- 7. Рудь В. Ю., Рудь Ю. В. Создание и свойства гетероструктур In<sub>2</sub>O<sub>3</sub>/CdS/CuInSe<sub>2</sub> // ФТП.– 1999.– Т. 33, № 7.– С. 801–804.
- 8. Zhang L., Jiang F. D., Feng J. Y. Formation of CuInSe<sub>2</sub> and Cu(In,Ga)Se<sub>2</sub> films by electrodeposition and vacuum annealing treatment // Solar Energy Mater. and Solar Cells.– 2003.– Vol. 80, № 4.– P. 483–490.
- 9. Гременок В. Ф., Боднарь И. В., Рудь В. Ю., Рудь Ю. В., Schock H.-W. Солнечные элементы на основе пленок CuIn<sub>1-x</sub>Ga<sub>x</sub>Se<sub>2</sub>, полученных импульсным лазерным испарением // ФТП.- 2002.- Т. 36, № 2.- С. 360-363.
- 10. Miles R. W., Ramakrishna Reddy K. T., Forbes I. Formation of polycrystalline thin film of CuInS<sub>2</sub> by a two step process // J. Cryst. Growth.– 1999.– Vol. 198/199.– P. 316–320.
- 11. Bär M., Ennaoui A., Klaer J., Sáez-Araoz R., Kropp T., Weinhardt L., Heske C., Schock H.-W., Fischer Ch.-H., Lux-Steiner M. C. The electronic structure of the [Zn(S, O)/ZnS]/CuInS<sub>2</sub> heterointerface – Impact of postannealing // Chem. Phys. Let. – 2006. – Vol. 433. – P. 71–74.
- Walter T., Content A., Velthaus K. O., Schock H.-W., Solar cells based on CuIn(Se,S)<sub>2</sub> // Solar Energy Mater. Solar Cell.– 1992.– Vol. 26.– P. 357–368.
- Djordjevic J., Pietzker C., Scheer R. In situ XRD study of mixed CuInSe<sub>2</sub>-CuInS<sub>2</sub> formation // J. Phys. Chem. Sol. - 2003. - Vol. 64. - P. 1843–1848.
- 14. Probst V., Palm J., Visbeck S., Niesen T., Tölle R., Lerchenberger A., Wendl M., Vogt H., Calwer H., Stetter W., Karg F. New developments in Cu(In,Ga)(S, Se)<sub>2</sub> thin film modules formed by rapid thermal processing of stacked elemental layers // Solar Energy Mater & Solar Cells. – 2006. – Vol. 90. – P. 3115–3123.
- Glatzel Th., Steigert H., Sadewasser S., Klenk R., Lux-Steiner M. Ch. Potential distribution of Cu(In, Ga) (S, Se)<sub>2</sub>-solar cell cross-sections measured by Kelvin probe force microscopy // Thin Solid Films.– 2005.– Vol. 480–481.– P. 177–182.
- Beach J. D., McCandless B. E. Materials challenges for CdTe and CuInSe<sub>2</sub> photovoltaics // MRS Bul.– 2007.– Vol. 32.– P. 225–229.
- 17. Meyer E. L., van Dyk E. E., Analysis of degradation in CuInSe<sub>2</sub> photovoltaic modules // Phys. Stat. Sol. (a).-2004.- Vol. 201.- P. 2245-2250.
- Parasyuk O. V., Olekseyuk I. D., Zaremba V. I., Dzham O. A., Lavrynyuk Z. V., Piskach L. V., Yanko O. G., Volkov S. V., Pekhnyo V. I. The reciprocal CuInS<sub>2</sub> + 2CdSe ⇔ CuInSe<sub>2</sub> + 2CdS system. Part II. Liquid-solid equilibria in the system // J. Sol. State Chem.– 2006.– Vol. 179.– P. 2998–3006.
- Romanyuk Y. E., Yu K. M., Walukiewicz W., Lavrynyuk Z. V., Pekhnyo V. I., Parasyuk O. V. Single crystal growth and properties of γ-phase in the CuInSe<sub>2</sub>+ 2CdS ⇔ CuInS<sub>2</sub>+ 2CdSe reciprocal system // Solar Energy Mater & Solar Cells.– 2008.– Vol. 92, № 11.– P. 1495–1499.

