- 36. Structural properties of CuIn₃Se₅ and influence of growth conditions / J. L. Martin de Vidales, H. Charbonnier, R. Diaz [et all.] // Jpn. J. Appl. Phys. 2000. Vol. 39. P. 336–338.
- 37. The phase relations in the Cu, In, Se system and the growth of the CuInSe₂ single crystals / M. L. Fearheiley // Solar Cells. 1986. Vol. 16. P. 91–100.
- 38. Tseng B. H. Defect-ordered phases in a multiphase Cu-In-Se material / B. H. Tseng, C. A. Wert // J. Appl. Phys. 1989. Vol. 65, 6. P. 2254-2257.
- 39. Über einige ternäre Chalkogenide mit Chalkopyritstruktur / H. Hahn, G. Frank, W. Klingler [et all.] // Z. Anorg. Allg. Chem. 1953. Bd. 271. P. 153–170.
- 40. Über Hochdruckphasen des CuInSe₂ und AgInSe₂ mit dichter Zinkblendestruktur / K. J. Range, J. Engels, A. Weiss // High Temperatures High Pressures. 1977. Vol. 9. P. 97–102.
- 41. Urland W. Zur Kristallstruktur von Ho₂Se₃ / W. Urland, P. Helmut // Z. Naturfors. Anorg. Chem. 1998. № 53. S. 900–902.
- 42. Yamamoto K. X-Ray Study of the Average Structures of the Cu₂Se and Cu_{1.8}S in the Room Temperature and the High Temperature Phases / K. Yamamoto, S. Kashida // J. Solid State Chem. 1991. Vol. 93. P. 202–211.

Строк Оксана. Изотермический разрез системы $Ho_2Se_3-Cu_2Se_-In_2Se_3$ при 870 К. За результатами рентгеноструктурного анализа построено изотермический разрез системы $Ho_2Se_3-Cu_2Se_-In_2Se_3$ при 870 К. В системе подтверджено существование восьми тройных соединений: $HoCuSe_2$, $Ho_{2/3}Cu_2Se_2$, $HoCu_5Se_4$, $CuIn_5Se_5$, $CuIn_5Se_8$, $CuIn_7Se_{11}$ та $CuIn_9Se_{14}$. Новых соединений в системе не обнаружено. Установлено существование семи трифазных областей.

Ключевые слова: халькогениды, РЗМ, изотермический разрез, тернарное соединение.

Strok Oksana. Isothermal Section of the Ho₂Se₃–Cu₂Se-In₂Se₃ System at 870 K. The 870 K isothermal section of the Ho₂Se₃–Cu₂Se–In₂Se₃ system has been studied using x-ray powder diffraction. The existence of eight ternary compounds: HoCuSe₂ HoCuSe₂, Ho_{2/3}Cu₂Se₂, HoCu₅Se₄, CuInSe₂, CuIn₃Se₅, CuIn₅Se₈, CuIn₇Se₁₁ Ta CuIn₉Se₁₄ has been confirmed. The existence of new compounds hasn't been established. Seven three-phase and six two-phase regions have been established.

Key words: Chalcogenides, Rare-Earth Metals, Isothermal Section, Ternary Compound.

Східноєвропейський національний університет імені Лесі Українки

Стаття надійшла до редколегії 29.04.2013 р.

УДК 546.57:546.681:546.811

Микола Шевчук

Фазові рівноваги на перерізі AgGaSe2–GeS2

Методами фізико-хімічного аналізу досліджено діаграму стану перерізу AgGaSe₂–GeS₂. Установлено, що він є неквазібінарним перерізом потрійної взаємної системи AgGaS₂ + GeSe₂ ⇔ AgGaSe₂ + GeS₂ з значною розчинністю на основі AgGaSe₂. Визначено зміну періодів комірки твердих розчинів.

Ключові слова: період комірки, неквазібінарний переріз, твердий розчин.

