- 6. Стасова М. М. Электронографическое определение структуры Tl<sub>2</sub>Se / М. М. Стасова, Б. К. Вайнштейн // Кристаллография. 1950. Т. 3, № 2. С. 141–147.
- CSD-Universal program package for single crystal or powder structure data treatment / L. G. Aksel'rud, Yu. N. Gryn', P. Yu. Zavalij [et all.] // Collected Abstracts of the 12<sup>th</sup> European Crystallographic Meeting. – Moscow, 20–29 August 1989. – M. : Nauka, 1989. – Vol. 3. – P. 155.
- 8. Khan M. Y. Crystal data for β-Ga<sub>2</sub>Se<sub>3</sub> / M. Y. Khan // J. Appl. Cryst. 1977. Vol. 10. P. 70–71.
- Structural phase transition in TlGaSe<sub>2</sub> under high pressure / S. H. Jabarov, T. G. Mammadov, A. I. Mammadov [et all.] // Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques. 2015. Vol. 9, № 1. P. 35–40.

Олексеюк Иван, Цисар Оксана, Пискач Людмила, Парасюк Олег. Система Tl<sub>2</sub>Se–Ga<sub>2</sub>Se<sub>3</sub>. Методами диференциально-термического и рентгенофазового анализов изучено фазовые равновесия в системе Tl<sub>2</sub>Se–Ga<sub>2</sub>Se<sub>3</sub>. Построена диаграмма состояния данной системы.

Ключевые слова: фазовые равновесия, рентгенофазовый анализ, диференциально-термический анализ, квазибинарная система, диаграмма состояния.

**Olekseyuk Ivan, Tsisar Oksana, Piskach Lyudmila, Parasyuk Oleg. The System Tl<sub>2</sub>Se–Ga<sub>2</sub>Se<sub>3</sub>.** The Tl<sub>2</sub>Se–Ga<sub>2</sub>Se<sub>3</sub> system was investigated using differential thermal and X-ray phase analysis methods. The phase diagram was built.

Key words: phase equilibria, X-ray phase analysis, differential thermal analysis, quasi-binary system, phase diagram.

Східноєвропейський національний університет імені Лесі Українки

Стаття надійшла до редколегії 22.03.2014 р.

УДК 546.544:344

Олег Марчук Любомир Гулай Іван Олексеюк Василина Шемет

## Фазові рівноваги в системах PbSe-Gd(Ho)<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> за температури 770 К

За результатами рентгенофазового аналізу досліджено фізико-хімічну взаємодію компонентів у квазіпотрійних системах PbSe–Gd<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> і PbSe–Ho<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub>. Побудовано ізотермічні перерізи досліджуваних систем за температури 770 К.

Ключові слова: рідкісноземельні метали, рентгенофазовий аналіз, ізотермічний переріз.

Постановка наукової проблеми та її значення. Сполуки та сплави, до складу яких входять рідкісноземельні метали, належать до об'єктів напівпровідникового матеріалознавства. Їх унікальні властивості, зокрема магнітні, є передумовою для застосування цих матеріалів в радіо- та електротехніці. Характерна особливість таких матеріалів – це доступна технологічність, відтворюваність результатів та анізотропія властивостей [8]. Вивчення кристалічних структур РЗМ-вмісних тернарних і тетрарних сполук та фазових рівноваг у складних халькогенідних системах, компонетами яких виступають ці сполуки, дає змогу використовувати їх у розробці та прогнозуванні областей практичного застосування. Представлені результати експериментальних досліджень – це один з етапів систематичного вивчення взаємодії компонентів у квазіпотрійних системах  $R_2Se_3$ -PbSe-D<sup>IV</sup>Se<sub>2</sub> (R-P3M; D<sup>IV</sup>-Si, Ge) [1–3] та ін.

