УДК 546.56.682.18.23

М. В. Поторій – доктор хімічних наук, професор кафедри неорганічної хімії Ужгородського національного університету;

І. П. Пріц – кандидат хімічних наук, старший науковий співробітник, завідувач відділу НДІ фізики і хімії твердого тіла Ужгородського національного університету;

С. Ф. Мотря – кандидат хімічних наук, старший науковий співробітник НДІ фізики і хімії твердого тіла Ужгородського національного університету;

эмгородського національного університету, П. М. Милян – кандидат хімічних наук, старший науковий співробітник, завідувач лабораторії НДІ фізики і хімії твердого тіла Ужгородського національного університету;

В. В. Товт – науковий співробітник НДІ фізики і хімії твердого тіла Ужгородського національного університету

Взаємодія компонентів у квазіпотрійній системі Cu₂Se–In₂Se₃–"P₂Se₄" та побудова діаграми фазових рівноваг

Роботу виконано на кафедрі неорганічної хімії та НДІ фізики і хімії твердого тіла УНУ

Методами рентгенівського фазового та диференціального термічного аналізів досліджено систему Cu₂Se-In₂Se₃-"P₂Se₄" та побудовано її діаграму фазових рівноваг при 670 К. Вивчено фізико-хімічну взаємодію в системах CuInP₂Se₆-In₄(P₂Se₆)₃ та CuInSe₂-"P₂Se₄" і побудовано відповідні діаграми стану. Встановлено, що CuInP₂Se₆ плавиться конгруентно при температурі 923 \pm 5 К. Досліджено межі областей гомогенності для тетрарної CuInP₂Se₆ та тернарної In₄(P₂Se₆)₃ сполук. Запропоновано механізм утворення твердих розчинів. Методами XTP та направленої кристалізації розплаву вирощено монокристали CuInP₂Se₆.

Ключові слова: діаграми стану, квазібінарні перерізи, сполуки, монокристали.

Поторий М. В., Приц И. П., Мотря С. Ф., Милян П. М, Товт В. В. Взаимодействие компонентов в квазитройной системе Cu₂Se-In₂Se₃-"P₂Se₄" и построение диаграмм фазовых равновесий. Методами рентеновского фазового и дифференциального термического анализов исследована система Cu₂Se-In₂Se₃-"P₂Se₄" и построена ее диаграмма фазовых равновесий при 670 К. Изучается физико-химическое взаимодействие в системах CuInP₂Se₆-In₄(P₂Se₆)₃ и CuInSe₂-"P₂Se₄", построены соответствующие диаграммы состояния. Установлено, что CuInP₂Se₆ плавится конгруентно при температуре 923 \pm 5 К. Исследованы области гомогенности для тетрарного CuInP₂Se₆ и тернарного In₄(P₂Se₆)₃ соединений. Предложен механизм образования твердых растворов. Методами XTP и направленной кристаллизации расплава выращены монокристаллы CuInP₂Se₆.

Ключевые слова: диаграммы состояния, квазибинарные разрезы, соединения, монокристаллы.

Potoriy M. V., Prits I. P., Motrya S. F., Milyan P. M., Tovt V. V. The Interaction of Components in the System Kvaziternary Cu₂Se–In₂Se₃–"P₂Se₄" and the Construction of Phase Equilibrium Diagrams. The Cu₂Se–In₂Se₃–"P₂Se₄" system have been established using X-ray diffraction and differential thermal analysis. The physical-chemical interaction in the CuInP₂Se₆–In₄(P₂Se₆)₃ and CuInSe₂–"P₂Se₄" systems was studied and proper T-x diagram was built at 670 K. Established that CuInP₂Se₆ congruently melting at 923 \pm 5 K. The regions of homogeneity for tetrary CuInP₂Se₆ and ternary In₄(P₂Se₆)₃ compounds were determined. Mechanize proposed formation of solid solutions. Single crystals of CuInP₂Se₆ were grown by CVT and Bridgman methods.

Key words: phase diagrams, quasibinary cross-sections, compounds, single crystals.

Постановка наукової проблеми та її значення. Вивчення фазових рівноваг у системах та побудова діаграм стану окремих псевдобінарних перерізів дозволяють встановити метод синтезу та характер утворення окремих сполук, здійснити науково обґрунтований підхід до підбору технологічних умов вирощування їх монокристалів [1].

