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Starting from the first principles of statistical mechanics the two-fluid hydro-
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correlation functions in terms of a small parameter.
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1. Introduction

Owing to especial properties the quantum liquids are very interesting investi-
gation object in physics. To them belong a superfluid He-3 and He-4, a supercon-
ducting fermi-systems, a trapped Bose gas, a core of neutron stars, etc [1,2]. In the
weakly-nonequilibrium states the equations of hydrodynamics are very important
instrument of description of the aforesaid systems. As known, the phenomena of su-
perconductivity and superfluidity are deeply family. Property of the non dissipative
current states, that arises up as a result of the phase transition to more-organized
state, unites them [3]. That is not surprisingly, that equations of hydrodynamics
of these systems have a similar structure (so called two-fluid equations). The phe-
nomenological hydrodynamics of superfluid He-4 was constructed by Landau in 1941
[4]. At the microscopic level these equations were derived by Bogoliubov in 1963
[5]. The two-fluid model of superconductor was derived in 1965 by Svidzynsky and
Slusarev [6], and independently by Stephen [7]. The system of equations of motion
for the normal and the anomalous correlation functions are the starting point for
construction of hydrodynamic equations in works [5,6]. The transition to equations
of hydrodynamics is execute with help an expansion of equations of motion for cor-
relation functions in terms of a small parameter. That small parameter is introduced
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formally. It is a noticeable lack of these works. In the work [5] it is a so called ”pa-
rameter of homogeneity”. In the work [6] it is a Plank constant, which obviously it
was possible to put equal unit.

In the present paper, where following chart of work [6], starting from the first
principles of statistical mechanics we derived the equations of two-fluid hydrody-
namics of superconductor in an ideal approximation. An electronic liquid in the
superconductor is described in the four-fermion Hamiltonian, that describe a direct
interactions between electrons. In terms of the Heisenberg equations we constructed
the equations of motion for correlation functions. The approaching of the mean-field
for breaking up of higher correlation functions is used. Writing equations of motion
in a dimensionless form, it is succeeded to select a small parameter. It is equal to the
attitude of the length of coherence toward the characteristic length which macro-
scopic quantities change on (as the mean number of particles, momentum, energy).
The expansion in terms of this small parameter coincide with the expansion in terms
of a gradients of the macroscopic quantities.

2. Equations of motion for correlation functions

Let us consider a superconductor in the BCS model. In this model Hamiltonian
of the system of electrons in the presence an external electromagnetic field in the
second quantization representation has the next form (we set h̄ = c = 1 throughout
this paper)

Ĥ =
∑
σ

∫
d~rΨ+

σ (~r)
{

1

2m
(~̂p− e ~A(~r, t))2 + eA0(~r, t)

}
Ψσ(~r)

+ g
∫

d~rΨ+
↑ (~r)Ψ+

↓ (~r)Ψ↓(~r)Ψ↑(~r). (1)

For construction of the hydrodynamics of a systems with spontaneous broken
symmetry we must to proceed from the expanded system of correlation functions
[5]. To it come in besides a normal also an anomalous correlation function. Therefore
will be issue a system correlation functions next form

〈Ψ+
↑ (x1)Ψ↑(x2)〉, 〈Ψ↓(x1)Ψ↑(x2)〉. (2)

Here xi ≡ (~ri, t), and dependence the creation and annihilation operators on the time

is given through a Heisenberg representation, for instance Ψ+
↑ (x1) = eiĤtΨ+

↑ (~r1)e
−iĤt,

the angular brackets indicate an average at the local-equilibrium ensemble.
Using an equation of motion of Heisenberg

i
∂Ψσ(x)

∂t
=

[
Ψσ(x), Ĥ

]
− , (3)

we obtained the equations of motion for correlation functions (2). These equations
has the form

{
i
∂

∂t
+ eA0(x1)− eA0(x2)

}
〈Ψ+

↑ (x1)Ψ↑(x2)〉
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+
1

2m

[
(~̂p1 + e ~A(x1))

2 − (~̂p2 − e ~A(x2))
2
]
〈Ψ+

↑ (x1)Ψ↑(x2)〉 (4)

= −g〈Ψ+
↑ (x1)Ψ

+
↓ (x1)Ψ↓(x1)Ψ↑(x2)〉+ g〈Ψ+

↑ (x1)Ψ
+
↓ (x2)Ψ↓(x2)Ψ↑(x2)〉,

{
i
∂

∂t
− eA0(x1)− eA0(x2)

}
〈Ψ↓(x1)Ψ↑(x2)〉

− 1

2m

[
(~̂p1 − e ~A(x1))

2 + (~̂p2 − e ~A(x2))
2
]
〈Ψ↓(x1)Ψ↑(x2)〉 (5)

= −g〈Ψ+
↑ (x1)Ψ↓(x1)Ψ↑(x1)Ψ↑(x2)〉+ g〈Ψ↓(x1)Ψ

+
↓ (x2)Ψ↓(x2)Ψ↑(x2)〉.

