І. А. Іващенко – кандидат хімічних наук, старший викладач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки; О. Ф. Змій – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Ізотермічний переріз системи Ag₂Se-CdSe-In₂Se₃ при 820 К

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Методами рентгенофазового, мікроструктурного аналізів та вимірюванням мікротвердості досліджено квазіпотрійну систему Ag₂Se-CdSe-In₂Se₃. За результатами досліджень та літературними даними побудовано ізотермічний переріз при 820 К. Встановлено існування тетрарної сполуки Ag_{0,4}Cd_{0,4}In_{6,3}Se₁₀.

Ключові слова: рентгенофазовий аналіз, ізотермічний переріз, Ag₂Se-CdSe-In₂Se₃.

Иващенко И. А., Змий О. Ф., Олексеюк И. Д. Изотермическое сечение системы Ag₂Se–CdSe–In₂Se₃ при 820 К. Методами рентгенофазового, микроструктурного анализов и измерением микротвердости исследовано квазотройную систему Ag₂Se–CdSe–In₂Se₃. За результатами исследований и литературными данными построено изотермическое сечение при 820 К. Установлено существование тетрарного соединения Ag_{0,4}Cd_{0,4}In_{6,3}Se₁₀. Ключевые слова: рентгенофазовий анализ, изотермическое сечение, Ag₂Se–CdSe–In₂Se₃.

Ivashchenko I. A., Zmiy O. F., Olekseyuk I. D. The Isothermal Section of $Ag_2Se-CdSe-In_2Se_3$ System at <u>820 K.</u> The quasi-ternary system $Ag_2Se-CdSe-In_2Se_3$ was investigated by XRD and microstructure analysis and microhardness measurements. The isothermal section at 820 K was constructed from the investigation results and literature data. The existence of a quaternary compound $Ag_{0,4}Cd_{0,4}In_{6,3}Se_{10}$ was istablished.

Key words: X-ray phase analysis, isothermal section, Ag₂Se–CdSe–In₂Se₃.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Система Ag₂Se–CdSe–In₂Se₃ належить до групи систем $A_2^IX - B^{II}X - C^{III}_2X_3$, ($A^I - Cu$, Ag, Au; $B^{II} - Zn$, Cd, Hg; C^{III} – Al, Ga, In; X – S, Se, Te), компонентами яких є бінарні сполуки, що мають напівпровідникові властивості, і в яких утворюються тернарні $A^IC^{III}X_2$, $B^{II}C^{III}_2X_4$ та тетрарні $A^IB^{II}_2C^{III}X_4$ сполуки. При систематичному вивченні квазіпотрійних систем Cu₂Se–HgSe–In₂Se₃ [1], Ag₂Se–CdSe–Ga₂Se₃ [2], Cu₂Se–CdSe–In₂Se₃ [3; 4] зафіксовано утворення твердих розчинів великої протяжності на основі бінарних, тернарних і тетрарних сполук. У роботах [1; 4] зазначалося, що в багатій на In₂Se₃ частинах систем Cu₂Se–HgSe–In₂Se₃, Cu₂Se–CdSe–In₂Se₃, Cu₂Se–CdSe–In₂Se₃, Cu₂Se–CdSe–In₂Se₃, u в багатій на In₂Se₃ частинах систем Cu₂Se–HgSe–In₂Se₃, Cu₂Se–CdSe–In₂Se₃, Cu₂Se–CdSe–In₂Se₃, u в багатій на In₂Se₃ частинах систем Cu₂Se–HgSe–In₂Se₃, Cu₂Se–CdSe–In₂Se₃, u в вивчалося зовсім. Тому її вивчення у повному концентраційному інтервалі є цікавим, як з точки зору встановлення меж твердих розчинів, так і виявлення нових тетрарних фаз.