Статтю подано до редколегії 30.09.2008 р.

УДК 546:544.016:543.442.2:546.22/.24 (546.64+546.654+ 546.682) I. В. Пашинський – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
I. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
Л. Д. Гулай – кандидат хімічних наук, доцент, завідувач кафедри екології та охорони навколишнього середовища Волинського національного університету імені Лесі Українки

## Ізотермічні перерізи систем Y(La)<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub>-PbSe при 870 К

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Взаємодію між компонентами в системах Y(La)<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub>-PbSe при 870 К досліджено методом рентгенівської порошкової дифрактометрії. В системах не виявлено існування тетрарних сполук.

Ключові слова: халькогеніди, сполуки РЗМ, сполуки Рb, сполуки In, ізотермічний перетин, кристалічна структура.

© Пашинський І. В., Олексеюк І. Д., Гулай Л. Д., 2008

**Пашинский И. В., Олексеюк И. Д., Гулай Л. Д. Изотермические разрезы систем Y**(La)<sub>2</sub>Se<sub>3</sub>–In<sub>2</sub>Se<sub>3</sub>–PbSe at **870 К.** Взаимодействие между компонентами в системах Y<sub>2</sub>Se<sub>3</sub>–In<sub>2</sub>Se<sub>3</sub>–PbSe и La<sub>2</sub>Se<sub>3</sub>–In<sub>2</sub>Se<sub>3</sub>–PbSe при 870 К исследовано методами порошковой дифрактометрии. В системах не образуются тетрарные соединения.

Ключевые слова: халькогениды, соединения P3M, соединения Pb, соединения In, изотермический разрез, кристаллическая структура.

<u>Pashynskyj I. V., Olekseyuk I. D., Gulay L. D. Isothermal sections of the systems Y(La)<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub>-PbSe at 870 K. The interactions between the components in the Y<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub>-PbSe and La<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub>-PbSe system at 870 K were determined using X-ray powder diffraction. No quaternary compounds exist in the investigated systems. Key words: chalcogenides, rare earth compounds, Pb compounds, In compounds, isothermal section, crystal structure.</u>

**Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми.** Кристалічну структуру сполуки Y<sub>2</sub>Se<sub>3</sub> (структурний тип Th<sub>3</sub>P<sub>4</sub>, просторова група  $I\bar{4}$  3*d*, a = 0,86626 нм) визначено в роботі [1], сполуки La<sub>2</sub>Se<sub>3</sub> (структурний тип Th<sub>3</sub>P<sub>4</sub>, просторова група  $I\bar{4}$  3*d*, a = 0,90521 нм) описано в роботі [2]. Сполука PbSe при нормальних умовах кристалізується в структурному типі NaCl (просторова група  $Fm\bar{3}m$ , a = 0,61213 нм) [3]. Відомі інші модифікації цієї сполуки, отримані при високих тисках – структурний тип GeS (просторова група  $Pm\bar{3}m$ , a = 1,161 нм, b = 0,400 нм, c = 0,439 нм [4]), структурний тип CsCl (просторова група  $Pm\bar{3}m$ , a = 0,3379 нм [5]). Для In<sub>2</sub>Se<sub>3</sub> встановлено існування декількох модифікацій. Так, у роботі [6] досліджено кристалічну структуру  $\alpha$ -In<sub>2</sub>Se<sub>3</sub> (власний структурний тип, просторова група  $R\bar{3}m$ , a = 0,4025 нм, c = 2,8762 нм),  $\beta$ -In<sub>2</sub>Se<sub>3</sub> (структурний тип Bi<sub>2</sub>Te<sub>3</sub>, просторова група  $R\bar{3}m$ , a = 0,4000 нм, c = 2,833 нм),  $\gamma$ -In<sub>2</sub>Se<sub>3</sub> (структурний тип Al<sub>2</sub>S<sub>3</sub>, просторова група  $P6_{1}22$ , a = 0,713 нм, c = 1,958 нм),  $\delta$ -In<sub>2</sub>Se<sub>3</sub> кристалізується в гексагональній сингонії (a = 0,4014 нм, c = 0,964 нм).