The obtained equations of motion are unlocked because the correlation functions
a higher order be a part of these equations. For closing equations we use the uncou-
pling of Hartree-Fock-Bogoliubov (the mean-field approximation). For instance

〈Ψ+
↑ (x1)Ψ

+
↓ (x1)Ψ↓(x1)Ψ↑(x2)〉 = 〈Ψ+

↑ (x1)Ψ
+
↓ (x1)〉〈Ψ↓(x1)Ψ↑(x2)〉

+〈Ψ+
↑ (x1)Ψ↑(x2)〉〈Ψ+

↓ (x1)Ψ↓(x1)〉 − 〈Ψ+
↑ (x1)Ψ↓(x1)〉〈Ψ+

↓ (x1)Ψ↑(x2)〉. (6)

And by analogy for the rest average. After using the uncoupling of type (6) the
equation of motion (4), (5) will be has the form

{
i
∂

∂t
+ eA0(x1)− eA0(x2)

}
〈Ψ+

↑ (x1)Ψ↑(x2)〉

+
1

2m

[
(~̂p1 + e ~A(x1))

2 − (~̂p2 − e ~A(x2))
2
]
〈Ψ+

↑ (x1)Ψ↑(x2)〉 (7)

= ∆(x2)〈Ψ+
↑ (x1)Ψ

+
↓ (x2)〉 −∆∗(x1)〈Ψ↓(x1)Ψ↑(x2)〉,

{
i
∂

∂t
− eA0(x1)− eA0(x2)

}
〈Ψ↓(x1)Ψ↑(x2)〉

− 1

2m

[
(~̂p1 − e ~A(x1))

2 + (~̂p2 − e ~A(x2))
2
]
〈Ψ↓(x1)Ψ↑(x2)〉 (8)

= ∆(x1)δ(~r1 − ~r2)−∆(x1)〈Ψ+
↑ (x1)Ψ↑(x2)〉 −∆(x2)〈Ψ+

↓ (x2)Ψ↓(x1)〉.
Here

∆(x) ≡ g〈Ψ↓(x)Ψ↑(x)〉 (9)

is order parameter. We remark that in the obtaining equations (7), (8) the terms
irrelevant with effect of superconductivity (terms of Hartree and Fock) are thrown
out. However, taking into account the direct terms of Hartree are trivial, because
they may be included in a potential A0(x).

The next step will be separation a gauge-noninvariant multipliers (in fact we pass
to the frame of reference where the condensate is rest). Such separation of phase has
the form [3]

〈Ψ+
σ (x1)Ψσ(x2)〉 = exp {im(χ(x2)− χ(x1))}Gσ(x1, x2),

〈Ψ↓(x)Ψ↑(x)〉 = exp {im(χ(x2) + χ(x1))}F (x1, x2), (10)

∆(x) = exp {2imχ(x)} |∆(x)|.
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Then equations of motion for G and F are
{

i
∂

∂t
+

1

2m

[
(~̂p1 −m~vs(x1))

2 − (~̂p2 + m~vs(x2))
2
]}

G↑(x1, x2)

+ {mχ̇(x1)−mχ̇(x2) + eA0(x1)− eA0(x2)}G↑(x1, x2) (11)

= |∆(x2)|F ∗(x2, x1)− |∆(x1)|F (x1, x2),

{
i
∂

∂t
− 1

2m

[
(~̂p1 + m~vs(x1))

2 + (~̂p2 + m~vs(x2))
2
]}

F (x1, x2)

−{mχ̇(x1) + mχ̇(x2) + eA0(x2) + eA0(x1)}F (x1, x2) (12)

= |∆(x1)|δ(~r1 − ~r2)− |∆(x1)|G↑(x1, x2)− |∆(x2)|G↓(x2, x1),

where

~vs = ∇χ− e

m
~A

is superfluid velocity (velocity of the condensate). It is a gauge-invariant combina-
tion, because change of calibration may be compensate with help a gauge transfor-
mation a vector potential.