Наше дослідження присвячене вивченню фізико-хімічної взаємодії в квазіпотрійній системі Cu₂Se-In₂Se₃-"P₂Se₄". Щоб виявити квазібінарні перерізи, у цій системі провели її експериментальну триангуляцію з врахуванням таких положень [1]:

[©] Поторій М. В., Пріц І. П., Мотря С. Ф., Милян П. М., Товт В. В., 2010

- у потрійній системі з конгруентними проміжковими фазами квазібінарні перерізи повинні виходити із фігуративних точок усіх (подвійних, потрійних) проміжкових фаз і окремих компонентів;
- якщо в потрійній системі із конгруентними проміжковими фазами квазібінарні перерізи перетинаються, то в точці їх перетину знаходиться потрійна сполука, а якщо вона там відсутня, то один із перерізів є неквазібінарним;
- якщо проміжкова фаза знаходиться на одній зі сторін концентраційного трикутника, то із фігуративної точки кожної із фаз виходить по одному квазібінарному розрізу.

Можливі квазібінарні перерізи в системі Cu₂Se–In₂Se₃–"P₂Se₄" наведено на рисунку 1 та вказано сплави, які необхідно синтезувати в системі для побудови її діаграми фазових рівноваг (табл. 1).

Склади сплавів додатково синтезованих у системі Cu₂Se–In₂Se₃-"P₂Se₄" для побудови діаграми фазових рівноваг Таблиця 1

N⁰	Стехіометричний	С	%	
3/п	склад сплавів	Cu ₂ Se	Cu ₂ Se	Cu ₂ Se
1	CuInP ₂ Se ₆	25	25	50
2	$In_4(P_2Se_6)_3$	0	40	60
3	$Cu_3In_7P_6Se_{24}$	18,75	43,75	37,5
4	$Cu_6In_8P_6Se_{27}$	30	40	30
5	$Cu_8In_6P_2Se_{25}$	40	30	30
6	$Cu_8In_2P_{10}Se_{17}$	40	10	50
7	CuInSe ₂	50	50	0

Рис. 1. Схема теоретичної триангуляції системи $Cu_2Se-In_2Se_3 - "P_2Se_4"$ Сполука CuInP₂Se₆ лежить на перетині двох перерізів: CuInSe₂-"P₂Se₄" та "Cu₄P₂Se₆"-In₄(P₂Se₆)₃. CuInSe₂ + "P₂Se₄" \rightarrow CuInP₂Se₆ "Cu₄P₂Se₆" + In₄(P₂Se₆)₃ \rightarrow 4CuInP₂Se₆

Оскільки в обох указаних системах одна з вихідних сполук є гіпотетичною (існування їх у відповідних системах не виявлено), то обидва перерізи є частково квазібінарними. Склад сплаву 3, що лежить на перетині можливих квазібінарних перерізів CuInSe₂–In₄(P₂Se₆)₃ та In₂Se₃–CuInP₂Se₄, за

28

результатами рентгено-фазового аналізу містить фази In_2Se_3 та $CuInP_2Se_6$, і тому квазібінарним є переріз In_2Se_3 — $CuInP_2Se_6$. Склади сплавів 4, 5, 6 (табл. 1) виявились трьохфазними. Фазовий склад додатково синтезованих сплавів у системі Cu_2Se_3 — (P_2Se_4) " наведено у таблиці 2.

Таблиця 2

<u>№</u> 3разка	Склад сплавів, мол. %			Фазовий склад					
	Cu ₂ Se	In ₂ Se ₃	"P ₂ Se ₄ "	CuInSe ₂	CuInP ₂ Se ₆	$In_4(P_2Se_6)_3$	Cu ₂ Se	In ₂ Se ₃	
3	18,75	43,75	37,5	-	+	-	-	+	
4	30	40	30	+	+	-	-	+	
5	40	30	30	+	+	-	+	-	
6	40	10	50	-	+	-	+	-	

Фазовий склад сплавів системи Cu₂Se-In₂Se₃-"P₂Se₄"

Отже, в цій роботі проведено вивчення фізико-хімічної взаємодії в частково квазібінарних перерізах CuInSe₂–"P₂Se₄" та "Cu₄P₂Se₆"–In₄(P₂Se₆)₃ на ділянці утворення тетрарної сполуки CuInP₂Se₆, а також побудовано ізотермічний переріз квазіпотрійної системи Cu₂Se–In₂Se₃ – "P₂Se₄" (T = 670 K).

Матеріали та методи. Як вихідні компоненти під час дослідження фізико-хімічної взаємодії в системі CuInSe₂—" P_2Se_4 " використано попередньо синтезовану тернарну сполуку CuInSe₂ та елементарні фосфор і селен.

