov’s paper is a set of equation of motion
for local quantities (particle density, momentum density and energy density), which
easy follows from Heisenberg equations for both creation and annihilation operators;
as well as the equation for anomalous average (1). Thus, from the last follows a
hydrodynamic equation for superfluid velocity.

To transition from formal equations of motion to hydrodynamic equations Bo-
golyubov consider stage of evolution when it is approximate to equilibrium. Then it
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is possible to assume that in system is established local equilibrium. It described by
the statistical operator with parameters that depend on space coordinates. At near-
ing to the thermodynamic equilibrium these parameters are slowly changed in space
and time, therefore their gradients are small. Procedure of expansion by the gradi-
ents is formulated by introduction in equations of motion of the so-called “parameter
of homogeneity”. Then expansion by the gradients coincides with expansion by this
parameter. Introduction of the parameter of homogeneity in the Bogolyubov’s paper
was carried out by a formally way.

When the conservation relations for the local hydrodynamical quantities are con-
structed, the next step is calculating of a hydrodynamical flows in these equations.
The momentum flux Bogolyubov calculate by using very elegant “scale transforma-
tion” method. But the flux of energy is obtained inconsistently. More acceptable
method calculation of the energy flux using an explicit local equilibrium statistical
operator was proposed by Morozov [ 3].

Our paper imitates the Bogolyubov’s article [ 2], but we work with equations
of motion for the correlation functions which are written in the mixed Wigner rep-
resentation. It allows an expansion by the gradients directly realize, very easy and
with rigorous mathematic.

To calculate hydrodynamical flows we are using an explicit form for local equi-
librium statistical operator. But in contrast to Morozov’s work, which operate with
statistical operator of the superfluid helium at the laboratory reference system, we
construct one at the reference system in which the condensate is motionless. That
gives essential simplification, because in the local frame of reference moving with o
the superfluid component is stopped, then the total current is carried by the normal
component.

Construction of the two-fluid model we conditionally separate into two stage.
On the first one, using Heisenberg equation of motion for both the normal and the
anomalous correlation functions, we derive a conservation relations for densities of
particle p, momentum j and energy ¢, as well as equation of motion for superfluid
velocity U5. On the second stage we express a hydrodynamic flows in conservation
relations in terms of already introduced variables (p, j and €).

2. Construction of the two-fluid hydrodynamic equations

2.1. Equation of motion for correlation functions in the mixed Wigner repre-
sentation

The helium-4 is a typical Bose system with pair interaction. It Hamiltonian in
the second quantization representation has the next form (we set i = 1 throughout
this paper)

H = [ (7) (=5 8) 0l + 5 [ drdr o - 7)ot (0t (e, (0

here ¢ (7) and ¢(7) — are the creation and annihilation operators respectively,
O(r"— ") = &(|F— 77|) — interaction potential.
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To construct the hydrodynamics of a systems with spontaneous broken symmetry
we should proceed from the extended system of correlation functions [ 5], which is
formed both a normal and an anomalous correlation function. Therefore we will
start with a system correlation functions in the next form

@Y (1), (W(71)). (2)

Here the angular brackets indicate an average at the local-equilibrium ensemble, and
dependence of the creation and annihilation operators on the time is given through
a Heisenberg representation, for instance

Y1) = (e

Notice, that an average in (2) is treat as quasi-average [ 4]. For the sake of
simplicity, we will not take into account “v — term” that break a symmetry of the
Hamiltonian (1).

Using the Heisenberg’s equation of motion

OY(7, 1)
ot

we obtain the equations of motion for correlation functions (2).
These equations are as follows

O (7, 1) = g (A = Aa) (6 (7, (7%, 1)

—/dﬂ {07 =) — (Fy — )} (W (P, )T (7, 0 (™, )2, 1)), (3)

i

= [0, H] = —5 AU 0 + [ dF S = 7w 0 v )

() = —3 AW D) + [ A0 — )W (U (D). (1)

The next step will be a separation of gauge-noninvariant multipliers (in fact we
will use a reference system in which the condensate is motionless). Such a separation
of phase has the form

V(T t) — (7 t) = (7, )™,
The separation of phase transform a correlation functions by rules

<77Z)+(F17 t)w(FQa t)> = eim(X(F%t)_X(Fl’t))G(Fl7 FQ) t)a
W) = EmEIF(),
WL T OV (o, ) = N ROTXEDDO G i t),
W )Y, Y (1))
The functions G, F, DM and D® at the statistical equilibrium state is spatial
homogeneous. In the nonequilibrium states ones changes, less than more small will
be spatial inhomogeneous.

(T D) (7,75 t).
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Then the equations of motion for G and F' are as follows

0 s Lo
{ 81& + mx(rl,t) —mX<T2,t)}G<T1,T2;t>

= [<p1 (7, 0)? — (7 + mi (7 )] G(7, P )

/dr {B(F, — ) — (7 — 7)Y DIV (7, 7, 75 1), (5)

{igt _ mx(r,t)}F(F, £ = an(p + i, (1)) F (7 1)
+ / i ®(7 — 7YDO (7, ;1) (6)

where Uy = V is superfluid velocity (velocity of the condensate).