The transition to equations of hydrodynamics is execute with help an expansion
of Eq. (11) and (12) in terms of a space gradients. This expansion a simply execute
when we pass to so-called mixed Wigner representation [3]. For that we introduce a
new varibles

~R =
1

2
(~r1 + ~r2), ~r = ~r2 − ~r1.

After we doing the Fourier transformation with respect a relative coordinate ~r.
Therefore we obtain

f(x1, x2) → f(~R,~r, t) =
∫ d~p

(2π)3
f(~R, ~p, t)ei~p~r,

in addition

~r1 → ~R− i

2
∇~p, ~r2 → ~R +

i

2
∇~p,

~̂p1 → ~p− i

2
∇~R, ~̂p2 → −~p− i

2
∇~R. (13)

Any function of ~R +
i

2
∇~p can be understood in terms of its power-series expansion

f(~R +
i

2
∇~p) = f(~R) +

i

2

∂f(~R)

∂ ~R

∂

∂~p
− · · · . (14)

Using procedure (13) and (14) the equations for correlation functions can be written
in the form
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i

{
∂

∂t
+ eEi

∂

∂pi

−mv̇si
∂

∂pi

− ∂

∂Rj

(
(pi + mvsi)

2

2m

)
∂

∂pj

+
(

pi

m
+ vsi

)
∂

∂Ri

}
G↑(~R, ~p, t) = |∆(~R, t)|

(
F ∗(~R, ~p, t)− F (~R, ~p, t)

)
(15)

− i

2

∂|∆(~R, t)|
∂Ri

∂

∂pi

(
F ∗(~R, ~p, t) + F (~R, ~p, t)

)
,

{
i
∂

∂t
− 2eA0(~R, t)− 2mχ̇(~R, t)− i

(
pi

∂vsi

∂Rj

∂

∂pj

− vsi
∂

∂Ri

)

−
(

p2

m
+ vs

2

) }
F (~R, ~p, t) = |∆(~R, t)|

(
1−G↑(~R, ~p, t)−G↓(~R,−~p, t)

)
(16)

− i

2

∂|∆(~R, t)|
∂Ri

∂

∂pi

(G↑(~R, ~p, t)−G↓(~R,−~p, t)).

By obtaining these equations the second order terms with respect to space gra-
dient (the terms proportional ∇2

~R
) were neglected.

3. Two-fluid hydrodynamics

By solving equations (15), (16) we use the perturbation theory. Therefore, we
must determine the order of other terms in these equations.

Let L is length which macroscopic quantities change on (it has order of the scale
of system). Tnen

|∇~R| ∼ L−1,
∂

∂t
∼ ūL−1 ∼ vF

Tc

EF

L−1, (17)

where Tc is critical temperature, EF =
mv2

F

2
=

p2
F

2m
– Fermi energy. The character-

istic momentums is order Fermi momentum, therefore we can put

p = pF +
ξ

vF

, ξ ∼ Tc.

Then

|∇~p| ∼ vF

Tc

∼ ξ0 ∼ 10−4cm,

where ξ0 the coherence length. The gap ∆ is order Tc.
This theory has two small parameter. It is ξ0/L and a/ξ0 = Tc/EF , where a – the

interatomic distance. The first parameter associated with hydrodynamic approach,
the second – with semi-classical. Further by semi-classical motion of electrons will
be neglect. Therefore we may put Tc ∼ EF .
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We denote

α =
ξ0

L
¿ 1. (18)

Dividing Eq. (15) and (16) by the Tc and using (18) we get

iα

{
∂

∂t
+ eEi

∂

∂pi

−mv̇si
∂

∂pi

− ∂

∂Rj

(
(pi + mvsi)

2

2m

)
∂

∂pj

+
(

pi

m
+ vsi

)
∂

∂Ri

}
G↑(~R, ~p, t) = |∆(~R, t)|

(
F ∗(~R, ~p, t)− F (~R, ~p, t)

)
(19)

−α
i

2

∂|∆(~R, t)|
∂Ri

∂

∂pi

(
F ∗(~R, ~p, t) + F (~R, ~p, t)

)
,

{
iα

∂

∂t
− 2eA0(~R, t)− 2mχ̇(~R, t)− iα

(
pi

∂vsi

∂Rj

∂

∂pj

− vsi
∂

∂Ri

)

−
(

p2

m
+ vs

2

) }
F (~R, ~p, t) = |∆(~R, t)|

(
1−G↑(~R, ~p, t)−G↓(~R,−~p, t)

)
(20)

−α
i

2

∂|∆(~R, t)|
∂Ri

∂

∂pi

(G↑(~R, ~p, t)−G↓(~R,−~p, t)).