Аналіз досліджень цієї проблеми. Відомості про характер взаємодії між компонентами РЗМ-вмісних квазіпотрійних систем та кристалічну структуру багатокомпонентних халькогенідних сполук, що в них утворюються, використовуються як довідковий матеріал у галузі напівпровідникового матеріалознавства та для розширення баз кристалографічних даних і пошуку нових матеріалів. Саме цьому аспекту досліджень присвячено роботи [6; 12] та ін. Кристалічну структуру квазібінарних сполук, які виступають компонентами досліджуваних систем, на сьогодні детально вивчено (табл. 1).

© Марчук О., Олексеюк I., Гулай Л., Шемет В., 2014

## Таблиця 1

| Сполука           | Просторова | Періоди комірки, <i>нм</i> |         |        | Timonamuna |
|-------------------|------------|----------------------------|---------|--------|------------|
|                   | група      | a                          | b       | с      | лпература  |
| PbSe              | Fm3m       | 0,61280                    | _       | -      | [7]        |
|                   | Fm3m       | 0,61220                    | —       | -      | [8]        |
| $Gd_2Se_3$        | Pnma       | 1,11800                    | 0,40500 | 1,0980 | [9]        |
|                   | Pnma       | 1,11820                    | 0,40348 | 1,0971 | [10]       |
| $Ho_2Se_3$        | Fddd       | 1,14200                    | 0,80800 | 2,4230 | [11]       |
|                   | Fddd       | 1,14074                    | 0,81259 | 2,4239 | [12]       |
| GeSe <sub>2</sub> | $P2_{1}/c$ | 0,70360                    | 1,68320 | 1,1810 | [13]       |
|                   | $P2_1/c$   | 0,70190                    | 1,68640 | 1,1814 | [14]       |

#### Кристалографічні характеристики бінарних сполук

Згідно з літературними джерелами (табл. 2), в обмежувальних системах PbSe–GeSe<sub>2</sub> і PbSe–Ho<sub>2</sub>Se<sub>3</sub> утворюються тернарні сполуки Pb<sub>2</sub>GeSe<sub>4</sub> та Ho<sub>6</sub>Pb<sub>2</sub>Se<sub>11</sub> відповідно.

### Таблиця 2

Кристалографічні характеристики тернарних сполук

| Сполука                           | Просторова | Періоди комірки, <i>нм</i> |         |        | Tizonazuna  |
|-----------------------------------|------------|----------------------------|---------|--------|-------------|
|                                   | група      | a                          | b       | С      | Jirieparypa |
| Pb <sub>2</sub> GeSe <sub>4</sub> | I43d       | 1,45730                    | —       | —      | [15]        |
| $Ho_6Pb_2Se_{11}$                 | Стст       | 0,40561                    | 1,34018 | 3,7525 | [16]        |

**Метою** роботи – встановлення фазових рівноваг у квазіпотрійних системах PbSe–Gd<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> і PbSe–Ho<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> за температури 770 К для пошуку нових тетрарних халькогенідних матеріалів. Для досягнення поставленої мети в роботі вирішувалися такі **завдання**: синтез достатньої кількості сплавів; ідентифікація бінарних, тернарних і тетрарних сполук та бінарних і тернарних рівноваг; побудова ізотермічних перерізів досліджуваних систем за температури відпалу сплавів.

**Матеріали і методи.** Синтез сплавів квазіпотрійних систем PbSe–Gd(Ho)<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> проводили з простих речовин із вмістом основного компонента не менше 99,99 ваг. % в електричній муфельній печі з програмним управлінням технологічними процесами МП-30. Максимальна температура синтезу становила 1370 К. Гомогенізувальний відпал проводили за температури 770 К протягом 500 год. Рентгенофазовий аналіз здійснювали за дифрактограмами, знятими на дифрактометрі ДРОН-4-13 у межах  $2\Theta = 10-80^{\circ}$  (СиК<sub>а</sub>-випромінювання, крок сканування – 0,05°, експозиція у кожній точці – 4 с). Обробку даних виконано за допомогою пакету програм CSD [7].

Виклад основного матеріалу та обґрунтування отриманих результатів дослідження. В обмежувальних системах підтверджено існування двох тернарних сполук  $Pb_2GeSe_4$  (структурний тип  $Ba_3CdSn_2S_8$  [18]) та  $Ho_6Pb_2Se_{11}$  (структурний тип  $Tm_8S_{11}$  [20]).

