УДК 536.42:548.3:546.56'289'22'23

 І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
Т. А. Остап'юк – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
Т. В. Юхимук – студентка кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
О. Ф. Змій – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

Фазові рівноваги на ізотермічному перерізі при 570 К у системах Ag₂Se-Ge(Sn)Se₂-Sb₂Se₃

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Використовуючи методи диференційного термічного й рентгенофазового аналізів, побудовано діаграму стану квазіподвійної системи AgSbSe₂–Sb₂Se₃ та ізотермічні перерізи фазових рівноваг квазіпотрійних систем Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃ при 570 К. У системах не встановлено існування нових тернарних та тетрарних сполук.

Ключові слова: ізотермічний переріз, диференційний термічний аналіз, рентгенофазовий аналіз.

<u>Олексеюк И. Д., Остапьюк Т. А., Юхимук Т. В., Змий О. Ф. Фазовые равновесия на изотермическом</u> <u>сечении при 570 К в системах Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃.</u> Используя методы дифференциального термического и рентгенофазового анализов, построена диаграмма состояния квазидвойной системы AgSbSe₂–Sb₂Se₃ и изотермические сечения систем Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃ при 570 К. В системах не установлено существование новых тернарных или тетрарных соединений.

Ключевые слова: изотермическое сечение, дифференциальный термический анализ, рентгенофазовый анализ.

<u>Olekseyuk I. D., Ostapyuk T. A., Yuhimuk T. V., Zmiy O. F. Phases Interactions on the Isothermal Section</u> <u>at 570 K in Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃ Systems.</u> Diagram of quasibinary system AgSbSe₂–Sb₂Se₃ and isothermal section Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃ at 570 K were build using X-ray phase and differential thermal analysis methods. Any ternary or qaziternary compounds were found in the system.

Key words: isothermal section, differential thermal analysis, X-ray phase analysis.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. У літературі відсутні відомості стосовно дослідження квазіпотрійних систем Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃. Вибрані нами для дослідження системи обмежують такі квазіподвійні системи: Ag₂Se–Ge(Sn)Se₂, Ag₂Se–Sb₂Se₃ та Ge(Sn)Se₂–Sb₂Se₃.

Система Ag₂Se–GeSe₂ досліджувалась у роботах [1–8]. Згідно з даними [7], у системі виявлено сполуку Ag₈GeSe₆, що плавиться конгруентно при 1175 К і відзначається поліморфізмом. Координати евтектик: 1103 К, 13 мол. % GeSe₂; 843 К, 57 мол. % GeSe₂ [7]; 1103 К, 7 мол. % GeSe₂; 838 К, 40 мол. % GeSe₂ [6]. Близькою до вищенаведеної є діаграма стану Ag₂Se–GeSe₂, побудована авторами [1]. Під час дослідження перетину Ag₂Se–GeSe₂ авторами [2–5] виявлено сполуки Ag₈GeSe₆ і Ag₂GeSe₃. Сполука Ag₈GeSe₆ плавиться конгруентно при 1175 К, а Ag₂GeSe₃ утворюється за перитектичною реакцією L + γ -Ag₈GeSe₆ \leftrightarrow Ag₂GeSe₃. Структуру α -Ag₈GeSe₆ не встановлено. β -Ag₈GeSe₆ кристалізується в ромбічній сингонії, пр. гр. *Pmn*2₁, *a* = 0,7823, *b* = 0,7712, *c* = 1,0885 нм [9]. γ -Ag₈GeSe₆ кристалізується в кубічній сингонії, пр. гр. *F*43*m* [10].

У роботах [4; 5; 10] наявність сполуки Ag₂GeSe₃ не підтверджується.

Діаграму стану системи $Ag_2Se_SnSe_2$ вперше побудовано в роботі [11]. Згідно з даними цієї роботи, переріз є квазіподвійною системою евтектичного типу. Координати евтектичної точки: 778 К і 43,5 мол. % Ag_2Se . Установлено утворення сполуки Ag_8SnSe_6 , яка плавиться інконгруентно при 1008

[©] Олексеюк І. Д., Остап'юк Т. А., Юхимук Т. В., Змій О. Ф., 2009

К і є диморфною [6–8; 11]. Температура фазового переходу α-Ag₈SnSe₆ \leftrightarrow β-Ag₈SnSe₆ становить 356 К. У роботі [12] подано результати досліджень фазових рівноваг у потрійній системі Ag–Sn–Se. Автори підтвердили існування сполуки Ag₈SnSe₆, однак із конгруентним характером плавлення при 1017 К. Крім того, установлено утворення проміжної фази складу Ag_xSn_{1-x}Se, область первинної кристалізації якої перетинає переріз Ag₂Se–SnSe₂. Отже, переріз Ag₂Se–SnSe₂, на якому відбувається утворення Ag₈SnSe₆, є квазіподвійною системою лише в частині Ag₂Se–Ag₈SnSe₆, а ділянка Ag₈SnSe₆–SnSe₂ квазіподвійна в підсолідусній області.