Діаграма стану для системи  $Y_2Se_3$ –In<sub>2</sub>Se<sub>3</sub> не досліджена. В літературі [7] є лише відомості про існування сполуки YInSe<sub>3</sub>, яка кристалізується в кубічній сингонії (a = 1,1375 нм).

Діаграма стану системи La<sub>2</sub>Se<sub>3</sub>–In<sub>2</sub>Se<sub>3</sub> також не побудована. В системі виявлено існування сполук складу LaInSe<sub>3</sub> (гексагональна сингонія, a = 0,685 нм, c = 0,400 нм), La<sub>3</sub>In<sub>1,67</sub>Se<sub>7</sub> (структурний тип Ce<sub>3</sub>Al<sub>1,67</sub>S<sub>7</sub>, просторова група *P*6<sub>3</sub>, a = 1,050 нм, c = 0,650 нм) [7], La<sub>4</sub>In<sub>4,72</sub>Se<sub>13</sub> (просторова група *Pbam*, a = 1,2442 нм, b = 2,2146 нм, c = 0,41969 нм) [8].

Діаграма стану системи  $Y_2Se_3$ –PbSe не досліджувалась. У системі виявлено сполуку  $Y_2PbSe_4$ , структура якої невідома [9]. В роботах [10; 11] встановлено існування сполук:  $Y_{4,2}Pb_{0,7}Se_7$  (структурний тип  $Y_5Se_7$ , просторова група *Cm*, a = 1,3357 нм, b = 0,40469 нм, c = 1,22356 нм,  $\beta = 104,529(3)^\circ$ ) та  $Y_6Pb_2Se_{11}$  (власний структурний тип, простото T, K рова група *Cmcm*, a = 0,40620 нм, b = 1,3467 нм, c = 3,7624 нм) відповідно.

Діаграму стану системи La<sub>2</sub>Se<sub>3</sub>–PbSe досліджено в роботі [12] (рис. 1). Утворення сполуки La<sub>2</sub>PbSe<sub>4</sub>, що належить до структурного типу Th<sub>3</sub>P<sub>4</sub> (просторова група  $I\overline{4}$  3*d*, a = 0,9106 нм), описано в [9; 12], а La<sub>2</sub>Pb<sub>4</sub>Se<sub>7</sub> – в [12].

У системі PbSe–In<sub>2</sub>Se<sub>3</sub> утворюється сполука складу Pb<sub>7,12</sub>In<sub>18,88</sub>Se<sub>34</sub>, яка кристалізується в орторомбічній сингонії (просторова група *Pbam*, a = 2,378 нм, b = 1,5781 нм, c = 0,4052 нм) [13]. У роботі [14] встановлено також існування сполук PbIn<sub>2</sub>Se<sub>4</sub> (просторова група *Pbam*, a = 2,368 нм, b = 1,578 нм, c = 0,405 нм), Pb<sub>2</sub>In<sub>6</sub>Se<sub>11</sub> (просторова група *P*2<sub>1</sub>, a = 1,368 нм, b = 0,406 нм, c = 2,908 нм).

Предметом нашого дослідження є ізотермічні перерізи систем  $La_2Se_3$ -In<sub>2</sub>Se<sub>3</sub>-PbSe і  $Y_2Se_3$ -In<sub>2</sub>Se<sub>3</sub>-PbSe при 870 К.

