УДК 548.736.5 + 546. 56.48.28.81.24

В. Р. Козер – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки:

І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки; О. В. Парасюк – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Фазові рівноваги у квазіпотрійній системі Ag₂Se-Ga₂Se₃-ZnSe

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Система Ag₂Se–Ga₂Se₃–ZnSe досліджувалася методами РФА та ДТА аналізу. Для даної системи характерна складна взаємодія фаз із утворенням твердих розчинів значної протяжності. Для системи Ag₂Se–Ga₂Se₃–ZnSe характерне утворення твердого розчину значної протяжності на основі Ga₂Se₃.

Ключові слова: фазова діаграма, диференційний термічний аналіз, тернарна слолука, ренгенофазовий аналіз.

Козер В. Р., Олексеюк И. Д, Парасюк О. В. Фазовые равновесия в квазитройной системе <u>Ag₂Se-Ga₂Se₃-ZnSe.</u> Система Ag₂Se-Ga₂Se₃-ZnSe изучалась методами РФА и ДТА анализа. Данная система характеризуется сложным взаимодействием фаз с образованием твердых растворов значительной протяженности на основе Ga₂Se₃.

Ключевые слова: Фазовая диграма, дифференциальный термический анализ, тернарное соединение, ренгенофазовый анализ.

<u>Kozer V. R., Olekseyuk I. D., Parasyuk O. V. The Phase Equilibria in the Quasiternary System</u> <u>Ag₂Se–Ga₂Se₃–ZnSe.</u> The system Ag₂Se–Ga₂Se₃–ZnSe was probed the methods of RFA and DTA of analysis. For this system the characteristic difficult co-operating of phases is with formation of hard solutions of considerable slowness. For the system Ag₂Se–Ga₂Se₃–ZnSe characteristic formation of hard solution of considerable slowness is on the basis of Ga₂Se₃.

Key words: phase diagram, differential thermal analysis, ternary compound, X-ray phase analysis.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Перерізи Ag₂Se–ZnSe та Ag₂Se–Ga₂Se₃ належать до евтектичного типу. Координати евтектичкої точки системи Ag₂Se–ZnSe складають 82,5 мол. % ZnSe та 1123 К. У системі Ag₂Se–Ga₂Se₃ встановлено існування двох сполук AgGaSe₂ і Ag₉GaSe₆, які плавляться конгруентно при 1124 К і 1031 К відповідно. Температури евтектичних горизонталей складають 1001 К, 1024 К і 1105 К відповідно. AgGaSe₂ кристалізуються у тетрагональній структурі типу халькопіриту (CT CuFeS₂, ПГ *I* 42*d*) з параметрами елементарної ґратки: *a* = 0,5992 нм, *c* = 1,08862 нм [1] та має конгруентний тип плавлення при 1124 К. Ag₉GaSe₆ має дві поліморфні модифікації – HT-Ag₉GaSe₆ (ПГ *F* 4 3*m*) [2], BT–Ag₉GaSe₆ (ПГ *P*2₁3) [3]. Ag₉GaSe₆ має конгруентний тип плавлення 1032 К, ФП – 281 К.

Переріз ZnSe–Ga₂Se₃ – перитектичного типу із утворенням єдиної проміжної фази – ZnGa₂Se₄. Тернарна сполука ZnGa₂Se₄ утворюється в системі ZnSe–Ga₂Se₃ згідно з перитектичним процесом L+ZnSe \Leftrightarrow ZnGa₂Se₄ при 1405 К і добре описується в структурі з ПГ $I\overline{4} 2m$ з параметрами елементарної гратки: a = 0,5532 нм, c = 1,0914 нм [4].

Переріз AgGaSe₂–ZnSe (рис. 1) вивчався авторами [5]. Цей переріз є квазібінарним, евтектичного типу з координатами евтектичної точки: 7 мол. % ZnSe та 1117 К. Визначена розчинність AgGaSe₂ та ZnSe при 870 К. На даному перерізі встановлено існування тетратної сполуки складу AgZn₂GaSe₄ з незначною областю гомогеності. AgZn₂GaSe₄ утворюється за твердофазною реакцією при 1050 К: тв. розч. ZnSe \rightarrow AgZn₂GaSe₄, та існує в обмеженому температурному інтервалі. При температурі нижче 969 К AgZn₂GaSe₄ зазнає розкладу на AgGaSe₂ та ZnSe. Кристалічну структуру AgZn₂GaSe₄ не вивчали.

