УДК 546.57+546.48+546.19+546.681+546.22

Т. Л. Найдич – студентка V курсу хімічного факультету Волинського національного університету імені Лесі Українки; О. Є. Жбанков – фахівець І категорії кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

І. І. Мазурець – кандидат хімічних наук, старший викладач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Фазові рівноваги в системі $AgGaS_2-I/2(CdGa_2S_4)-2/3(As_2S_3)$

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Фазові рівноваги в квазіпотрійній системі досліджено методами диференційно-термічного та рентгенофазового аналізів. Побудовано два політермічних перерізи, проекцію поверхні ліквідусу і встановлено область склоутворення.

Ключові слова: напівпровідники, рентгенофазовий аналіз, фазові діаграми, термічний аналіз.

Найдич Т. Л., Жбанков О. Е., Мазурец И. И. Фазовые равновесия в системе AgGaS₂–l/2(CdGa₂S₄)– 2/3(As₂S₃). Фазовые равновесия в квазитройной системе исследовано методами диференционно-термического и рентгенофазового анализов. Построено два политермичних сечения, проекцию поверхности ликвидуса и установлена область стеклообразования.

Ключевые слова: полупроводники, рентгенофазовий анализ, фазовые диаграммы, термический анализ.

<u>Naidych T. L., Zhbankov O. Ye., Mazurets I. I. Phase Equilibria in the AgGaS₂– $1/2(CdGa_2S_4)-2/3(As_2S_3)$ </u> <u>System.</u> The alloys of this system were investigated by means of differential thermal and X-ray phase analysis; the phase diagram of two politermal section, liquidus surface projection and glassforming region have been constructed based on this results.

Key words: semiconductors, X-ray diffraction, phase diagrams, thermal analysis.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Сполуки, які є компонентами досліджуваної системи, відомі практичним використанням. AgGaS₂ є одним із неліпійно-оптичних матеріалів для ближньої ІЧ-області електромагнітного спектра [1], CdGa₂S₄ використовується як вузькосмуговий оптичний фільтр [2], As₂S₃ є типовим склоутворювачем.

Системи AgGaS₂–CdGa₂S₄, AgGaS₂–As₂S₃ та CdGa₂S₄–As₂S₃, що обмежують квазіпотрійну систему, є квазібінарними. Системи AgGaS₂–As₂S₃ [3] і CdGa₂S₄–As₂S₃ [4] є евтектичного типу, але евтектика має вироджений характер. Система AgGaS₂–CdGa₂S₄ [5] є евтектичного типу без утворення проміжних фаз. Координатами точки евтектики є 55 мол. % CdGa₂S₄ i 1191 K [6].

Матеріали і методи. Для дослідження фазових рівноваг у квазіпотрійній системі $AgGaS_2$ l/2(CdGa₂S₄)–As₂S₃ виготовлено 89 сплавів. Сплави готували з високочистих елементів (Ag – 99,999 мас. %, Cd – 99,999 мас. %; Ga – 99,9997 мас. %; S – 99,997 мас. %) попередньо синтезованого As₂S₃ (As – 99,999 мас. %). Синтез проводили в два етапи. На першому етапі відбувалося нагрівання ампул із шихтою в полум'ї киснево-газового пальника до повного зв'язування елементарної сірки. На другому етапі ампули розміщували в шахтній печі та нагрівали зі швидкістю 10–20 К/год до 1070–1270 К. При цій температурі проводилося витримування протягом 4 год і подальше охолодження до 500 К. При 500 К відбувалася витримка 500 год, після чого проводили їх загартування в холодній воді.

Стекла у досліджуваній системі одержували у тонкостінних кварцових ампулах спеціальної конструкції. Загартування проводилося від 1270 К у 25%-й розчин NaCl (витримування при максимальній температурі становило 6 год). Для запобігання розбризкування розплаву по об'єму контейнера, а також зменшення втрат при конденсації з парової фази, застосовували максимальне зменшення розмірів ампули та збільшення температури в її верхній частині за рахунок теплоізоляції шнуровим азбестом.