Комплекс проведених досліджень дав змогу побудувати ізотермічні перерізи досліджуваних квазіпотрійних систем за температури 770 К.

*Система PbSe–Gd<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub>.* У гадолінійвмісній системі за температури відпалу сплавів встановлено існування шести однофазних, десяти двофазних та п'яти трифазних полів (табл. 3).

Таблиця 3

### Фазові поля в системі PbSe-Gd<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> за температури 770 К

| № поля | Фаза                                      |
|--------|-------------------------------------------|
| Ι      | II                                        |
| 1      | $Gd_2Se_3$                                |
| 2      | $Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0, 5-0, 9)$ |
| 3      | PbSe                                      |
| 4      | Pb <sub>2</sub> GeSe <sub>4</sub>         |
| 5      | GeSe <sub>2</sub>                         |
| 6      | $Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$         |

## Закінчення таблиці З

| Ι  | II                                                                               |
|----|----------------------------------------------------------------------------------|
| 7  | $Gd_2Se_3 + Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0,9)$                                   |
| 8  | $PbSe + Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0,5)$                                       |
| 9  | $PbSe + Pb_2GeSe_4$                                                              |
| 10 | $GeSe_2 + Pb_2GeSe_4$                                                            |
| 11 | $GeSe_2 + Gd_2Se_3$                                                              |
| 12 | $Gd_2Se_3 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                                     |
| 13 | $Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0, 5-0, 9) + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$      |
| 14 | $PbSe + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                                         |
| 15 | $GeSe_2 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                                       |
| 16 | $Pb_2GeSe_4 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                                   |
| 17 | $Gd_2Se_3 + Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0,9) + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ |
| 18 | $PbSe + Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0,5) + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$     |
| 19 | $GeSe_2 + Gd_2Se_3 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                            |
| 20 | $PbSe + Pb_2GeSe_4 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                            |
| 21 | $GeSe_2 + Pb_2GeSe_4 + Gd_{1.32}Pb_{1.68}Ge_{1.67}Se_7$                          |

*Система PbSe–Ho<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub>.* У гольмійвмісній системі за температури відпалу сплавів також встановлено існування шести однофазних, десяти двофазних та п'яти трифазних полів (табл. 4).

### Таблиця 4

## Фазові поля в системі PbSe-Ho<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> за температури 770 К

| № поля | Фаза                                                           |
|--------|----------------------------------------------------------------|
| 1      | Ho <sub>2</sub> Se <sub>3</sub>                                |
| 2      | Ho <sub>6</sub> Pb <sub>2</sub> Se <sub>11</sub>               |
| 3      | PbSe                                                           |
| 4      | $Pb_2GeSe_4$                                                   |
| 5      | GeSe <sub>2</sub>                                              |
| 6      | $Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                              |
| 7      | $Ho_2Se_3 + Ho_6Pb_2Se_{11}$                                   |
| 8      | $PbSe + Ho_6Pb_2Se_{11}$                                       |
| 9      | $PbSe + Pb_2GeSe_4$                                            |
| 10     | $GeSe_2 + Pb_2GeSe_4$                                          |
| 11     | $Ho_2Se_3 + GeSe_2$                                            |
| 12     | $Ho_2Se_3 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                   |
| 13     | $Ho_6Pb_2Se_{11} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$            |
| 14     | $PbSe + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$                     |
| 15     | $GeSe_2 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                     |
| 16     | $Pb_2GeSe_4 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$                 |
| 17     | $Ho_2Se_3 + Ho_6Pb_2Se_{11} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ |
| 18     | $GeSe_2 + Ho_2Se_3 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$          |
| 19     | $PbSe + Ho_6Pb_2Se_{11} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$     |
| 20     | $PbSe + Pb_2GeSe_4 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$          |
| 21     | $GeSe_2 + Pb_2GeSe_4 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$        |

