УДК 536.42:548.3:546.56'289'22'23

Т. А. Остап'юк – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
О. Ф. Змій – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волин-

ського національного університету імені Лесі Українки

Фазові рівноваги у квазіпотрійній системі Cu₂Se – GeSe₂ – Sb₂Se₃

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Система Cu₂Se – GeSe₂ – Sb₂Se₃ досліджувалась методами рентгенофазового та диференційного термічного аналізів. Використовуючи отримані результати, побудовано діаграми фазових рівноваг трьох політермічних перерізів, які пересікають дану систему, та ізотермічний переріз системи Cu₂Se – GeSe₂ – Sb₂Se₃ при 620 К. Установлено, що переріз Cu₂GeSe₃ – Sb₂Se₃ є квазібінарною системою евтектичного типу з координатами нонваріантної точки 73 мол. % Sb₂Se₃ і 27 мол. % Cu₂GeSe₃, $T_E = 779$ К. Нових тетрарних та тернарних фаз у цій системі не виявлено.

Ключові слова: ізотермічний переріз, квазібінарна система, політермічний переріз, нонваріантна точка.

Остапьюк Т. А., Змий О. Ф., Олексеюк И. Д. Фазовые равновесия в квазитройной системе Cu₂Se – <u>GeSe₂ – Sb₂Se₃</u>. Система Cu₂Se – GeSe₂ – Sb₂Se₃ исследовалась методами рентгенофазового и диференциального термического анализов. Используя полученные результаты, построены диаграммы фазовых равновесий трех политермических сечений, которые пересекают данную систему, и изотермическое сечение системы Cu₂Se – GeSe₂ – Sb₂Se₃ при 620 К. Установлено, что сечение Cu₂GeSe₃ – Sb₂Se₃ есть квазибинарной системой евтектического типа с координатами нонвариантной точки 73 мол. % Sb₂Se₃ и 27 мол. % Cu₂GeSe₃, $T_E = 779$ К. Новых тетрарных и тернарных фаз в данной система не найдено.

Ключевые слова: изотермическое сечение, квазибинарная система, политермическое сечение, нонвариантная точка.

<u>Ostapyuk T. A., Zmiy O. F., Olekseyuk I. D. Phase Equilibria in the Quasy-ternary Cu₂Se – GeSe₂ – Sb₂Se₃ System. The Cu₂Se – GeSe₂ – Sb₂Se₃ system was investigated using X-ray phase and differential thermal analysis methods. Phase equilibria diagrams was builted for the three polythermal sections, which are crossing present system and an isothermal section of Cu₂Se – GeSe₂ – Sb₂Se₃ at 620 K. It was determinated that the Cu₂GeSe₃ – Sb₂Se₃ section is the quasy-binary system of eutectic type with an invariant point at 73 mol. % Sb₂Se₃ and 27 mol. % Cu₂GeSe₃, T_E is 779 K. No new ternary and quaternary compounds were found in this system.</u>

Key words: isothermal section, quasy-binary system, polythermal sections, an invariant point.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Бінарні сполуки Cu₂Se, Sb₂Se₃ та GeSe₂ мають конгруентний характер плавлення при температурах 1421 К [1; 2], 863 К [3] та 1015 К [4] відповідно і можуть бути вихідними компонентами квазіпотрійної системи Cu₂Se – GeSe₂ – Sb₂Se₃. Система Cu₂Se – GeSe₂ досліджувалась у роботах [5–11]. За даними [8] виявлено дві сполуки: Cu₂GeSe₃ та Cu₈GeSe₆, які плавляться інконгруентно при 1037 К і 1083 К відповідно. Сполуці Cu₈GeSe₆ при 383 К та 968–933 К [10] властиві поліморфні перетворення, а сполука Cu₂GeSe₃ має поліморфізм при 893 К і плавиться конгруентно при 1056 К [9]. Дослідження, що проводилися на нашій кафедрі, підтвердили конгруентний характер плавлення сполуки Cu₂GeSe₃ [12]. Система Cu₂Se – Sb₂Se₃ характеризується утворення двох проміжних сполук: CuSbSe₂ з конгруентним характером плавлення при 765К та Cu₃SbSe₃ із інконгруентним характером плавлення при 808 К [13–15]. На основі високотемпературної модифікації Cu₂Se та Sb₂Se₃ утворюються обмежені області гомогенності, які нижче температури 620 К є незначними. Система GeSe₂ – Sb₂Se₃ досліджувалась у роботах [16; 17]. Автори стверджують, що ця система є евтектичного типу без утворення проміжних сполук із практично повною відсутністю розчинності на основі вихідних компонентів. Координати евтектичної точки: 58 % GeSe₂, *T_E* = 757 К [17].