Дослідження одержаних сплавів здійснювали диференційно-термічним (ДТА) та рентгенофазовим (РФА) аналізами. Запис кривих ДТА проводили на дериватографі Paulik-Paulik-Erdey. Швидкість нагрівання становила 10 К·хв⁻¹. Для калібрування використовували Cu, Ag, NaCl, Sb, Te, Cd i

[©] Найдич Т. Л., Жбанков О. С., Мазурець І. І., 2008

Sn. Рентгенофазовий аналіз проводили на дифрактометрі ДРОН 4-13 із використанням CuK_α-випромінювання.

Порошкові рентгенограми отримано на дифрактометрі ДРОН 4-13 з використанням CuK_α-випромінювання. Вони реєструвалися в інтервалі 10–80° 2θ з кроком лічильника 0,05° та часом збору 1 с у точці. Рентгенофазовий аналіз виконано за допомогою програми Powder Cell 2.3 [6].

Склоподібний стан сплавів контролювався за допомогою рентгенофазового аналізу. На дифрактограмах склоподібних зразків піки були відсутні, але спостерігалися характерні "гало", які свідчать про відсутність далекого порядку в структурі сплаву.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження *Переріз "Cd*_{13,5}*Ga*₂₇*As*₄*S*₆₀" – "*Ag*₂₇*Ga*₂₇*As*₄*S*₆₀" (10 мол. % 2/3(*As*₂*S*₃)) Переріз "Cd_{13,5}*Ga*₂₇,As₄*S*₆₀" – "*Ag*₂₇*Ga*₂₇*As*₄*S*₆₀" (рис. 1) проходить через два поля первинної кристалізації

Переріз "Cd_{13,5}Ga₂₇,As₄S₆₀" – "Ag₂₇Ga₂₇As₄S₆₀" (рис. 1) проходить через два поля первинної кристалізації фаз AgGaS₂ та CdGa₂S₄.

Переріз "CdGa₂As₂₄S₄₀" – "Ag₁₈CdGa₂₀S₄₀" (10 мол. % 1/2(CdGa₂S₄))

Переріз "CdGa₂As₂₄S₄₀" – "Ag₁₈CdGa₂₀S₄₀" (рис. 2) є подібним до попереднього і також перегинає два поля первинної кристалізації фаз CdGa₂S₄ і AgGaS₂. Вторинна кристалізація представлена полями: L + AgGaS₂+ CdGa₂S₄, L + CdGa₂S₄ + As₂S₃. Кристалізація більшості сплавів завершується потрійним нонваріантним процесом L \leftrightarrow CdGa₂S₄ + AgGaS₂ + As₂S₃ (505 K).

Puc 1. Φ азові рівноваги на перерізі "Cd_{13,5}Ga₂₇, As₄S₆₀" – "Ag₂₇Ga₂₇As₄S₆₀": 1 – L; 2 – L + CdGa₂S₄; 3 – L + AgGaS₂; 4 – L + AgGaS₂ + CdGa₂S₄; 5 – L + CdGa₂S₄ + As₂S₃; 6 – L + AgGaS₂ + As₂S₃; 7 – CdGa₂S₄ + AgGaS₂ + As₂S₃; 8 – CdGa₂S₄ + As₂S₃; 9 – AgGaS₂ + As₂S₃

мол. % "Ag₁₈CdGa₂₀S₄₀"

Puc. 2. Φ *asobi pibhobazu na nepepisi "CdGa*₂*As*₂₄*S*₄₀" – "*Ag*₁₈*CdGa*₂₀*S*₄₀": *1* – *L*; *2* – *L* + *AgGaS*₂; *3* – *L* + *CdGa*₂*S*₄; *4* – *L* + *AgGaS*₂ + *CdGa*₂*S*₄; *5* – *L* + *CdGa*₂*S*₄ + *As*₂*S*₃; *6* – *CdGa*₂*S*₄ + *As*₂*S*₃; *7* – *CdGa*₂*S*₄ + *AgGaS*₂ + *As*₂*S*₃; *8* – *As*₂*S*₃; *8* – *AgGaS*₂ + *As*₂*S*₃; *8* – *AgGaS*₃ + *As*₂*S*₃; *8* – *AgGaS*₂ + *As*₂*S*₃; *8* – *AgGaS*₂ + *As*₂*S*₃; *8* – *AgGAS*₃ + *As*₂*S*₃; *8* – *AgGAS*₃ + *As*₂*S*₃; *8* – *As*₂*S*₃; *8* – *Ag*₃ + *As*₃ + *As*