Літературні дані стосовно обмежуючих квазіподвійних систем Ag₂Se–CdSe, Ag₂Se–In₂Se₃, CdSe–In₂Se₃ зведено в табл. 1. Попередньо нами досліджені перерізи AgInSe₂–CdSe [16] та AgIn₅Se₈–CdIn₂Se₄ [17]. Переріз AgInSe₂–CdSe виявився квазібінарною системою (рис. 1), з обмеженою розчинністю компонентів у твердому стані. Між α - та γ -твердими розчинами (α -тверді розчини на основі високотемпературної (BT) модифікації AgInSe₂, γ -тверді розчини на основі вюртцитної BT модифікації CdSe) відбувається евтектична взаємодія L $\Leftrightarrow \alpha + \gamma$, координати нонваріантної точки 10 мол. % CdSe, 1025 К. При евтектичній температурі γ -тверді розчини сягають 70 мол. % AgInSe₂, зі зниженням температури розчинність різко зменшується і при температурі становить 5 мол. % CdSe і з пониженням температури до 900 К зростає до 17 мол. % CdSe. При температурі 900 К у системі відбувається евтектоїдний розпад $\alpha \Leftrightarrow \alpha' + \gamma$, де α' -тверді розчини на основі низькотемпературної (HT) модифікації AgInSe₂.

Таблиця 1

[©] Іващенко І. А., Змій О. Ф., Олексеюк І. Д., 2008

Система, тернарна сполука	Межі твердих розчинів, мол. %	Мікротвердість**, ГПа; сингонія **, пр. гр. **
Ag ₂ Se $(\mu)^*$ –CdSe (γ)	μ: 10 CdSe [5];γ: розчинність майже відсутня [5]	; кубічна [5], <i>Іт3т</i> [9] 1,00 [6]; <i>Р</i> 6 ₃ <i>тс</i> [7]
Ag ₂ Se (μ)–In ₂ Se ₃ (δ ") AgInSe ₂ (α ') AgIn ₅ Se ₈ (β ')	 μ: розчинність майже відсутня [8] δ": 2 Ag₂Se [8] α': 49–52 In₂Se₃ [8] β': 79–84 In₂Se₃ [8] 	; кубічна [5], <i>Im</i> 3 <i>m</i> [9] 0,40 [10]; <i>P</i> 6 ₅ [11] 2,30 [12]; <i>I</i> 42 <i>d</i> [13] 3,50 [14]; <i>P</i> 42 <i>m</i> [15]
$\begin{array}{l} CdSe\left(\gamma\right)-In_{2}Se_{3}\left(\delta^{\prime\prime}\right)\\ CdIn_{2}Se_{4}\left(\epsilon\right) \end{array}$	$\gamma: 7 \text{ In}_2\text{Se}_3 [3]$ $\delta'': \sim 2 \text{ CdSe} [3]$ $\epsilon: 48-52 \text{ In}_2\text{Se}_3 [3]$	1,00 [3]; <i>P</i> 6 ₃ <i>mc</i> [3] 0,40 [10]; <i>P</i> 6 ₅ [11] 2,90 [3]

Межі твердих розчинів в	обмежуючих	квазіподвійних	системах,
кристалічна структ	ура бінарних	і тернарних спо	лук

в – буквою позначений твердий розчин на основі поліморфної модифікації сполуки, стійкої при температурі 820 К.

** - значення дається для вихідної сполуки.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідженн. Область α' -твердих розчинів при 820 К становить 4 мол. % CdSe, при зміні періодів тетрагональної комірки від a = 0,61024(3) нм, c = 1,1709(1) нм для HT AgInSe₂ до a = 0,60969(4) нм, c = 1,1753(2) нм для сплаву складу 95 мол. % AgInSe₂ – 5 мол. % CdSe, при цьому об'єм комірки зростає (рис. 2). Межі обох твердих розчинів при 820 К встановлювалися за зміною періодів елементарної комірки та підтверджувалися дослідженням мікроструктури. Для твердого розчину на основі кадмій селеніду зміна становила від a = 0,42879(6) нм, c = 0,6964(2) нм для вюртцитної модифікації CdSe до a = 0,42712(3) нм, c = 0,6943(1) нм для сплаву складу 45 мол. % AgInSe₂ – 55 мол. % CdSe (рис. 2), при цьому об'єм комірки зменшується. Результати вимірювання мікротвердості сплавів досліджуваного перерізу представлено на рис. 3.