Матеріали і методи. Для встановлення взаємодій між компонентами у квазіпотрійній системі Cu₂Se – GeSe₂ – Sb₂Se₃ синтезовано 76 зразків. Усі зразки виготовляли з високочистих простих речовин (Se – 99,999 мас. %; Ge – 99,999 мас. %; Cu – 99,999 мас. %; Sb – 99,999 мас. %). Синтез здійсню-

[©] Остап'юк Т. А., Змій О. Ф., Олексеюк І. Д., 2009

вали прямим однотемпературним методом у кварцових вакуумованих ампулах. Максимальна температура синтезу – 1370 К. Гомогенізуючий відпал проводили при 620 К протягом 600 год. Від цієї температури зразки гартувалися у воді кімнатної температури.

Зразки досліджували рентгенофазовим і диференційно-термічним методами аналізу.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Переріз Cu₂GeSe₃ – Sb₂Se₃ досліджувався на 14 зразках, синтезованих вищеописаним методом. Рентгенофазовий аналіз показав, що однофазними є зразки, яким відповідають вихідні сполуки Cu₂GeSe₃ та Sb₂Se₃, а дифрактограми всіх інших зразків містять рефлекси двох фаз. Склади зразків та температури термічних ефектів перерізу наведено у табл. 1.

Таблиця 1

C	•		•	
Склали та температури	термічних (ефектів	3D83KIB	перерізу Сu ₂ GeSe ₃ – Sb ₂ Se ₃
			oprovide	

Склад зразка, мол. %	Термічні ефекти, К
100 % Sb ₂ Se ₃	873
10 % Cu ₂ GeSe ₃ – 90 % Sb ₂ Se ₃	779, 827
$15 \% Cu_2GeSe_3 - 85 \% Sb_2Se_3$	779, 805
$20 \% Cu_2GeSe_3 - 80 \% Sb_2Se_3$	779, 791
$30 \% Cu_2GeSe_3 - 70 \% Sb_2Se_3$	783, 785
$40 \% Cu_2GeSe_3 - 60 \% Sb_2Se_3$	787, 863
$50 \% Cu_2GeSe_3 - 50 \% Sb_2Se_3$	781, 899
$60 \% Cu_2GeSe_3 - 40 \% Sb_2Se_3$	779, 923, 935
$70 \% Cu_2GeSe_3 - 30 \% Sb_2Se_3$	779, 923, 971
$80 \% Cu_2GeSe_3 - 20 \% Sb_2Se_3$	781, 993
90 % $Cu_2GeSe_3 - 10$ % Sb_2Se_3	777, 1027
95 % $Cu_2GeSe_3 - 5$ % Sb_2Se_3	777, 1035
100 % Cu ₂ GeSe ₃	1055

За результатами досліджень побудовано діаграму стану системи (рис. 1). Як видно з рисунка, діаграма евтектичного типу з незначною розчинністю на основі вихідних компонентів.