In order to solve the equations (19) and (20) we formally expand the functions
G, F and ∆ in powers of α

f = f (0) + αf (1). (21)

In the lowest order Eq. (19) gives

F (0)∗(~R, ~p, t) = F (0)(~R, ~p, t), (22)

that shows reality F (0). The Eq. (20) by using (22) in the lowest order gives

(
eA0(~R, t) + mχ̇(~R, t) +

1

2
mv2

s(~R, t)
)

F (0)(~R, ~p, t)

= − p2

2m
F (0)(~R, ~p, t)− 1

2
|∆(0)(~R, t)|(1−G

(0)
↑ (~R, ~p, t)−G

(0)
↓ (~R,−~p, t)). (23)

The separating variables gives

eA0(~R, t) + mχ̇(~R, t) +
1

2
mv2

s(~R, t) + µ(~R, t) = 0, (24)

and
2ξpF

(0)(~R, ~p, t) + |∆(0)(~R, t)|(1−G
(0)
↑ (~R, ~p, t)−G

(0)
↓ (~R,−~p, t)), (25)

where ξp =
p2

2m
− µ and µ – is order separation of variables. In local equilibrium

state µ – is chemical potential and Eq. (25) reduce to equation by order parameter.
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Using operation of ∇~R on Eq. (24) we gives equation of motion by superfluid
velocity

m
∂~vs

∂t
+∇~R

(
m~v2

s

2
+ µ

)
= e ~E. (26)

By using the vector identity

1

2
∇~v2

s = ~vs × (∇× ~vs) + ~vs · ∇~vs = − e

m
~vs × ~H + ~vs · ∇~vs.

Eq. (15) can be written in the form

m
d~vs

dt
= e[ ~E + (~vs × ~H)]−∇µ. (27)

This is the first hydrodynamical equation and shows that the superfluid accelerates
freely under the applied fields. The remaining hydrodynamic equations are provided
by the conservation relations for the particle density ρ(~R, t), momentum density
~j(~R, t) and energy density E(~R, t).

Let us consider the first order of equations (19) and (20). These equation has
the form

∂G
(0)
↑ (~R, ~p, t)

∂t
+

(
pi

m
+ vsi

) ∂G
(0)
↑ (~R, ~p, t)

∂Ri

+
∂G

(0)
↑ (~R, ~p, t)

∂pi

(
eEi −mv̇si − ∂

∂Ri

(
(~p + m~vs)

2

2m

))
(28)

−∂∆(0)(~R, t)

∂Ri

∂F (0)(~R, ~p, t)

∂pi

= 2|∆(0)(~R, t)|ImF (1)(~R, ~p, t),

∂F (0)(~R, ~p, t)

∂t
+ 2i

(
eA0(~R, t) + mχ̇(~R, t) +

1

2
mv2

s(~R, t) +
p2

2m

)
F (1)(~R, ~p, t)

=
∂∆(0)(~R, t)

∂Rj

∂

∂pj

(
G

(0)
↑ (~R, ~p, t)−G

(0)
↓ (~R,−~p, t)

)
+

∂

∂pj

(
pi

∂vsi

∂Rj

F (0)(~R, ~p, t)

)
(29)

− ∂

∂Ri

(
vsiF

(0)(~R, ~p, t)
)
− i|∆(1)(~R, t)|

(
1−G

(0)
↑ (~R, ~p, t)−G

(0)
↓ (~R,−~p, t)

)
.

The relations for ρ, ~j and E follow simply by taking moments of (28) and (29)(see
Ref[6]).

From the definitions

ρ(~R, t) = 2m
∫ d~p

(2π)3
G

(0)
↑ (~R, ~p, t). (30)

After integrating (28) over ~p we find

∂ρ

∂t
+ div~j = 0, (31)

7
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where

~j(~R, t) = 2
∫ d~p

(2π)3
~pG

(0)
↑ (~R, ~p, t) + ρ~vs ≡ ~j0 + ρ~vs.