Розчинність на основі вихідних компонентів досліджених квазіпотрійних систем незначна ( $\approx 1-2$  мол. % відповідного компонента). Найбільший твердий розчин (Gd<sub>2+2/3x</sub>Pb<sub>1-x</sub>Se<sub>4</sub> (x = 0,5–0,9)) за температури 770 К утворюється у системі PbSe–Gd<sub>2</sub>Se<sub>3</sub> (рис. 1 а, фазове поле – 2). В обох системах підтверджено існування тетрарних сполук R<sub>1,32</sub>Pb<sub>1,68</sub>Ge<sub>1,67</sub>Se<sub>7</sub> (R–Gd, Ho), що кристалізуються у структурному типі Dy<sub>3</sub>Ge<sub>1,25</sub>S<sub>7</sub> [9] (просторова група *P*6<sub>3</sub>) з параметрами елементарної комірки a = 1,0428(2) нм, c = 0,6638(2) нм (для сполуки Gd<sub>1,32</sub>Pb<sub>1,68</sub>Ge<sub>1,67</sub>Se<sub>7</sub>) та a = 1,0381(1) нм, c = 0,6646(1) нм (для сполуки Ho<sub>1,32</sub>Pb<sub>1,68</sub>Ge<sub>1,67</sub>Se<sub>7</sub>)

Науковий вісник Східноєвропейського національного університету імені Лесі Українки



Рис. 1. Ізотермічні перерізи систем PbSe-Gd<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> (a) і PbSe-Ho<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> (б) за температури 770 К

Висновки та перспективи подальшого дослідження. В роботі досліджено взаємодію компонентів квазіпотрійних систем PbSe–Ho<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> та PbSe–Gd<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> за температури 770 К: побудовано ізотермічні перерізи та підтверджено існування двох тернарних Pb<sub>2</sub>GeSe<sub>4</sub> і Ho<sub>6</sub>Pb<sub>2</sub>Se<sub>11</sub> та двох тетрарних Ho(Gd)<sub>1,32</sub>Pb<sub>1,68</sub>Ge<sub>1,67</sub>Se<sub>7</sub> сполук.

Подальші дослідження стосуватимуться аналізу взаємодії компонентів у квазіпотрійних системах  $R_2X_3$ –PbX–D<sup>IV</sup>X<sub>2</sub> (R–P3M; D<sup>IV</sup>–Si, Ge, Sn; X–S, Se) і встановлення закономірностей взаємодії компонентів у вказаних квазіпотрійних системах при переходах Si  $\rightarrow$  Ge  $\rightarrow$  Sn ta S  $\rightarrow$  Se.