Рис. 1. Діаграма стану системи $Cu_2GeSe_3 - Sb_2Se_3$: 1 - L; $2 - L + \alpha$; $3 - \alpha$; $4 - \alpha + \beta$; $5 - \beta$; $6 - L + \beta$

24

Ліквідус системи складається з двох кривих первинної кристалізації компонента Cu_2GeSe_3 (крива Ae) та первинної кристалізації компонента Sb_2Se_3 (крива Be). Солідус системи складають лінії: Aa, ab, eB. Координати евтектичної точки 73 мол. % Sb_2Se_3 і 27 мол. % Cu_2GeSe_3 , $T_E = 779$ К.

Для дослідження перерізу CuSbSe₂ – GeSe₂ синтезовано 11 зразків складом через 10 мол. % описаним вище методом. На всіх дифрактограмах, крім вихідних сполук, присутні рефлекси трьох фаз. На зразках із вмістом GeSe₂ 40 мол. % і більше присутні фази GeSe₂, Sb₂Se₃ та Cu₂GeSe₃; на зразках із вмістом GeSe₂ менше 40 мол. % присутні фази Cu₂GeSe₃, Sb₂Se₃, CuSbSe₂. У табл. 2 наведено склади та температури термічних ефектів зразків цього перерізу.

		2
1	аолиия	1
-	ciosicipi	~

Склад, мол. %	Термічні ефекти, К
100 % GeSe ₂	1021
90 % $GeSe_2 - 10$ % $CuSbSe_2$	801, 923, 981
$80 \% \text{ GeSe}_2 - 20 \% \text{ CuSbSe}_2$	795, 889, 911
$70 \% \text{ GeSe}_2 - 30 \% \text{ CuSbSe}_2$	896, 910
$60 \% \text{ GeSe}_2 - 40 \% \text{ CuSbSe}_2$	794, 811
50 % GeSe ₂ – 50 % CuSbSe ₂	801, 860, 961
$40 \% \text{ GeSe}_2 - 60 \% \text{ CuSbSe}_2$	795, 989
$30 \% \text{ GeSe}_2 - 70 \% \text{ CuSbSe}_2$	692, 849, 952
$20 \% \text{ GeSe}_2 - 80 \% \text{ CuSbSe}_2$	730, 761, 890
10 % GeSe ₂ – 90 % CuSbSe ₂	692, 757
100 % CuSbSe ₂	771

Склади та температури термічних ефектів зразків перерізу CuSbSe2 - GeSe2

За результатами диференційно-термічного та рентгенофазового аналізів побудовано діаграму фазових рівноваг перерізу CuSbSe₂ – GeSe₂ (рис. 2).

Рис. 2. Політермічний переріз CuSbSe₂ – GeSe₂: 1 – L; 2 – L + GeSe₂; 3 – L + Cu₂GeSe₃ + GeSe₂; 4, 5 – L + Cu₂GeSe₃; 6 – L + CuSbSe₂; 7 – L + Cu₂GeSe₃ + CuSbSe₂; 8, 9 – L + Cu₂GeSe₃ + Sb₂Se₃; 10 – Cu₂GeSe₃ + Sb₂Se₃ + CuSbSe₂; 11 – GeSe₂ + Sb₂Se₃ + Cu₂GeSe₃; 12 – Cu₂GeSe₃ + Sb₂Se₃

Ліквідус даного перерізу обмежує поля первинної кристалізації фаз CuSbSe₂ (крива rc), Cu₂GeSe₃ (криві ck і km) та GeSe₂ (крива am). Поля 3, 7, 8, 9 є полями вторинної (сумісної) кристалізації фаз: L + Cu₂GeSe₃ + GeSe₂; L + Cu₂GeSe₃ + CuSbSe₂; 8, 9 – L + Cu₂GeSe₃ + Sb₂Se₃ відповідно. Горизонталь fg відповідає початку третинної кристалізації Cu₂GeSe₃ + CuSbSe₂ + Sb₂Se₃, горизонталь vn відповідає початку третинної кристалізації Sb₂Se₃ + Cu₂GeSe₃ + GeSe₂.