[©] Козер В. Р., Олексеюк І. Д., Парасюк О. В., 2008

Рис. 1. Переріз AgGaSe₂–ZnSe (a) та AgGaSe₂–ZnGa₂Se₄ (б) квазіпотрійної системи Ag₂Se–ZnSe–Ga₂Se₃

Переріз AgGaSe₂–ZnGa₂Se₄ (рис. 1) досліджувався в роботі [6]. Переріз є неквазібінарним вище 1115 К, що зумовлено інконгруентним типом плавлення ZnGa₂Se₄.

На даному перерізі відсутні нові тетрарні фази. Ліквідус перерізу складається з двох ліній первинної кристалізації α -твердих розчинів на основі AgGaSe₂ та ZnSe. Нижче ліній ліквідусу, окрім полів первинної кристалізації, міститься трифазне поле сумісного існування L+ α +ZnSe. Кристалізація всіх сплавів завершується при 1115 К, нижче якої вся система перебуває в твердому стані. Для AgGaSe₂ та ZnGa₂Se₄ характерна незначна розчинність; 8 мол. % для AgGaSe₂ та 10 мол. % для ZnGa₂Se₄.

Матеріали і методи. Фазові рівноваги в системі $Ag_2Se-ZnSe-Ga_2Se_3$ досліджувалися при температурі відпалу 870 К. Компонування шихти проводили із високочистих металів та відповідного халькогену. Синтез проводили однотемпературним методом у вакуумованих кварцових контейнерах у печі шахтного типу. Максимальна температура нагріву печі становила 1473 К (1200 °C), витримка 5 год. Відпал здійснювали при 870 К упродовж 250 год із подальшим гартуванням у холодній воді. Рентгенодифракційні спектри відбиттів одержували на приладі ДРОН 4-13 з Ni-фільтром у режимі покрокового сканування із використанням СиК_{α}-випромінювання (10 $\leq 2\theta \leq 100$). Обрахунок дифрактограм здійснювали із застосуванням комплексу програм CSD [7], фазовий аналіз – програми Роwder Cell 2.3. Термічний аналіз проводилися на дериватографі системи Paulik-Paulik-Erdey, контроль температури здійснювали платина-платинородієвою термопарою (Pt/PtRh).

AgZn₂GaSe₄ отримували шляхом нагрівання чистих елементів у вакуумованованому кварцовому контейнері до 1473 К. Гомогенізуючий відпал здійснювали при 1023 К (750 °C) протягом 250 год із подальшим гартуванням у холодній воді. Ренгенівський відбиток отримували відразу після гартування.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження Переріз 1/10Ag₉GaSe₆–ZnSe

Ренгенофазове дослідження перерізу 1/10Аg₉GaSe₆–ZnSe здійснювали на 15 зразках при температурі відпалу 870 К. Цей переріз характеризується незначною розчинністю на основі вихідних компонентів. За даними ДТА побудовано діаграма стану системи 1/10Ag₉GaSe₆–ZnSe. Переріз належать до V типу за Розебомом, евтектичного типу, з координатою евтектики ~5 мол. % ZnSe i 1025 К (рис 2).

Рис. 2. Діаграма стану системи $1/10Ag_9GaSe_6$ -ZnSe: 1 - L; 2 - L + ZnSe; $3 - L + Ag_9GaSe_6$; $4 - Ag_9GaSe_6$; 5 - ZnSe; $6 - Ag_9GaSe_6 + ZnSe$

Ізотермічний переріз системи Ag₂Se–ZnSe–Ga₂Se₃ при 870 К

Значна протяжність твердих розчинів зумовила складну взаємодію одно-, дво- та трифазних полів у цій системі (рис. 3).

Переріз Ag₂Se–ZnSe–Ga₂Se₃ при 870 К містить 6 однофазних, 9 двофазних та 4 трифазних області, які розділені трьома квазібінарними перерізами AgGaSe₂–ZnGa₂Se₄, AgGaSe₂–ZnSe та Ag₉GaSe₆–ZnSe. При 870 К тетрарних сполук не існує. Даний переріз характеризується утворенням протяжного твердого розчину Ga₂Se₃, що зумовлено значною розчинністю Ga₂Se₃ уздовж перерізів Ag₂Se–Ga₂Se₃ та ZnSe–Ga₂Se₃. Значною протяжністю характеризується також твердий розчин на основі AgGaSe₂, який локалізований уздовж перерізу AgGaSe₂–ZnSe та має розчинність до 22 мол. % ZnSe.

Кристалічна структура AgZn₂GaSe₄

Кристалічна структура AgZn₂GaSe₄ досліджувалася методом порошку. Уточнення структури проводили методом Рітвельда — шляхом наближення експериментальних даних до теоретичної моделі. За основу було взято модель розрахунку CuFe₂InSe₄ [8]. AgZn₂GaSe₄ розглянули у ПГ $I\overline{4}2m$ (табл. 1). Кристалографічні позиції були заселені повністю. Спроба розрахувати AgZn₂GaSe₄ як похідну твердого розчину з кубічною ґраткою (ПГ F43m) дали значно гірші результати.