Для структурного типу халькопіриту характерна наявність тетрагональної деформації δ ($\delta = a - c/2$), що зумовлена впорядкуванням катіонів із різними розмірами [18]. У межах області гомогенності AgInSe₂ спостерігається така картина: через значну відмінність у розмірах іонів Ag ($r_{Ag^+} = 0,114$ нм) та In ($r_{In^{3+}} = 0,076$ нм), для сполуки AgInSe₂ тетрагональна деформація комірки є великою (δ AgGaSe₂ = 0,025). При гетеровалентному заміщені Ag, In на 2Cd ($r_{Cd^{2+}} = 0,092$ нм), деформація підкомірки Se хоч і залишиться, але в межах області гомогенності буде дещо зменшуватися (δ (95 мол. % AgGaSe₂ – 5 мол. % CdSe) = 0,022). Зменшення δ може відбутися за рахунок або зростання періоду *c*, або зменшення періоду *a*. У нашому випадку в межах області гомогенності AgInSe₂ на перерізі AgGaSe₂–CdSe [19]).

Переріз AgIn₅Se₈–CdIn₂Se₄ (рис. 4) в більшій своїй частині є квазібінарним. В інтервалі 0–5 мол. % AgIn₅Se₈ і температурах 1170–1195 К він не квазібінарний через інконгруентний характер плавлення сполуки CdIn₂Se₄. Між β -твердими розчинами на основі ВТ модифікації AgIn₅Se₈ та є-твердими розчинами на основі вТ модифікації AgIn₅Se₈ та є-твердими розчинами на основі сполуки CdIn₂Se₄ існує евтектична взаємодія з координатами нонваріантної точки 12 мол. % CdIn₂Se₄, 1050 К.

Рис. 4. Політермічний переріз $AgIn_5Se_8$ — $CdIn_2Se_4$: 1 - L; $2 - L + \gamma$; $3 - L + \gamma + \varepsilon$; 4 - L + ε ; 5 - L + β ; 6 - β + ε ; 7 - β ; 8 - β + β '; 9 - β '; 10 - ε + β '; 11 - ε

При даній температурі протяжність β-твердих розчинів становить 10 мол. % CdIn₂Se₄, а ε-твердих розчинів – 54 мол. % AgIn₅Se₈. При 1025 К між β- та є-твердими розчинами відбувається перитектоїдна взаємодія β + ε ⇔ β'. При 820 К область β'-твердих розчинів є невеликою (~3 мол. % CdIn₂Se₄), а розчинність AgIn₅Se₈ в CdIn₂Se₄ становить 13 мол. %. Оскільки для сполук CdIn₂Se₄, AgIn₅Se₈ і в межах областей гомогенності зафіксовано наявність декількох політипів [17] (табл. 2), зміна періодів елементарних комірок сполук не встановлювалася. Межі одно- та двофазних областей уточнювалися за результатами мікроструктурних досліджень. У межах є-твердих розчинів мікротвердість змінюється від 2,90 \pm 0,10 ГПа для CdIn₂Se₄ до 2,70 \pm 0,10 ГПа для зразка складу 15 мол. % AgIn₅Se₈ – 85 мол. % CdIn₂Se₄. Для AgIn₅Se₈ мікротвердість становить 3,20 ± 0,10 ГПа, у двофазних зразках мікротвердість цієї фази менша – 2,95 ± 0,10 ГПа. Незважаючи на подібність кристалічної структури сполук AgIn₅Se₈ та CdIn₂Se₄, області твердих розчинів на їх основі не є великими, що можна пояснити обмежуючим впливом деформації ковалентних зв'язків, яка відбувається при катіонвакансійному впорядкуванні, через їх жорсткість та просторову напрямленість. При підвищених температурах катіони та вакансії в катіонній підкомірці розподіляються статистично, тому деформація ковалентного зв'язку значною мірою зменшується і області гомогенності тернарних сполук розширюються [21] (рис. 4).

Таблиця 2

Сполука	Політип	Пр. гр.	Періоди решітки, нм
CdIn ₂ Se ₄	1T; <i>c/a</i> = 1	$P \overline{4}2m$	a = 0,58289(4), c = 0,58186(8) [20]
	2T; <i>c/a</i> = 2	I 4 ; I 4 2m	a = 0,58045(2), c = 1,16384(6) [20]; a = 0,58043(2), c = 1,16379(5) [20]
	4T; <i>c/a</i> = 4	$I \overline{4}2m$	a = 0,5806(2), c = 2,3252(6) [20]
AgIn ₅ Se ₈	2T; $c/a = 2$	$P \overline{4}2m$	a = 0,57934(4), c = 1,16223(2) [15]
	4T; <i>c/a</i> = 4	I 42m	a = 0,58086(2), c = 2,3275(1) [17]