На кафедрі неорганічної хімії Волинського університету проводилися дослідження стосовно способу утворення сполуки Ag_8SnSe_6 , які підтвердили конгруентний характер її плавлення. Установлено, також, що сполука Ag_2SnSe_3 не утворюється. Сплав еквімолярного складу є двофазним за даними і рентгеноструктурного, і мікроструктурного аналізів; на мікроструктурі шліфа цього складу чітко видно первинні виділення кристалів Ag_8SnSe_6 [8].

Сполука Ag₈SnSe₆, як уже згадувалося, має поліморфне перетворення при 356 К. Нижче цієї температури β -Ag₈SnSe₆ кристалізується в ромбічній сингонії, пр. гр. *Pmn*2₁; *a* = 0,79168, *b* = 0,78219, *c* = 1,10453 нм, і є ізоструктурною до β -Ag₈GeSe₆ [13]. Високотемпературна γ -Ag₈SnSe₆ кристалізується в кубічній гранецентрованій комірці [14] або примітивній кубічній [15].

Система GeSe₂–Sb₂Se₃ досліджувалась у роботах [16; 17]. Автори стверджують, що ця система є евтектичного типу без утворення проміжних сполук із практично повною відсутністю розчинності на основі вихідних компонентів. Координати нонваріантної точки: 58 % GeSe₂, $T_E = 757$ K [16].

Система $SnSe_2$ — Sb_2Se_3 досліджувалася на кафедрі загальної та неорганічної хімії ВНУ імені Лесі Українки в роботі [18]. Ця система евтектичного типу з незначною розчинністю на основі вихідних компонентів. Координати евтектичної точки: 50 мол. % Sb₂Se₃, T = 773 К.

Система Ag₂Se–Sb₂Se₃ досліджувалась авторами [19–22]. Автори [19] уперше дослідили систему та встановили існування сполуки AgSbSe₂, що кристалізується у структурному типі NaCl, пр. гр. *Fm3m, a* = 0,5786 нм. Автори [21] підтвердили наявність цієї сполуки. Діаграма стану, вперше побудована авторами [22], наведена на рис. 1. У роботі [22] наведено дані про наявність двох сполук: AgSbSe₂, що має конгруентний тип плавлення та утворює твердий розчин в області складів 50–62 мол. % Sb₂Se₃, та Ag₃Sb₇Se₁₂, що відповідає складу 70 мол. % Sb₂Se₃ і утворюється твердофазно. Вона має дві поліморфні модифікації – α - та β -Ag₃Sb₇Se₁₂ (температура поліморфного переходу відповідає 473 K) [22]. Координити евтектичних точок відповідають складу 85 мол. % Sb₂Se₃ T_E = 843 K та 20 мол. % Sb₂Se₃ T_E = 813 K.

Матеріали і методи. Для встановлення взаємодій між компонентами у квазіпотрійній системі $Ag_2Se-GeSe_2-Sb_2Se_3$ синтезовано 43 зразки та 28 зразків у системі $Ag_2Se-SnSe_2-Sb_2Se_3$. Усі зразки виготовлялися з високочистих простих речовин (Se – 99,99 мас. %; Ge – 99,999 мас. %; Sn – 99,999 мас. %, Ag – 99,999 мас. %; Sb – 99,999 мас. %). Синтез здійснювався прямим високотемпературним методом, у кварцових ампулах, вакуумованих до 0,1 Па. Максимальна температура синтезу – 1170 К. Гомогенізуючий відпал здійснювався при 570 К протягом 600 год. Від цієї температури зразки гартувалися у воду кімнатної температури. Синтезовані зразки досліджувалися рентгенофазовим та диференційним термічним методами аналізу.

Рентгенофазовий аналіз зразків проводився методом порошкової дифракції на дифрактометрі ДРОН-4-13 із використанням Си K_{α} випромінювання, діапазон сканування — 10° $\leq 2\theta \leq 90^{\circ}$, крок сканування — 0,05°, час експозиції — 2 с. Фазовий аналіз проводився з використанням пакетів програм DRWin та Powder Cell.