The transition to equations of hydrodynamics is performed using an expansion of
equation (5) in terms of space gradients. This expansion can be simply performed by
using the so-called mixed Wigner representation [ 5]. For this purpose, we introduce
new variables

— —

= 1 o
Rzi(h-l—m), F=1Th —

i

After the Fourier transformation with respect to relative coordinate ¥ we obtain

f77ont) = fR 70 = [ G f (R e
and
. EE | . S|
T1—>R—*Vﬁ, T2—>R+*Vp,
2 2
~, 5 1 ~, 5 1
Ph—=P=5Vg P T3V (7)

Any function of R+i /2 - Vzcan be understood in terms of its power-series expansion

i0f(R) 0
2 9R Op

J(B+ V5 = f(R)+ 8

Using procedures (7) and (8) the equations for correlation functions can be written
as follows

(B B (B A B 9 /B
OCARA) o i OCARD) 0 (oot mua(R0)*) 0GR, )
ot 6]91' aR] 2m apj
Op
Pi (B dG (R, 1) 8(1) 62) (R,7;t) B
+ (m + 'Usz(Ra t)> OR; /dT 8pi =0 (9)
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(i; — my(R, t)) F(R,t) = an P+ mil (R, 1)) F(R,t)
1 (V goa( B 1)) F(R, 1) + / AP o(|R — 7)DD (R, 7:1). (10)
Here S >
G R t) = [ drut (R = 2 0B + 5, 1), (11)
DER, ;1) = Jartus (BT 007, O (R D0k, (12)

In the obtained equation (9) the second order terms with respect to space gra-
dient (the terms proportional V%) were neglected.

The equation (9) we denominate as forming equation, because it’s using gives a
conservation laws for the hydrodynamic quantities. In terms of (9) will be obtained
equation of motion for superfluid velocity.

Let’s pass to obtaining differential conservation laws (balance equations).

2.2. Equation of motion for superfluid velocity

Let us consider equation for anomalous correlation function (10). After separat-
ing real and imaginary parts at this equation we find

_ 1 - - 1 ., " o
<m>‘<(R, £+ ~mi(R, t)> F(R,) = 5 ~V4F(R,t) — [ d®( - #)D(R,7;1).(13)

2 2m B
Hence
- >3 /p .
ﬁ 1, - ViF(Rt /df'@(! — T)DE(R, T )
(0= e s el ’ ,
2 2m2F(R,t) mF(R,t)
or .
5 1, = (R, 1)
R, t) = -9 (R, t) — —— 14
X(R,t) = —50,(R, ) — =~ (14)
Here
B} ViR [ AU - 7)DE (R )
2m2F(R,t) mF(R,t)

is chemical potential [ 2].
Applying the operation V; to equation (14) we obtain the equation of motion
for superfluid velocity
0T, mu>

This is the first hydrodynamic equation and shows that the superfluid accelerates
freely under the applied fields. The remaining hydrodynamic equations are provided
by the conservation relations for the particle density p(R,t), momentum density

j(ﬁ, t) and energy density € (ﬁ, t). These equations simply obtain from calculation
of moments of forming equation (9).
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2.3. Equation for particle density

By definition
pE0) = ml (B0t = m [ EGi

After integrating (9) over p’ we find

g’t) +divj = 0, (16)
where
25 dp
J(R,t) = / o >3pG (R, 1) + pis = jo + pii. (17)

The (16) is an equation of continuity for particle density. The j(R,t) is a mo-
mentum density respectively, and jo is a momentum density in the reference system
where condensate is motionless. Calculation of the j, in explicit form will be per-
formed in the section 3.

2.4. Equation for momentum density

Using definition (17), we find that

djp D, AP 0GR, t) vy
ot _at<‘7°’“+pvs’“)_/(27r)3(p’“+mvs’“) or o

Taking the moment of the forming equation (9) with respect to p'+ mu and
using equation of motion for the superfluid velocity (15), we obtain

ajk 6ij
ot T OR,

— 0. (18)

The flow of momentum density (stress tensor) is given by

1 dp B
Iy, = m/(27)3(19;6+mvsk)(pj+m"fsj)Gﬁ(R>t)
1 oD (1) PO
= o] P )

VskJoj + Vsjjok + pUskUs; + Hokj, (19)

where

1o dp 5o L0000 o dp Sy s
Ho,w_m/(2 ipupi G B -y [dr o 1) [ e DY R, (20)
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2.5. Equation for energy density

By definition the energy density of particles in the laboratory system of reference
is as follows

= (VU 43 [ AR 0 (706 DU D).