Політипи сполук CdIn₂Se₄, AgIn₅Se₈ та їх кристалохімічні параметри

Для подальшого дослідження системи отримано 168 сплавів у повному концентраційному інтервалі (рис. 5). Синтез зразків проводили в кварцових ампулах, вакуумованих до залишкового тиску 0,1 Па, шляхом ступінчастого нагрівання простих речовин (Ag – 99,99 ваг. %, In – 99,999 ваг. %, Se – 99,9997 ваг. %, Cd – 99,999 ваг. %) до максимальної температури 1200–1350 К, яка залежала від складу зразків. Гомогенізуючий відпал проводився при 820 К протягом 300 год. Отримані зразки досліджували методом рентгенофазового аналізу (РФА), який проводили за дифрактограмами (рентгенівські дифрактометри ДРОН-3М та ДРОН 4-13, СиК_α-випромінювання). Мікроструктурний аналіз проводився на мікроскопі ММУ-3, вимірювання мікротвердості – на мікротвердометрах ПМТ-3М та Leica VMHT AUTO.

За результатами дослідження побудовано ізотермічний переріз системи Ag₂Se–CdSe–In₂Se₃ при 820 К (рис. 6). Широкі області двофазних рівноваг між твердими розчинами на основі BT модифікацій Ag₂Se, CdSe, HT модифікацій AgInSe₂, AgIn₅Se₈, твердими розчинами на основі сполуки CdIn₂Se₄, однієї з поліморфних модифікацій In₂Se₃ тріангулюють систему Ag₂Se–CdSe–In₂Se₃ при 820 К на квазіпотрійні підсистеми різної величини. Двофазні рівноваги між сполуками AgIn₁₁Se₁₇, CdIn₆Se₁₀ та новою тетрарною сполукою Ag_{0.4}Cd_{0.4}In_{6.3}Se₁₀ подано пунктиром, оскільки остаточно не встановлено кристалічну структуру тетрарної фази.

Найбільші області твердих розчинів утворюються на основі сполук CdSe (ү-тверді розчини) та CdIn₂Se₄ (є-тверді розчини). Область µ-твердих розчинів на основі BT модифікації Ag₂Se практично не поширюється в концентраційний трикутник. Усі області твердих розчинів видовжені у напрямку зміни концентрації CdSe, тому їх можна розглядати як тверді розчини гетеровалентного заміщення 2Cd на (Ag + In) зі збереженням числа атомів у елементарній комірці. При наближенні до багатої на In₂Se₃ частини концентраційного трикутника області твердих розчинів на основі тернарних сполук зменшуються.

Висновки. Отже, дослідження системи Ag₂Se–CdSe–In₂Se₃ методами РФА, МСА та вимірюванням мікротвердості дало змогу побудувати її ізотермічний переріз при 820 К та зафіксувати наявність твердих розчинів на основі бінарних та тернарних сполук. Уперше в області, багатій на In₂Se₃, виявлено тетрарну сполуку Ag_{0,4}Cd_{0,4}In_{6,3}Se₁₀. Протяжності твердих розчинів на основі бінарних та тернарних сполук добре узгоджуються із розмірами та хімічною природою катіонів, що беруть участь у гетеровалентному заміщенні.