#### Джерела та література

- 1. Кристалічна структура сполук R<sub>1,32</sub>Pb<sub>1,68</sub>Ge<sub>1,67</sub>Se<sub>7</sub> (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) / І. П. Руда, О. В. Марчук, Л. Д. Гулай, І. Д. Олексеюк // Наук. вісн. Волин. держ. ун-ту ім. Лесі Українки. Сер. : Хімічні науки. – 2007. – № 13. – С. 7–12.
- Система La<sub>2</sub>Se<sub>3</sub>–PbSe–GeSe<sub>2</sub> при 770 К / Н. М. Блашко, І. П. Руда, О. В. Марчук, Л. Д. Гулай // Волинь очима молодих науковців: минуле, сучасне, майбутнє : матеріали IV Міжнар. наук.-практ. конф. студ. і аспір. (Луцьк, 12–13 трав. 2010 р.). Луцьк : РВВ «Вежа» Волин. нац. ун-ту ім. Лесі Українки, 2010. Т. 2. С. 331–332.
- Фазові рівноваги в системах Y<sub>2</sub>S(Se)<sub>3</sub>-PbS(Se)-SiS(Se)<sub>2</sub> при 770 К / О. В. Марчук, І. П. Руда, Л. Д. Гулай, І. Д. Олексеюк // Наук. вісн. Волин. нац. ун-ту ім. Лесі Українки. Сер. : Хімічні науки. 2008. № 13. С. 24–27.
- Bletskan D. I. Three polymorphic forms of GeSe<sub>2</sub> crystals / D. I. Bletskan, V. S. Gerasimenko, M. Ju. Sicka // Kristallografiya. – 1979. – Vol. 24. – P. 83–87.
- 5. Crystal structure of the R<sub>6</sub>Pb<sub>2</sub>Se<sub>11</sub> (R = Y, Dy and Ho) compounds / L. D. Gulay, V. Ya. Shemet, Stepen' Damm Yu. at al. // Journal of Alloys Compd. 2005. Vol. 403. P. 206–210.
- Crystal structures of the R<sub>2</sub>Pb<sub>3</sub>Sn<sub>3</sub>S<sub>12</sub> (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er and Tm) compounds / L. D. Gulay, I. P. Ruda, O. V. Marchuk, I. D. Olekseyk // J. Alloys and compounds. – 2008. – Vol. 457. – P. 204–208.
- CSD-Universal program package for single crystal and powder structure data treatment / L. G. Aksel'rud, Yu. N. Grin', P. Yu. Zavalii at all. // Collected Abstracts 12<sup>th</sup> European Crystallogr. Meet., Moscow, USSR, 20–28 August. – 1989. – Vol. 3. – P. 155.
- Eliseev A. A. Handbook on the physics and chemistry of rare earths. Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements / A. A. Eliseev, G. M. Kuzmichyeva // Elsevier Science Publishers B. V. – 1990. – Vol. 13. – P. 191–281.
- Etude structurale des systemes Ln<sub>2</sub>S<sub>3</sub>-GeS<sub>2</sub> / A. Michelet, A. Mazurier, G. Collin at all. // Journal of Solid State Chemistry. – 1975. – Vol. 13. – P. 65–76.
- Folchnandt M. Ueber Sesquiselenide der Lanthanoide: Einkristalle von Ce<sub>2</sub>Se<sub>3</sub> im C-Gd<sub>2</sub>Se<sub>3</sub> im U- und Lu<sub>2</sub>Se<sub>3</sub> im Z-Typ / M. Folchnandt, C. Schneck, T. Schleid // Zeitschrift fuer Anorganische und Allgemeine Chemie. – 2004. – Vol. 630. – P. 149–155.
- 11. Guittard M. Les seleniures L<sub>2</sub>Se<sub>3</sub> et L<sub>3</sub>Se<sub>4</sub> des elements des terres rares / M. Guittard, A. Benacerrat, J. Flahaut // Annales de Chimie. 1964. Vol. 25. P. 25–34.
- 12. Investigation of the Y<sub>2</sub>S<sub>3</sub>–PbS–SnS<sub>2</sub> system at 770 K / O. V. Marchuk, I. P. Ruda, L. D. Gulay, I. D. Olekseyuk // Polish journal of the chemistry. 2007. Vol. 81. P. 425–432.
- Lead selenide / I. O. Nasibov, T. I. Sultanov, M. I. Murguzov, G. G. Shafagatova // Inorganic Materials (USSR). – 1989. – Vol. 25 (4). – P. 485–487.

- 14. Popovic Z. V. Infrared and Raman spectra of germanium dichalcogenides-II: GeSe<sub>2</sub> / Z. V. Popovic, H. J. Stolz // Physica Status Solidi, Sectio B: Basic Research. 1981. Vol. 108. P. 153.
- Skums V. F. Lead selenide / V. F. Skums, R. L. Pink, M. R. Allasov // Inorganic Materials (USSR). 1991. Vol. 27 (8). – P. 1336–1340.
- Slovyanskikh V. K. Lanthanide selenides LnSe<sub>1,4±x</sub> of the yttrium subgroup / V. K. Slovyanskikh, N. T. Kuznetsov, N. V. Gracheva // Russian Journal of Inorganic Chemistry. – 1982. – Vol. 27 (5). – P. 745–746.
- 17. Structural studies of a cubic, high-temperature ( $\alpha$ ) polymorph of Pb<sub>2</sub>GeS<sub>4</sub> and the isostructural Pb<sub>2-x</sub>Sn<sub>x</sub>GeS<sub>4-y</sub>Se<sub>y</sub> solid solution / K. M. Poduska, L. Cario, F. J. DiSalvo at all. // Journal of Alloys and Compounds. 2002. Vol. 335. P. 105–110.
- 18. Teske C. L. Darstellung und Kristallstruktur von Barium-Cadmium-Thiostannat(IV) BaCdSnS<sub>4</sub> / C. L. Teske // Zeitschrift fuer Anorganische und Allgemeine Chemie. 1980. Vol. 460. P. 163–168.
- 19. Urland W. Zur Kristallstruktur von Ho<sub>2</sub>Se<sub>3</sub> / W. Urland, P. Helmut // Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie. 1998. Vol. 53. P. 900–902.
- Zhang Y. Synthesis, crystal structure and magnetic properties of Tm<sub>8</sub>S<sub>11</sub> / Y. Zhang, H. F. Franzen, B. Harbrecht // Journal of the Less-Common Metals. 1990. Vol. 166. P. 135–140.