In the system of reference where condensate is motionless energy density is

s 1 dp - 1 - dp
E(R,t):—/ P 5+ mﬁs)QGﬁ(R,t)+§/d7”(l>(|R—r"|)/ LpW(R,#:1),

2m J (2m)3 (2m)3
or
- S ]— 2
E=E& + jous + 3PV (21)
where
1 dp ~ 1 ~ dp ~
£ = %/ (27T)3p2G5(R, £) + 5/df’cb(u% _ f’\)/ (27T)31>§>(R,f'; . (22)
By analogy to previous subsections we find
?;;: + div@ = 0. (23)
The energy flow is given by
~ - 1 1
Q= (50 + JoUs + 20’113) Us + 2113]0 + Mo, + Qo, (24)
where
1 dp —
Qor = %/ <2p>3p peGy(R, 1) + /dﬂ'@ / ) DI(;)(R,F';t)
1 (r’ dp -
o /df' o r;/ o )3p]1> (R,7:t) (25)

The set of equations (15), (16), (18) and (23) form a complete system of two-fluid
hydrodynamic equations for superfluid helium-4.

3. Calculation of the hydrodynamical flows

In the previous section was obtained a system of balance equations. These equa-
tions unlocked, because the flows (17), (20) and (25) is unknown. When we have
an explicit expression for G-function, then finding of the hydrodynamical flows is
realizing by calculation of the momentum integrals. In the case of superfluid helium
finding of the G-function is impossible. Therefore we must develop some “indirect”
method for finding of the flows (17), (20) and (25).




P. Shygorin, A. Svidzynsky;j

In this article for finding of the hydrodynamical flows we used an explicit expres-
sion for the local equilibrium statistical operator. In contrast to paper by Morozov
[ 3] we construct statistical operator in the system of reference where condensate is
motionless, that leads some simplification.

The local equilibrium statistical operator that describe a superfluid helium in
the system of reference where condensate is motionless is as follows

o= [ara o) - i - atu - Lo L o)
In the local frame of reference moving with v the superfluid component is

stopped, then the total current is carried by the normal component.
Therefore
0N}

I :<ﬁ >= ——— = p,U. 27
Jo 0 il Pnl ( )

Here p, is the normal fluid density.
Substituting from (27) into (17) we find the momentum density (mass flow)

— —

= Jo + pUs = pn(U — Ts) + pUs = puUy + (p — pn)Us = pnUn + psUs, (28)

where p; = p — p,, is superfluid density.
To find the stress tensor we use a very elegant “scale transformation” method
introduced by Bogolyubov [ 2]. Simple calculation gives

oire = pnuiug + 0 P, (29)

where P = pa— — is a pressure.
P

The final form of a stress tensor is
Wix = Hoir + VsiJok + VskJoi + PUsiVsk = PsVsiVsk + PrUniVnk + Oit P. (30)
To calculate the energy flux we employ the obvious identity [ 3]:
{[4,9]) =0, (31)

where A is some dynamic quantities and S is an entropy operator, that defined by
relationship ¢ = exp{—S}.
Substituting in (31) A = H and using (26), (29) we find

QO = <pnu2 + Pr

+TS>6. (32)
m
Finally, expressions for hydrodynamical flows has the form:

7= psUs + palhn, Ty =1+ s,
ik = prVniVnk + PsVsiVsk + ik P, (33)
= UE my = - - - -
Q= (2 + m) g+ T'SU, + pn0n (U, - (U, — Ts)).
These hydrodynamical flows are coincide with ones in two-fluid hydrodynamics
of Landau [ 1].
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MikpockoniyHa nobyaosa ABOPIAVHHOT MOAENI ANt HAAMIMHHOMO
renito

M. Wwuropin, A. CeigauHcbknii

BonvHcbkuii HauioHanbHuii yHiBepcuTeT im. Jleci Vkpaitku
29 BepecHs 2009 p.

BukopuctoBytouu cnctemy raiiseHbepriBCcbkux piBHsHb pyxy AJisi HOPMaibHOT

Ta aHOMaJIbHOI KopensuiiHux dyHkuiii 6yno nobyaosaHo ABOPIAVHHY FiAPOAUHAMIKY
4Na HagnAuHHOro renito-4. BnBefeHHs1 3acHOBaHe Ha po3Knagi 3a rpagieHTaMu
TOYHUX PIBHAHb PyXy [OJs1 KOPensiuiiHux yHKUii nobansy nokanbHoi
piBHOBarm pa3’oM 3 BUKOPUCTAHHSM SIBHOTO BUMNSAY AJ15 JIOKAIbHO-PiBHOBAXKHOTO
CTaTUCTUYHOrO OMNepaTopa AN HAAMIMHHOIO refito B CUCTEMI BiAJiky, Ae
KOHZAEHCAT HEPYXOMMUIA.

Kntovosi cnosa: [sopianHHa rigpoavnHamika, kopensiuiina dyHkLis,
HaZNANHHWIA reniii-4, cTaTUCTUYHWUI onepaTop

PACS: 67.25.dg