Постановка наукової проблеми та її значення. Аналіз досліджень цієї проблеми. Дослідження діаграми стану перерізу AgGaSe₂–GeS₂ є частиною систематичних досліджень потрійної взаємної системи AgGaS₂ + GeSe₂ \Leftrightarrow AgGaSe₂ + GeS₂. У літературі немає відомостей про діаграму стану перерізу AgGaSe₂–GeS₂, який є однією з діагоналей потрійної взаємної системи. Раніше проводились дослідження фазових рівноваг на перерізах AgGaSe₂–GeSe₂ [4], AgGaSe₂–SnSe₂, AgGaSe₂–SnS₂ [2]. З огляду на це, дослідження діаграми стану перерізу AgGaSe₂–GeS₂ та вивчення залежності розчинності на основі AgGaSe₂ від виду катіонів D^{IV} та аніонів халькогену актуальне. За даними [6; 7], AgGaSe₂ та GeS₂ плавляться конгруентно при 1124 і 1123 К та кристалізуються в тетрагональній і моноклінній сингонії, *I*42*d*; *a* = 0,59920 нм, *c* = 1,08862 нм [1] і ПГ *P2₁/c*; *a* = 0,6640 нм, *b* = 1,6150 нм *c* = 1,143 нм, β = 90°34' [5] відповідно.

Матеріали і методи. Під час вивчення системи AgGaSe₂–GeS₂ виготовлено й досліджено 28 сплавів. Синтез сплавів проводили двотемпературним методом у вакуумованих кварцових контейнерах із елементарних компонентів чистотою: срібло – 99,99 ваг. %; галій – 99,9997 ваг. %; германій – 99,9999 ваг. %, сірка – 99,997 ваг. %; селен – 99,997 ваг. % із використанням вібраційного пере-

[©] Шевчук М., 2013

мішування. Залишковий тиск у кварцових контейнерах складав 0,1 Па. Відпалювання отриманих сплавів проводили при 720 К протягом 500 год із наступним загартовуванням у холодній воді. Максимальна температура синтезу становила 1400 К. Сплави на основі AgGaSe₂ при охолодженні збільшуються в об'ємі [3], тому для запобігання окисненню при розтріскуванні ампул використовували подвійні кварцові контейнери. При дослідженні сплавів використовували диференційний термічний, рентгенофазовий і мікроструктурний аналізи. Диференційний термічний аналіз проводили на термографі VDTA-8M3. Як репери використовували In, Sn, Zn, Al, NaCl, Ge, Ag, Cu, Fe. Як еталон застосовували вольфрам. Швидкість нагрівання та охолодження становила 10 К/хв. Температурний контроль здійснювали термопарою W-Re 0.05/W-Re 0.2. Рентгенофазовий аналіз проводили на

ДРОН 4-13, CuK_α-випромінювання, результати РФА обробляли за допомогою методу найменших квадратів. Мікроструктурний аналіз проводили на мікротвердометрі Leica VMHT Auto.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Діаграму стану перерізу AgGaSe₂–GeS₂ подано на рисунку 1. Ліквідус перерізу складається із трьох ділянок, що відповідають первинній кристалізації α-, γта β-твердих розчинів на основі AgGaSe₂, AgGaGe_(1+2X)S_{4(1-X)}Se_{8X}, GeS₂ відповідно. Лінії ліквідусу попарно дотикаються в точках початку моноваріантних процесів спільної кристалізації L + α + γ та L + γ + β твердих розчинів. Координати точок дотику ліній ліквідусу складають 53 мол. % GeS₂, 1019 К, 92 мол. % GeS₂, 1087 К. Результати диференційного термічного аналізу сплавів пере-

різу AgGaSe2-GeS2 подано в таблиці 1.