Марчук Олег, Гулай Любомир, Олексеюк Иван, Василина Шемет. Фазовые равновесия в системах PbSe-Gd(Ho)<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> при температуре 770 К. На основании результатов рентгенофазового анализа исследовано физико-химическое взаимодействие компонентов в квазитройных системах PbSe-Gd<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub> и PbSe-Ho<sub>2</sub>Se<sub>3</sub>-GeSe<sub>2</sub>. Построены изотермические сечения исследуемых систем за температуры 770 К.

Ключевые слова: редкоземельные металлы, рентгенофазовый анализ, изотермическое сечение.

Marchuk Oleg, Gulay Lubomir, Olekseyuk Ivan, Vasylyna Shemet. Phase Equilibria in PbSe–Gd(Ho)<sub>2</sub>Se<sub>3</sub>–GeSe<sub>2</sub> Systems at 770 K. Interaction of the components in the La<sub>2</sub>S<sub>3</sub>–PbS–SiS<sub>2</sub> and La<sub>2</sub>Se<sub>3</sub>–PbSe–SiSe<sub>2</sub> systems have been investigated using X-ray phase analysis. Isothermal sections of the investigated systems have been constructed at 770 K. Key words: rare-earth, X-ray phase analysis, isothermal section.

Східноєвропейський національний університет імені Лесі Українки; Луцький національний технічний університет Стаття надійшла до редколегії 19.03.2014 р.

УДК 544.163;544.164

# Олена Аксіментьєва Галина Мартинюк

## Віскозиметричне дослідження розчинів поліаміноаренів

Використовуючи віскозиметрію, досліджено основні характеристики в'язкості розчинів поліаміноаренів у інтервалі температур 25–45 °C на прикладі незаміщеного поліаніліну. Показано, що основні закономірності зміни показників в'язкості залежно від температури і концентрації узгоджуються зі встановленими для традиційних полімерів. За величиною характеристичної в'язкості визначено молекулярну масу поліаніліну.

**Ключові слова:** поліанілін, молекулярна маса, віскозиметрія, температурна залежність, характеристична в'язкість.

**Постановка наукової проблеми та її значення.** Електропровідні поліаміноарени (поліанілін та його похідні) належать до наймолодшої генерації високомолекулярних сполук, що використовує і досліджує людство упродовж останніх років. Відкриття явища електронної провідності в полімерних системах, за яку присуджено Нобелівську премію у 2000 р. [6; 9], та швидкий поступ в цій галузі спричинили справжню «наукову революцію» у фізичній хімії полімерів, нанотехнологіях, сенсориці, молекулярній електроніці та інших галузях [1; 2; 7]. З огляду на це синтез і дослідження спряжених електропровідних полімерів – актуальний напрям сучасної науки.

Виклад основного матеріалу та обґрунтування отриманих результатів дослідження. В наукових дослідженнях і практичних застосуваннях електропровідних полімерів важливого значення набуває питання розмірів макромолекул, їх конформації, ступеня дисперсності. Проте ключовою характеристикою кожного полімеру є його молекулярна маса.

<sup>©</sup> Аксіментьєва О., Мартинюк Г., 2014