Таблиця 1

Атом	ПСТ	x	У	Z	В (ізо/ек)
Ag	2 <i>a</i>	0	0	0	1,1(3)
Ga	2b	0	0	0,5	1,2(4)
Zn	4a	0	0,5	0,25	1,3(3)
Se	8 <i>a</i>	0,2558	0,2558	0,1277	1,5(2)

Координати атомів та ізотропні температурні параметри AgZn₂GaSe₄

Отримали задовільні результати. Експериментальну, розраховану та різницеву дифрактограму AgZn₂GaSe₄ подано на рис. 4.

Рис. 4. Експериментальна, розрахована та різнецева дифрактограма AgZn₂GaSe₄

Таблиця 2

Основні кристалографічні параметри AgZn₂GaSe₄

Молекулярна формула	AgZn ₂ GaSe ₄	
Молекулярна маса (г/моль)	624,21	
Просторова група	$I \overline{4}2m$ (no. 121)	
<i>a</i> (Å)	5,7243(3)	
<i>c</i> (Å)	11,337(1)	
$V(\text{\AA})$	371,48(8)	
Кількість атомів у комірці	16	
Випромінювання	Си (0,154178 нм)	
Дифрактометр	ДРОН 4-13	
Метод обрахунку	Повнопрофільний	
RI	5,44	
Rp	9,94	

Міжатомні віддалі співмірні з іонними радіусами для тетраедричної координації (табл. 3).

Таблиця 3

Міжатомні віддалі (б) та координаційні числа (КЧ) атомів у структурі AgZn₂GaSe₄ (ПГ $I\overline{4}2m$)

Атоми		δ, Å	КЧ
Ag	–4Se	2,527(5)	4
Ga	–4Se	2,450(5)	4
Zn	–4Se	2,454(5)	4
	-1Ag	2,527(5)	
Se	-1Ga	2,450(5)	4
	-2Zn	2,454(5)	

Література

- Сложные халькогениды в системах А^{II}-В^{III}-С^{VI} / В. Б. Лазарев, З. З. Киш, Е. Ю. Переш, Е. Е. Семрад; Под ред. В. Б. Лазарева.– М.: Металлургия, 1993.– 140 с.
 Deloume J.-P., Faure R., Loiseleur H. Structure Cristalline de la Phase Ag₉GaSe₆ β // Acta Cryst.– 1978.–
- Deloume J.-P., Faure R., Loiseleur H. Structure Cristalline de la Phase Ag₉GaSe₆ β // Acta Cryst.- 1978.-Vol. 34.- P. 3189-3193.
- Deloume J.-P., Faure R. Un nouveau materiau Ag₉GaSe₆: Etude structureale de la phase α // J. Solid. Stat. Chem.- 1981.- Vol. 36.- P. 112-117.
- 4. Morocoima M., Quintero M., Guerrero E. et al. Temperature variation of lattice parameters and thermal expansion coefficients of the compound ZnGa₂Se₄ // J. Phys. Chem. Sol.– 1997.– Vol. 58.– P. 503–507.
- Галка В. О. Фазові рівноваги в квазіпотрійних системах А¹₂X-B^{II}X-C^{III}₂X₃ (A¹ Cu, Ag; B^{II} Zn, Cd, Hg; C^{III} Ga, In; X S, Se, Te): Автореф. дис. ... канд. хім. наук / Львів. нац. ун-т. ім. І. Франка.– Л., 2001.– 20 с
- 6. Козер В. Р., Олексеюк І. Д., Сачанюк В. П., Парасюк О. В. Переріз AgGaSe₂–ZnGa₂Se₄ квазіпотрійної системи Ag₂Se–ZnSe–Ga₂Se₃// Наук. вісн. Волин. держ. ун-ту ім. Лесі Українки. 2007. № 15. С. 3.
- Akselrud L. G., Zavalij P. Yu., Grin' Yu. N., Pecharsky V. K., Baumgartner B., Wolfel E. CSD-Universal program package for single crystal or powder structure data treatment // Materials Science Forum.- 1993.-Vol. 133.- P. 335.
- Delgado G. E., Moraa A. J., Grima-Gallardo P., Quintero M. Crystal structure of CuFe₂InSe₄ from X-ray powder diffraction // J. Alloys Comp. – 2007. – Vol. 144. – P. 4.

Статтю подано до редколегії 30.09.2009 р.