Таблиия 1

Склад,	Температури	Склад,	Температури
мол.% GeS ₂	ендотермічних ефектів, К	мол.% GeS ₂	ендотермічних ефектів, К
0	1123	66,66	1045, 1077
10	1085, 1113	70	1043, 1050, 1080
20	1044, 1099	75	1054, 1081
30	1014, 1079	77,5	1036, 1086
37,5	997, 1064	80	1038, 1063,1088
40	993, 1051	82	1062, 1083
42,85	991, 996, 1047	84	1034, 1071, 1086
46	1000	86	1036
47,5	1003, 1031	88	1041, 1089
49	993, 1009, 1030	90	1042, 1079
50	994, 1008, 1025	94	1074, 1095
55	982, 1030	96	1048, 1063, 1106
60	1036, 1064	98	1056
65	1045, 1072	100	1121

Результати диференційного термічного аналізу сплавів перерізу AgGaSe₂-GeS₂

Підсолідусна частина діаграми стану складається з трьох полів α-, γ- та β-твердих розчинів, розділених між собою двома полями двофазних областей. Протяжність α-твердих розчинів на основі AgGaSe₂ становить 41 мол.% GeS₂ при 989 K і зменшується до 39 мол.% GeS₂ при 720 K; γ-твердих розчинів на основі проміжних фаз AgGaGeS₄ та AgGaGe₃Se₈ при 1000-1030 К складає 55-69 мол.% GeS₂ і звужується до 57-66 мол. % GeS₂ при 720 К. Протяжність β-твердих розчинів в усьому температурному інтервалі їх існування становить 98-100 мол. % GeS₂. Зміну періодів елементарних комірок

α- та γ-твердих розчинів представлено на рисунку 2. Криві зміни параметрів елементарних граток сплавів у двофазних областях не є горизонтальними. Тобто в різних точках концентраційного інтервалу двофазних областей присутні різні граничні α- та γ-тверді розчини, що свідчить про неквазібінарність цього перерізу.

Рис. 2. Зміна періодів елементарної гратки сплавів перерізу AgGaSe2-GeS2 при 720 К

39	AgGaSe ₂ - GeS ₂			
52	AgGaSe ₂ - GeSe ₂			
23	AgGaSe ₂ - SnS ₂			
26	AgGaSe ₂ - SnSe ₂			
10 20 AgGaSe ₂	30 40 50 60 70 80 90 мол. % D ^{rv} X ₂ D ^{rv} X			
<i>Рис. 3.</i> Розчинність на основі AgGaSe ₂ у системах				

AgGaSe₂ у системах AgGaSe₂–D^{IV}C^{VI}₂ при 720 К Протяжність α - та γ -твердих розчинів при температурі відпалу визначалася за даними РФА, β -твердого розчину – за даними MCA. Порівнюючи розчинність на основі AgGaSe₂ у системах AgGaSe₂–D^{IV}C^{VI}₂ (рис. 3), видно, що заміна йонів халькогену більшого на йони меншого радіуса та збільшення йонних радіусів катіонів призводить до зменшення величини розчинності.

Висновки. Отже, вперше побудовано діаграму стану перерізу AgGaSe₂–GeS₂. Встановлено, що цей переріз неквазібінарний, на основі AgGaSe₂ існує твердий розчин значної протяжності. Аналіз літературних даних указує, що зменшення розчинності на основі AgGaSe₂ відбувається при заміні йонів селену на сульфур та германію на станум, що пов'язано з розмірним фактором.