By analogy, a simple calculation gives

∂jk

∂t
+

∂Πik

∂Ri

=
e

m
ρEk +

e

mc
Hkiji, (32)

where Hki is magnetic field intensity tensor and stress tensor Πik is given by

Πik =
2

m

∫ d~p

(2π)3
(pi + mvsi)(pk + mvsk)G

(0)
↑ (~R, ~p, t) + δik

∆(0)(~R, t)

g
. (33)

The energy density (without mean-field energy) is

E(~R, t) =
1

m

∫ d~p

(2π)3
(~p + m~vs)

2G
(0)
↑ (~R, ~p, t) +

|∆(0)(~R, t)|2
g

, (34)

or

E = E0 +~j0~vs +
1

2
ρv2

s ,

where

E0 =
1

m

∫ d~p

(2π)3
p2G

(0)
↑ (~R, ~p, t) +

|∆(0)(~R, t)|2
g

.

Using (28), (29) and (24) we obtained

∂E
∂t

+ div ~Q =
e

m
~E~j, (35)

the energy current is given by

~Q =
∫ d~p

(2π)3
(~p + m~vs)(

~p

m
+ ~vs)

2G
(0)
↑ (~R, ~p, t) + 2

∆(0)(~R, t)

g
~vs. (36)

The flows of hydrodynamic quantities may be calculated if we assume that as a
zero approximation by the gradients be realized the thermodynamic local equilib-
rium. In local equilibrium

G
(0)
↑ = υ2

~p + u2
~pf

(
ε~p − ~u~p

T

)
− υ2

~pf

(
ε~p + ~u~p

T

)
, (37)

where

f(x) = (ex + 1)−1, u2
~p =

1

2

(
1 +

ξ~p

ε~p

)
, υ2

~p =
1

2

(
1− ξ~p

ε~p

)
, ε~p =

√
ξ2
~p + ∆2.

8
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Using expression (37) we obtain

~j = ρs~vs + ρn~vn, ~vn ≡ ~u + ~vs,

Πik = ρnvnivnk + ρsvsivsk + δikP, (38)

~Q =

(
v2

s

2
+

µ

m

)
~j + TS~vn + ρn~vn(~vn · (~vn − ~vs)).

Here

ρn =
1

u2

∫ d~p

(2π)3
~p~uf

(
ε~p − ~u~p

T

)

is normal density,

ρs = ρ− ρn

is superfluid density,

P = TS − E0 + u2ρn + ρµ/m

is pressure, and entropy

S = 2
∫ d~p

(2π)3
ln

(
1 + exp

(
ε~p − ~u~p

T

))
+

2

T

∫ d~p

(2π)3
f

(
ε~p − ~u~p

T

)
.

The set of Eq. (27), (31), (32), (35) and (38) are form a full systems magneto-
hydrodynamic equations for superconductor.
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Ìiêðîñêîïi÷íèé âèâiä ðiâíÿíü ãiäðîäèíàìiêè äëÿ íàäïëèííèõ
ôåðìi ñèñòåì

À. Ñâiäçèíñüêèé, Ï. Øèãîðií
Âîëèíñüêèé äåðæàâíèé óíiâåðñèòåò iì. Ëåñi Óêðà¨íêè

9 âåðåñíÿ 2006 ð.

Âèõîäÿ÷è ç ïåðøèõ ïðèíöèïiâ ñòàòèñòè÷íî¨ ìåõàíiêè ïîáóäîâàíî äâîðiäèííó
ãiäðîäèíàìiêó íàäïðîâiäíèêà â iäåàëüíîìó íàáëèæåííi. Äëÿ ïîáóäîâè
ãiäðîäèíàìiêè âèêîðèñòàíî ñèñòåìó ðiâíÿíü ðóõó äëÿ íîðìàëüíî¨ òà
àíîìàëüíî¨ êîðåëÿöiéíèõ ôóíêöié. Ïåðåõiä äî ðiâíÿíü ãiäðîäèíàìiêè
çäiéñíþ¹òüñÿ ÷åðåç ðîçêëàä ðiâíÿíü ðóõó äëÿ êîðåëÿöiéíèõ ôóíêöié çà
ìàëèì ïàðàìåòðîì.

Êëþ÷îâ³ ñëîâà: Äâîðiäèííà ãiäðîäèíàìiêà, êîðåëÿöiéíà ôóíêöiÿ,
íàäïëèííi ôåðìi-ñèñòåìè
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