Проекція поверхні ліквідусу квазіпотрійної системи AgGaS₂–1/2(CdGa₂S₄)–2/3(As₂S₃)

Проекцію поверхні ліквідусу (рис. 3) побудовано за результатами літературних відомостей по фазових діаграмах обмежуючих систем та побудованих фазових діаграм політермічних перерізів. Побудована проекція поверхні ліквідусу складається з трьох полів первинної кристалізації фаз, які належать компонентам системи. Поле первинної кристалізації As₂S₃ як найбільш низькотемпературної фази на рисунку не позначено. Координати потрійної нонваріантної точки, а також хід нонваріантних кривих в області, збагаченій As₂S₃, встановлено теоретично.

Область склоутворення в системі AgGaS₂-1/2(CdGa₂S₄)-2/3(As₂S₃)

У системі $AgGaS_2$ – $l/2(CdGa_2S_4)$ – $2/3(As_2S_3)$ одержано стекла із максимальним вмістом $AgGaS_2$ 33 мол. % (по стороні $AgGaS_2$ – $2/3(As_2S_3)$). Максимальний вміст $CdGa_2S_4$ в отриманих стеклах був 24 мол. % (по стороні $l/2(CdGa_2S_4)$ – $2/3(As_2S_3)$).

Рис. 3. Проекція поверхні ліквідусу системи AgGaS₂-l/2(CdGa₂S₄)-2/3(As₂S₃)

Рис. 4. Область склоутворення в системі $AgGaS_2 - l/2(CdGa_2S_4) - 2/3(As_2S_3)$

Висновки. Фазові рівноваги в квазіпотрійній системі досліджено методами диференційнотермічного та рентгенофазового аналізів. Побудовано два політермічних перерізи та проекцію поверхні ліквідусу. Ліквідус складається з трьох полів первинної кристалізації, що належать компонентам системи. Встановлено характер та температури моно- та нонваріантних процесів і область склоутворення в досліджуваній системі.

Література

- Sashital S. R., Gentile A. L. Liquid phase epitaxial growth of AgGaS₂ using halcogenide (sulphide) fluxes // J. Cryst. Growth.- 1984.- Vol. 69.- P. 379-387.
- Gastaldi L., Simeone M. G., Viticoli S. Cation ordering and crystal structures in AGa₂X₄ compounds (CoGa₂S₄, CdGa₂S₄, CdGa₂Se₄, HgGa₂Se₄, HgGa₂Te₄) // Sol. State Com.- 1985.- Vol. 55, № 7.- P. 605-607.
- Olekseyuk I. D., Gorgut G. P., Shevtchuk M. V. Phase Equilibria in the AgGaS₂–GeS₂ Systems // Polish J. Chem. – 2002. – Vol. 76. – P. 915–919.
- 4. Найдич Т. М. Система As₂S₃-CdGa₂S₄-GeS₂ // Молодіжний вісн. Волин. держ. ун-ту ім. Лесі Українки.- 2006.- С. 31-34.
- 5. Галка В. О. Фазові рівноваги в квазіпотрійних системах A^I₂-B^{II}X-C^{III}₂X₃-B^{IV}X₂ (A¹ Cu, Ag, B¹¹ Zn, Cd, Hg: C^{III} Ga. In; X S, Se, Te): Дис. ... канд. хім. наук.- Л., 2000.- 184 с.
 6. Kraus W., Noltze G. Powder Cell a program for structure representation and manipulation of crystal
- Kraus W., Noltze G. Powder Cell a program for structure representation and manipulation of crystal structures and calculations of the resulting X-ray powder pattern // J. Appl. Cryst. 29.– 1996.– Vol. 29.– P. 301–303.

Статтю подано до редколегії 16.09.2008 р.