Джерела та література

- Киш З. З. Сложные халькогениды в системах А^I−В^{III}−С^{VI} / [З. З. Киш, Е. Ю. Переш, Е. Е. Семрад]; под ред. В. Б. Лазарева. – М. : Металлургия, 1993. – 140 с.
- 2. Шевчук М. В. Система AgGaSe₂ + SnS₂ ⇔ AgGaS₂ + SnSe₂ / М. В. Шевчук, І. Д. Олексеюк // Журн. фізики і хімії твердого тіла. – 2010. – Т. 11, № 2. – С. 386–390.
- Andreyeva O. E. Investigation of the anisotropy of the characteristic of the lattice dynamics of the AgGaS₂-AgGaSe₂ crystals / O. E. Andreyeva, N. S. Orlova, I. V. Bondar // Materials for Electronics. – 1999. – Vol. 3. – P. 66–70.
- Crystal chemical properties and preparation of single crystal of AgGaSe₂–GeSe₂ γ-solid solution / I. D. Olekseyuk, A. V. Gulyak, L. V. Sysa // J. Alloys Comp. – 1996. – Vol. 241. – P. 187.
- 5. Dittmar G. Die kristallstructur von germanium disilenid / G. Dittmar, H. Schafer // Acta Cryst. 1976. B. 32, № 9. P. 2726–2728.
- 6. Le systeme ternaire germanium-tellure-soulfure / S. Managlier Lacordaire, J. Rivet, P. Khodadad, J. Flahaut // Bull. Soc. Chim. France. 1974. № 11, part. 1. P. 2451–2452.
- 7. Mikkelsen J. C. Ag₂Se–Ga₂Se₃ pseudobinary phase diagram / J. C. Mikkelsen // Mater. Res. Bul. 1977. Vol. 12, № 5. P. 497–502.

Шевчук Николай. Фазовые равновесия на разрезе AgGaSe₂–GeS₂. Методами физико-химического анализа исследована диаграмма состояния разреза AgGaSe₂–GeS₂. Установлено, что она есть неквазибинарным разрезом тройной взаимной системы AgGaS₂ + GeSe₂ \Leftrightarrow AgGaSe₂ + GeS₂ с достаточной растворимостью на основе AgGaSe₂. Определено смену периодов решетки твердых растворов.

Ключевые слова: период решетки, неквазибинарный разрез, твердый раствор.

Shevchuk Mykola. Phase Equilibria in the Section $AgGaSe_2$ -GeS₂. Phase diagram of the $AgGaSe_2$ -GeS₂ system was investigated by physico-chemical analysis methods. It was established that the system is a non-quasi-binary section with unlimited solid and liquid solubility. The change of the lattice parameters of the solid solutions was determined.

Key words: Lattice Parameter, Non-Quasi-Binary Section, Solid Solution.

Луцький національний технічний університет

Стаття надійшла до редколегії 28.04.2013 р.

УДК 544.344.016.2:54-165

Ірина Данилюк Інна Іващенко Іван Олексеюк

Політермічний переріз AgIn₅S₈–GaInS₃

За результатами рентгенофазового (РФА) та диференційно-термічного (ДТА) аналізів побудовано політермічний переріз AgIn₅S₈–GaInS₃. При температурі 1140 К в зразках перерізу проходить нонваріантний перитектичний процес L + $\delta \leftrightarrow \alpha$ + ε , де δ – твердий розчин на основі In₂S₃, α – твердий розчин на основі AgIn₅S₈, ε – твердий розчин на основі GaInS₃. Установлено межі існування твердих розчинів на основі тернарних сполук.

Ключові слова: рентгенофазовий аналіз, диференційно-термічний аналіз, політермічний переріз, тверді розчини.

Постановка наукової проблеми та її значення. Дослідження політермічного перерізу $AgIn_5S_8$ –GaInS₃ – неодмінний етап вивчення квазіпотрійної системи Ag_2S –Ga₂S₃–In₂S₃. Крім того, його вивчення дає змогу встановити протяжності твердих розчинів на основі вихідних тернарних сполук.

Аналіз досліджень цієї проблеми. У квазібінарній системі $Ag_2S-In_2S_3$ утворюється сполука $AgIn_5S_8$, яка плавиться конгруентно при 1353 К та кристалізується у структурі шпінелі (пр. гр. Fd3m) з параметром елементарної комірки a = 1,0822 нм [3].

[©] Данилюк І., Іващенко І., Олексеюк І., 2013