Для дослідження перерізу Cu₂GeSe₃ – "GeSb₂Se₅" синтезовано 11 зразків описаним вище методом. Рентгенофазовий аналіз показав, що однофазним є лише зразок, який відповідає вихідній сполуці Cu₂GeSe₃. Зразок, що відповідає складу "GeSb₂Se₅", є двофазним: GeSe₂ + Sb₂Se₃, а всі інші зразки – трифазними: GeSe₂ + Sb₂Se₃ + Cu₂GeSe₃. За результатами диференційного термічного (табл. 3) та рентгенофазового аналізів побудовано політермічний переріз "GeSb₂Se₅" – Cu₂GeSe₃ (рис. 3).

Таблиця З

Термічні ефекти, К				
745, 805				
747, 780, 802				
745, 770				
742, 783, 825				
743, 829, 860				
743, 869, 961				
735, 903, 942				
739, 933, 1003				
747, 942, 1039				
749, 985, 1046				
1053				

C	•		•	•		a a	0 0
Скляли тя температури	тепмічних	ефектів	SUBSKIB	перерізу	"LeSha	Se-'' - C	II. (-e Sea
Change in the remicipal ph	repmi mina	cycnib	Spaskib	nepepisy			uzucces

Із рис. З видно, що ліквідує перерізу складається з двох кривих первинної кристалізації фаз: крива *hc*, на якій починають випадати кристали Cu₂GeSe₃, та *ac*, що відповідає первинній кристалізації фази GeSe₂. Поле *fcgk* відповідає вторинній кристалізації L + Cu₂GeSe₃ + GeSe₂, а поле *gbd* – вторинній кристалізації L + GeSe₂ + Sb₂Se₃.

26

Точка *с* відповідає перетину досліджуваним перерізом моноваріантної кривої. Горизонталь kd при 745 К відповідає перетину досліджуваним перерізом евтектичної площини, на якій завершується процес кристалізації: L \leftrightarrow Cu₂GeSe₃ + GeSe₂ + Sb₂Se₃.

Результати досліджень 76 зразків методом РФА дають можливість побудувати ізотермічний переріз діаграми фазових рівноваг системи Cu₂Se – GeSe₂ – Sb₂Se₃ при температурі 620 К (рис. 4).

Рис. 4. Ізотермічний переріз системи Cu₂Se – SnSe₂ – Sb₂Se₃ при 620 К

Як видно з рис. 4, при 620 K у системі існує чотири подвійні рівноваги, які тріангулюють систему у твердому стані на п'ять полів трифазних рівноваг: $GeSe_2 - Sb_2Se_3 - Cu_2GeSe_3$ (поле 1); $Cu_2GeSe_3 - Sb_2Se_3 - CuSbSe_2$ (поле 2); $Cu_2GeSe_3 - CuSbSe_2 - Cu_3GeSe_6$ (поле 3); $Cu_3GeSe_6 - Cu_3SbSe_3 - CuSbSe_2$ (поле 4); $Cu_3GeSe_6 - Cu_3SbSe_3 - Cu_2Se$ (поле 5).

Висновки. Методами диференційного термічного та рентгенофазового аналізів побудовано діаграму стану квазіподвійної системи Sb₂Se₃ – Cu₂GeSe₃, політермічні перерізи Cu₂GeSe₃ – "GeSb₂Se₃" та CuSbSe₂ – GeSe₂. Побудовано ізотермічний переріз квазіпотрійної системи Cu₂Se – SnSe₂ – Sb₂Se₃ при 620 К. Тетрарних фаз у досліджуваній системі не виявлено.