Для проведення синтезу зважені на аналітичних терезах вихідні подрібнені до порошкоподібного стану компоненти поміщали у кварцові ампули, які вакуумували і клали до двохзонної горизонтальної печі. Під час синтезу температура в порожньому кінці ампули була на 20–30 градусів вищою, ніж у тому кінці, де знаходилися компоненти синтезу. Такий градієнт температури запобігає сублімації летких компонентів під час синтезу. Максимальна температура нагріву становила 920–950 К з витримкою протягом 3-х тижнів. Під час синтезу здійснювали також тривалі витримки при 450–500 К; 720–730 К. Охолодження шихти до 400 К проводили з швидкістю 100 градусів на добу, а далі – в режимі вимкненої печі.

Виклад основного матеріалу та обгрунтування отриманих результатів дослідження. У системі CuInSe₂–"P₂Se₄" на ділянці утворення тетрарної сполуки CuInP₂Se₆ було синтезовано 10 сплавів з інтервалом концентрацій 5–10 мол. %. Гомогенізуючий відпал здійснювали при 670 К протягом 14 діб. За результатами рентгенофазового аналізу синтезованих сплавів виявили утворення тетрарної сполуки CuInP₂Se₆, яка кристалізується в тригональній сингонії, просторова група P31c з параметрами елементарної комірки a = 6,395(2); c = 13,340(1) Å.

За результатами диференціально-термічного аналізу (НТР-64, хромель-алюмелева термопара) сплавів системи CuInSe₂-"P₂Se₄" побудовано діаграму стану на ділянці утворення тетрарної сполуки CuInP₂Se₆ (рис. 2).

Сполука CuInP₂Se₆ плавиться конгруентно при температурі 923 \pm 5 К. Пологий характер лінії ліквідуса вказує на значну дисоціацію сполуки під час плавлення. Евтектична горизонталь з боку CuInSe₂ відповідає температурі 885 \pm 5 К, а склад евтектики – ~ 8 мол. % CuInSe₂. На рисунку 2 показано, що сполука CuInP₂Se₆ при евтектичній температурі має область гомогенності, яка становить ~ 18 мол. % CuInSe₂.

Крім вказаного перерізу в системі Cu₂Se–In₂Se₃-"P₂Se₄", проведено дослідження фізико-хімічної взаємодії системи CuInP₂Se₆–In₄(P₂Se₆)₃ як одного із квазібінарних перерізів.

Рис. 2. Діаграма стану системи $CuInSe_2 - P_2Se_4$ на ділянці існування тетрарної сполуки $CuInP_2Se_6$: $I - L; II - L + CuInSe_2; III - L + a; IV - CuInSe_2 + a; V - a; VI - a + P_xSe_y$

Одержання сплавів цієї системи проводили аналогічно до попередньої. Одержані зразки досліджували методами рентгенофазового та диференціально-термічного аналізів.

За результатами диференціально-термічного аналізу побудовано діаграму стану системи $CuInP_2Se_6-In_4(P_2Se_6)_3$ (рис. 3).

У системі спостерігаємо обмежену взаємну розчинність вихідних тернарних сполук. При температурі 903 \pm 5 К CuInP₂Se₆ розчиняє близько 30 мол. % In₄(P₂Se₆)₃ (α-твердий розчин); In₄(P₂Se₆)₃ за цих же умовах розчиняє ~ 28 мол. % CuInP₂Se₆ (β-твердий розчин).

Рис. 3. Діаграма стану системи $CuInP_2Se_6-In_4(P_2Se_6)_3$

Зі зниженням температури взаємна розчинність сполук зменшується і при температурі гомогенізуючого відпалу 670 ± 5 К становить 20 мол. % (α-твердий розчин) та 22 мол. % (β-твердий розчин) відповідно.

Між α -твердим розчином на основі CuInP₂Se₆ і рідиною L при температурі 903 ± 5 К проходить перитектична реакція з утворенням β -твердих розчинів ($\alpha + \beta \leftrightarrow L$).

Зміну параметрів елементарних комірок сплавів системи $CuInP_2Se_6-In_4(P_2Se_6)_3$. наведено на рисунку 4 а і б.

Рис. 4. Зміна параметрів елементарних комірок для сплавів системи CuInP₂Se₆-In₄(P₂Se₆)₃: а) зміна параметру а; б) зміна параметру с

Протяжність α і β -твердих розчинів в системі CuInP₂Se₆ – In₄(P₂Se₆)₃ становить 22 мол. % і 12 мол. % відповідно. За механізмом утворення обидва типи твердих розчинів належать до твердих розчинів заміщення:

$$Cu^+ \leftrightarrow In^{+3} - \alpha$$
-твердий розчин – $In^{+3} \leftrightarrow Cu^+$

Якщо прийняти, що граничний склад α і β -твердих розчинів відповідає 20 мол. % In₄(P₂Se₆)₃ і 20 мол. % CuInP₂Se₆, то можемо записати схему таких заміщень:

α-твердий розчин: CuInP₂Se₆ + 0,2In_{1,33}P₂Se₆ \rightarrow CuIn_{1,266}P_{2,4}Se_{7,2} \rightarrow Cu_{0,833}In_{1,055}P₂Se₆ (0,167 ат. Cu⁺ заміщують 0,055 ат. In⁺³);

 β -твердий розчин: In₄(P₂Se₆)₃ + 0,2CuInP₂Se₆ \rightarrow In_{1,33}P₂Se₆ + Cu_{0,2}In_{0,2}P_{0,4}Se_{1,2} \rightarrow Cu_{0,2}In_{1,53}P_{2,4}Se_{7,2} \rightarrow Cu_{0,167}In_{1,277}P₂Se₆ (0,0525 ат. In⁺³ заміщують 0,167 ат. Cu⁺).

Скориставшись результатами досліджень квазібінарних перерізів CuInSe₂-"P₂Se₄" та CuInP₂Se₆-In₄(P₂Se₆)₃, а також фазовим складом додатково синтезованих потрійних сплавів, побудовано ізотермічний переріз (670 К) квазіпотрійної системи Cu₂Se-In₂Se₃-"P₂Se₄" (рис. 5).

Рис. 5. *Ізотермічний переріз системи Си*₂*Se*-*In*₂*Se*₃- "*P*₂*Se*₄" при 670 К.

У дослідженій квазіпотрійній системі Cu₂Se–In₂Se₃-"P₂Se₄" при 670 К утворюється одна тетрарна сполука CuInP₂Se₆, яка перебуває у фазових рівновагах з Cu₂Se, CuInSe₂, In₂Se₃ та In₄(P₂Se₆)₃. При цій температурі CuInP₂Se₆ має область гомогенності, яка становить 22 мол. % в напрямку In₄(P₂Se₆)₃ і 20 мол. % в напрямку CuInSe₂. Тернарна сполука In₄(P₂Se₆)₃ розчиняє при температурі відпалу близько 22 мол. % CuInP₂Se₆.

Тетрарна сполука CuInP₂Se₆ має сегнетоелектричні властивості (фазовий перехід 235 К з просторової групи C2/с \rightarrow Cc) [2], тому певний інтерес викликає розробка технологічних умов вирощування її монокристалів.

Монокристали CuInP₂Se₆ вирощували і методом хімічних транспортних реакцій (XTP), і методом направленої кристалізації з розплаву.

Вирощування монокристалів CuInP₂Se₆ методом XTP проводили в кварцових ампулах діаметром 20–24 мм, довжиною 140–160 мм. Як транспортувальний реагент використовували йод або CuI з концентрацією 4–6 мг/см³ вільного об'єму ампули.

Транспорт при рості монокристалів направлений від гарячої до холодної зони, що вказує на екзотермічний характер транспортної реакції. Схему ХТР можна представити у вигляді рівняння:

 $2 CuInP_2Se_6 + I_2 \leftrightarrow 2CuI + 2 P_2Se_5 + Se_2$

При вирощуванні монокристалів CuInP₂Se₆ температура зони випаровування складала 850–890 К, зони кристалізації – 830–850 К, температурний градієнт становив 20–40 К. У результаті одержано тонкі пластини чорного кольору розмірами $10 \times 6 \times 0,1$ мм³.

Рис. 6. Монокристал CuInP₂Se₆, одержаний направленою кристалізацією розплаву

Вирощування монокристалів CuInP₂Se₆ методом направленої кристалізації проводили з розплаву стехіометричного складу в попередньо проградуйованих двохзонних печах. Оптимальними технологічними умовами для одержання якісних монокристалічних буль CuInP₂Se₆ є такі: температура зони розплаву 1000 К, температура зони відпалу 820 К, градієнт температури в зоні росту $\Delta T = 3,5$ К/мм, швидкість росту 1,5 мм/добу. В результаті одержано монокристалічні зразки діаметром 14 мм і довжиною 20–25 мм. Загальний вигляд монокристалів CuInP₂Se₆, отриманих направленою кристалізацією розплаву, представлений на рисунку 6.

Література

- 1. Барчій І. Є. Гетерогенні рівноваги / І. Є. Барчій, Є. Ю. Переш, В. М. Різак, В. О. Худолій. Ужгород : Закарпаття, 2003. 203 с.
- Bourdon X. Copper sublattice ordering in layered CuMP₂Se₆ (M-In, Cr) / X. Bourdon, V. Maisonneuve, V. B. Cajipe, C. Payen, J. E. Fischer // J. Alloys Compounds. – 1999. – Vol. 283. – P. 122–127.

Статтю подано до редколегії 06.10.2010 р.