Диференційний термічний аналіз здійснювався на дериватографі Paulik-Paulik-Erdey з використанням двокоординатного самописця марки Н 307/1. Швидкість нагріву зразків становила 10 К/хв, охолодження проводилося в режимі виключеної пічки.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Дослідження необхідно було почати з уточнення діаграми стану $Ag_2Se_Sb_2Se_3$, в інтервалі $AgSbSe_2-Sb_2Se_3$, через неоднозначність літературних даних стосовно наявності сполуки $Ag_3Sb_7Se_{12}$. Для цього нами синтезовано 11 зразків у повному концентраційному інтервалі перерізу $AgSbSe_2-Sb_2Se_3$, описаним вище методом. Отримані дифрактограми підтвердили наявність твердого розчину на основі сполуки $AgSbSe_2$ (близько 10 мол. % Sb_2Se_3), але не виявили сполуки $Ag_3Sb_7Se_{12}$, як зазначалось у [22]. Цю сполуку не виявили навіть після додаткового відпалу при 573 К протягом 1200 год. Усі зразки також досліджувалися методом диференційного термічного аналізу. Склади зразків та температури термічних ефектів наведено в табл. 1.

Таблиця 1

№ зразка	Склад	Термічний ефект, К		
13	50 % Sb ₂ Se ₃	893	859	
36	55 % Sb ₂ Se ₃	891	883	
37	60 % Sb ₂ Se ₃	884	865	669
38	65 % Sb ₂ Se ₃	875	853	821
29	70 % Sb ₂ Se ₃	862	841	
23	75 % Sb ₂ Se ₃	853	840	
39	80 % Sb ₂ Se ₃	845	839	
40	85 % Sb ₂ Se ₃	840	846	
41	90 % Sb ₂ Se ₃	844	852	
42	95 % Sb ₂ Se ₃	840	871	
43	100 % Sb ₂ Se ₃		880	

Склади та температури термічних ефектів зразків системи AgSbSe2-Sb2Se3

За даними рентгенофазового і диференційно-термічного аналізів побудовано діаграму стану системи (рис. 2).

Рис. 2. Діаграма фазових рівноваг системи AgSbSe₂-Sb₂Se₃

Як видно з рисунка, ліквідус перерізу складається з кривих первинної кристалізації AgSbSe₂ (крива abe) та первинної кристалізації Sb₂Se₃ (крива ec). Поле 6 відповідає сумісній кристалізації AgSbSe₂ та Sb₂Se₃.

Евтектична горизонталь ред відповідає температурі 840 К та (разом із лініями rb та bp) є солідусом перерізу. Склад евтектики відповідає 84 мол. % Sb₂Se₃.

За результатми досліджень 71 зразка побудовано ізотермічні перерізи діаграм фазових рівноваг систем $Ag_2Se-Ge(Sn)Se_2-Sb_2Se_3$ при температурі 570 К. Попередній аналіз термограм зразків показав, що при 570 К усі зразки перебувають у твердому стані. Тому саме цю температуру вибрано для гомогенізуючого відпалу. Як видно з рис. 3., ізотермічні перерізи вищевказаних систем є однаковими. Нових тернарних чи тетрарних фаз у досліджуваних системах нами не виявлено. Тверді розчини на основі бінарних та тернарних сполук (крім $AgSbSe_2$) при температурі дослідження є мінімальними. Як видно з рис. 3, при 570 К дві подвійних рівноваги розділяють системи на три поля трифазних рівноваг:

1. Ag₂Se–Ag₈Ge(Sn)Se₆–AgSbSe₂;

2. Ag₈Ge(Sn)Se₆-AgSbSe₂-Ge(Sn)Se₂;

 $3. AgSbSe_2-Ge(Sn)Se_2-Sb_2Se_3.$

Рис. 3. Ізотермічний переріз систем Ag₂Se-Ge(Sn)Se₂-Sb₂Se₃

Висновки. Побудовано діаграму фазових рівноваг системи AgSbSe₂–Sb₂Se₃. Побудовано ізотермічні перерізи систем Ag₂Se–Ge(Sn)Se₂–Sb₂Se₃ при 570 К. Не підтверджено існування сполуки Ag₃Sb₇Se₁₂, відомої з літератури.