Рис. 5. Склади синтезованих сплавів системи Ag₂Se-CdSe-In₂Se₃

Рис. 6. Ізотермічний переріз системи Ag₂Se–CdSe–In₂Se₃ при 820 К

Література

- Halka V. O., Olekseyuk I. D., Parasyuk O. V. The Cu₂Se–HgSe–In₂Se₃ system at 670 K // J. Alloys Comp.– 2000.– Vol. 302, № 1–2.– P. 173–176.
- Кадикало Є., Змій О., Олексеюк І. Ізотермічний переріз квазіпотрійної системи Ag₂Se–CdSe–Ga₂Se₃ при 820 К та діаграма фазових рівноваг перерізу Ag₉GaSe₆–CdSe // Вісн. Львів. ун-ту. Сер. хім. – 2000. – № 39. – С. 53–59.
- Zmiy O. F., Mishchenko I. A., Olekseyuk I. D. Phase equilibria in the quasi-ternary system Cu₂Se–CdSe– In₂Se₃ // J. Alloys Comp.– 2004.– Vol. 367.– P. 49–57.
- Ivashchenko I. A., Gulay L. D., Zmiy O. F., Olekseyuk I. D. The quasi-ternary system Cu₂Se–CdSe–In₂Se₃ and crystal structure of the Cu_{0.6}Cd_{0.7}In₆Se₁₀ compound // J. Alloys Comp.– 2005.– Vol. 394.– P. 186–193.
- Трищук Л. И., Олейник Г. С., Мизецкая И. Б. Фазовые равновесия в системах Ag₂Se–ZnSe и Ag₂Se–CdSe // Изв. АН СССР. Неорган. материалы. 1982. Т. 18, № 11. С. 1795–1797.
- Полупроводниковые халькогениды и сплавы на их основе / Н. Х. Абрикосов, В. Ф. Банкина, Л. В. Порецкая и др.– М.: Наука, 1975.– 219 с.
- 7. Пашинский А. С., Сапожников Р. А. О кубической модификации селенида кадмия // Кристаллография.– 1962.– Т. 7, № 4.– С. 623.
- Криховець О. В. Фазові рівноваги і кристалохімічні характеристики твердих розчинів та проміжних фаз у системах Ag₂Se-B^{III}₂Se₃-C^{IV}Se₂ (B^{III} – Ga, In; C^{IV} – Ge, Sn): Дис. ... канд. хім. наук: 02.00.01.– Луцьк, 2000.– С. 52–54.
- 9. Villars P. Pearson's Handbook. Desk Edition. Materials Park, OH 44073. 1997. Vol. 1–2. P. 2886.
- 10. Славнова Г. К. О полиморфизме In₂Se₃// Журнал неорган. химии.– 1963.– Т. 8, № 10.– С. 2217–2221.
- 11. Медведева З. С., Гулиев Т. Н. Выращивание монокристалов селенида индия из газовой фазы // Изв. АН СССР. Неорган. материалы.– 1965.– Т. 1, № 6.– С. 848–852.
- 12. Горюнова Н. А. Химия алмазоподобных полупроводников. Л.: Изд-во Ленинград. ун-та, 1963. 206 с.
- 13. Палатник Л. С., Рогачёва Е. И. О тройных полупроводниковых халькогенидах типа А^IB^{III}C^{VI}₂ // Изв. АН СССР. Неорган. материалы.– 1966.– Т. 2, № 4.– С. 659–666.
- 14. Палатник Л. С., Рогачёва Е. И. О дефектных полупроводниковых фазах типа А^IB^{III}₅C^{VI}₈ // Изв. АН СССР. Неорган. материалы.– 1966.– Т. 2, № 3.– С. 478–484.
- Benoit P., Charpin P., Djega-Mariadassou C. Composes definis dans le systeme Ag–In–Se structure cristalline de □₂AgIn₅Se₈ // Mat. Res. Bull.– 1983.– Vol. 18.– C. 1047–1057.
- Mishchenko I. A., Zmiy O. F., Olekseyuk I. D. Phase equilibrium in the AgInSe₂-CdSe system // Polish J. Chem.- 2001. Vol. 75.- P. 1407-1411.
- Ivashchenko I. A., Gulay L. D., Zmiy O. F., Olekseyuk I. D. Vertical section AgIn₅Se₈–CdIn₂Se₄ and crystal structure of the AgIn₅Se₈ compound (4T-polytype) // J. Alloys Comp.– 2007.– Vol. 427.– P. 101–103.
- 18. Кошкин В. М. Особливості структури та фізичні властивості напівпровідників з граткою халькопіриту // Укр. фіз. журн.– 1964.– Т. 9, № 9.– С. 973–982.
- 19. Olekseyuk I. D., Gulay L. D., Parasyuk O. V., Husak O. A., Kadykalo E. M. Phase diagram of the AgGaSe₂–CdSe system and crystal structure of the AgCd₂GaSe₄ compound // J. Alloys Comp.– 2002.– Vol. 343, № 1–2.– P. 125–131.
- 20. Іващенко І. А., Аксельруд Л. Г., Олексеюк І. Д., Змій О. Ф. Політипи сполуки CdIn₂Se₄ // Укр. хім. журн.– 2004.– Т. 70, № 2.– С. 67–71.
- 21. Сложные халькогениды в системах А^I–В^{III}–С^{VI} / В. Б. Лазарев, З. З. Киш, Е. Ю. Переш, Е. Е. Семрад.– М.: Металлургия, 1993.– 240 с.

Статтю подано до редколегії 16.09.2008 р.