Література

- 1. Глазов В. М. Фазовые равновесия в системе Cu Se / В. М. Глазов, А. С. Пашинкин, В. А. Федоров // Неорган. материалы. 2000. Т. 35, № 7. С. 775–787.
- 2. Некоторые свойства Си_{2-х}Se / [Г. П. Сорокин, Г. З. Идриган, Л. В. Дергач и др.] // Неорган. материалы. 1974. Т. 10, № 6. С. 969–974.
- Полупроводниковые халькогениды и сплавы на их основе / [Н. Х. Абрикосов, В. Ф. Банкина и др.]. М.: Наука, 1977. – С. 220.
- 4. Gokhale A. B. The Ge Se (germanium-selenium) system / A. B. Gokhale, R. Abbaschian // Bull. Alloy. Phase Diagr. 1990. Vol. 11, № 3. P. 257–263.
- Rivet J. Sur un groupe de composes ternaires a structure tetraidrique / J. Rivet, J. Flahaut, P. Laruele // C. r. Acad. Sri. c. – 1969. – Vol. 257, № 1. – P. 161–164.
- 6. Rivet J. Contribution a letude de quelques combinaisons tetraires sulfurees, seleniees ou tellurees du cuivre avec les elements du groupe IV / J. Rivet // Ann. Chim. 1965. Vol. 10, № 5–6. P. 243–270.
- 7. Бергер Л. И. Тройные алмазоподобные полупроводники / Л. И. Бергер, В. Д. Прочухан. М. : Металлургия, 1968. – С. 151.
- Carcaly C. Description du systeme GeSe₂ Cu₂Se. Transitionu de phases du compose Cu₈GeSe₆ / C. Carcaly, N. Chezean, J. Rivet, J. Flahaut // Bull. Soc. Chim. Franse. – 1973. – № 4. – P. 1192–1195.
- Золотова Т. В. Исследование фазового равновесия в системах Cu Ge(Sn) Se по разрезам Cu₂Se Ge(Sn)Se₂ / Т. В. Золотова, Ю. А. Карагодин // Сб. науч. тр. по проблемам микроэлектроники. Вып. XXI. – М. : МИЭТ, 1975. – С. 59–61.

- 10. Рогачова Е. П. Исследование системы GeSe₂ Cu₂Se / Е. П. Рогачова, А. Н. Мелихова, Н. М. Панасенко // Изв. АН СССР. Неорган. материалы. 1975. Т. 11, № 5. С. 839–843.
- 11. Scharma B. B. Stabiliti of the tetrahedrar phase in Cu Ge Se system / B. B. Scharma, H. Singh // Journal Solid State Chem. 1974. Vol. 11, № 14. P. 285–293.
- 12. Квазіпотрійні халькогенідні системи. Т. 1 / [І. Д. Олексеюк, О. В. Парасюк, Л. В. Піскач та ін.]. Луцьк : РВВ "Вежа" Волин. держ. ун-ту ім. Лесі Українки, 1999. – 168 с.
- 13. Бабанлы Н. Б. Фазовые равновесия и термодинамические свойства систем Си Ge (Sb)-халькоген : автореф. дис. на соискание ученой степени канд. хим. наук / Н. Б. Бабанлы. Баку, 1991. 23 с.
- 14. Диаграмма состояния системы Cu₂Se Sb₂Se₃ в области соединения CuSbSe₂ / [М. И. Головей, В. И. Ткаченко, М. Ю. Риган, И. П. Стасюк] // Неорган. материалы. 1990. Т. 26, № 5. С. 933–934.
- Олексеюк І. Д. Ізотермічні перетини систем Cu₂Se In₂Se₃ {Sb, Bi}₂Se₃ при 673 К / І. Д. Олексеюк, О. Є. Жбанков // Наук. вісн. ВДУ ім. Лесі Українки. – 2006. – № 4. – С. 73.
- 16. Dra Maria Tereza Mora Aznar. Estudio de los mecanizmos de cristalizacion primaria y eutectica de aleaciones del sistema GeSe₂ – Sb₂Se₃ / Dra Maria Tereza Mora Aznar // Para optar al grado de Doktor en Fisika. – Bellaterra, 1998. – Diciember.
- 17. Блецкан Д. И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе / Д. И. Блецкан. Ужгород : [б. и.], 2004.

Статтю подано до редколегії 24.11.2009 р.