Література

- 1. Серебросодержащие халькогенидные стекла как твердые электролиты / [З. У. Борисова, А. В. Богданова, Е. А. Казакова и др.] // Физика и химия стали. 1977. Т. 8, № 5. С. 578.
- 2. Салаева З. Ю. Некоторые разрезы тройной системы Ag-Ge-Se / З. Ю. Салаева, А. А. Мовсум-заде, М. Р. Аллазов // Азербайдж. хим. журн. 1985. № 2. С. 91.
- 3. Салаева 3. Ю. Система Ag-Ge-Se / 3. Ю. Салаева, М. Р. Аллазов, А. А. Мовсум-заде // Азербайдж. хим. журн. – 1987. – Т. 32. – С. 1705–1709.
- Ollitrault-Fichet R. Diagramme de phase du systeme Ag-Ge-Se / R. Ollitrault-Fichet, J. Rivet, J. Flahaut // J. Less-Comm. Met. – 1985. – Vol. 114, № 2. – P. 273–289.
- Миколайчук А. Г. К вопросу о существовании соединения Ag₂GeSe₃ / А. Г. Миколайчук, В. Н. Мороз // Журн. неорган. химии. – 1987. – Т. 32, вып. 9. – С. 2312–2313.
- 6. Gorochov O. Les composes Ag_8MX_6 (M = Si, Ge, Sn et X = S, Se, Te) / O. Gorochov // Bull. Soc. chim. France. 1968. No 6. P. 2263.
- Hahn H. Uber einige ternare Chalcogenide vom Argyrodit Typ / H. Hahn, H. Schulze, J. Sechsev // Naturwis. 1965. H. 52. N. 15. S. 451.
- 8. Квазіпотрійні халькогенідні системи. Т. 1 / [Олексеюк І., Парасюк О., Піскач Л. та ін.]. Луцьк : РВВ "Вежа" Волин. держ. ун-ту ім. Лесі Українки, 1999. – С. 168.
- 9. Carre P. Acta Cryst / Carre P., Ollitrault-Ficher R., Flahaut J. 1980. B 36. P. 245-249.
- 10. Гулай Л. Д. Кристалохімія халькогенідів та інтерметалідів рідкісноземельних і перехідних елементів з Рb (Si, Ge, Sn та In) : автореф. дис. ... д-ра хім. наук : спец. 02.00.01 "Неорганічна хімія" / Л. Д. Гулай. Л., 2008. 36 с.
- 11. Gorochov O. Diagramme de phases et properties du system Ag₂Se–SnSe₂ / O. Gorochov, R. Fichet, J. Flahaut // C. R. Acad. Sci. – 1966. – T. 203. – S. 1442–1427.
- 12. Description du systeme ternaire Ag–Sn–Se / [R. Ollitrault-Fichet, J. Rivet, J. Flahaut et al] // J. Less-Comm. Met. 1988. Vol. 138. P. 241–261.

- 13. Gulay L. D. Crystal structure of β-Ag₈SnSe₆ / L. D. Gulay, I. D. Olekseyuk, O. V. Parasyuk // Jornal of alloys and compounds. 2002. 339. P. 113–117.
- 14. Gorochov O. Fes composec Ag_8MX_6 avec M = Si, Ge, Sn et X = S, Se, Te / O. Gorochov, J. Flahaut // C. R. Acad. Sci. C. 1967. Vol. 264. No 26. P. 2153-2155.
- 15. Hahn H. Uber einige ternare Chalkogenide vom Argyrodit Typ / H. Hahn, H. Schulze, J. Sechsev // Natuwissenschaften. 1965. H. 52. № 15. S. 451.
- 16. Dra Maria Tereza Mora Aznar. Estudio de los mecanizmos de cristalizacion primaria y eutectica de aleaciones del sistema GeSe₂–Sb₂Se₃ / Dra Maria Tereza Mora Aznar // Para optar al grado de Doktor en Fisika. – Bellaterra : Diciember, 1998.
- 17. Блецкан Д. И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе / Блецкан Д. И. Ужгород : Закарпаття, 2004. С. 290
- Phase equilibria in the quasiternary system Cu₂Se–SnSe₂–Sb₂Se₃ / [Ostapyuk T. A., Yermiyhcuk I. M., Zmiy O. F., Olekseyuk I. D.] // Chem. Met. Alloys. – 2009. – 2.
- 19. Geller S. Acta Crystall / S. Geller, I. H. Wernik. 1959. 12. P. 46.
- Pearosn's Handbook of Crystallographic Date of Intermetallic Phases / ed by P. Villars // ASM International. Materials Park. OH 44073. – 1997. – Vol. 1–2.
- Russ. I. Inorg. Chem. / [S. A. Tarasevich, I. S. Koraleva, Z. S. Medvedeva, L. I. Antonova]. 1971. 16. P. 1552.
- 22. Description du système ternarie Ag–Sb–Se / [A. Boutserrit, R. Ollitrault-Fichet, J. Rivet, J. Dugué] // Journal of Alloys and Compounds. 1993. 191. P. 223–232.

Статтю подано до редколегії 18.12.2009 р.