Матеріали і методи. Для дослідження фазових рівноваг у системах La<sub>2</sub>Se<sub>3</sub>–In<sub>2</sub>Se<sub>3</sub>–PbSe і Y<sub>2</sub>Se<sub>3</sub>–In<sub>2</sub>Se<sub>3</sub>–PbSe синтезовано 25 та 20 зразків



Рис. 1. Діаграма стану системи  $La_2Se_3$ —PbSe: 1 - L;  $2 - L + La_2Se_3$ ;  $3 - L + \alpha - La_2PbSe_4$ ;  $4 - L + \alpha - La_2PbSe_4$ ;  $5 - L + \alpha - La_2Pb_4Se_7$ ;  $6 - L + \alpha - La_2Pb_4Se_7$ ; 7 - L + PbSe;  $8 - L + \beta - La_2PbSe_4$ ;  $9 - L + \beta - La_2PbSe_4$ ;

 $\begin{array}{l} 10 - La_{2}Se_{3} + \beta - La_{2}PbSe_{4}; \ 11 - \beta - La_{2}PbSe_{4} + \alpha - La_{2}Pb_{4}Se_{7}; \\ 12 - \alpha - La_{2}Pb_{4}Se_{7} + PbSe; \ 13 - La_{2}Se_{3} + \gamma - La_{2}PbSe_{4}; \\ 14 - \gamma - La_{2}PbSe_{4} + \alpha - La_{2}Pb_{4}Se_{7}; \end{array}$ 

 $15 - \gamma$ -La<sub>2</sub>PbSe<sub>4</sub> +  $\beta$ -La<sub>2</sub>Pb<sub>4</sub>Se<sub>7</sub>;  $16 - \beta$ -La<sub>2</sub>Pb<sub>4</sub>Se<sub>7</sub> + PbSe

відповідно. Зразки виготовляли сплавлянням високочистих елементів (чистота є більше ніж 99,9 ваг. %) у вакуумованих і запаяних кварцових ампулах. Синтез проводився в печі шахтного типу. Ампули нагрівали до максимальної температури 1420 К зі швидкістю 30 К/год. При максимальній температурі зразки витримувалися 4 год. Гомогенізаційний відпал проводили при температурі 870 К протягом 240 год. Після відпалу ампули зі зразками загартовували у холодній воді і досліджували методом рентгенівської порошкової дифрактометрії.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Система La<sub>2</sub>Se<sub>3</sub>–PbSe. При дослідженні фазових рівноваг у системі La<sub>2</sub>Se<sub>3</sub>–PbSe при 870 К існує твердий розчин La<sub>2(1-x)</sub>Pb<sub>x</sub>Se<sub>3-x</sub> ( $0 \le x \le 0,5$ ) (структурний тип Th<sub>3</sub>P<sub>4</sub>, просторова група  $I\overline{4}$  3d, a = 0,90521-0,91100 нм). Зміну періодів та об'єму елементарної комірки для твердого розчину La<sub>2</sub>Se<sub>3</sub>–La<sub>2</sub>PbSe<sub>4</sub> показано в табл. 1. Існування сполуки La<sub>2</sub>Pb<sub>4</sub>Se<sub>7</sub> не підтвердилося.

Таблиця 1

| Зміна періодів т | та об'єму | елементарної комірки | і для твердих розчині | ів La <sub>2</sub> Se <sub>3</sub> –La <sub>2</sub> PbSe <sub>4</sub> |
|------------------|-----------|----------------------|-----------------------|-----------------------------------------------------------------------|
|------------------|-----------|----------------------|-----------------------|-----------------------------------------------------------------------|

| Склад, мол. % La <sub>2</sub> Se <sub>3</sub> | а, нм      | <i>V</i> , нм <sup>3</sup> |
|-----------------------------------------------|------------|----------------------------|
| 80                                            | 0,90600(3) | 0,74370(3)                 |
| 60                                            | 0,90696(3) | 0,74604(7)                 |
| 40                                            | 0,90746(4) | 0,7473(1)                  |
| 20                                            | 0,90884(3) | 0,75070(7)                 |
| 0                                             | 0,91100(3) | 0,75606(7)                 |

Система La<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub>. При дослідженні фазових рівноваг у системі La<sub>2</sub>Se<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub> при 870 К підтверджено існування тернарних сполук La<sub>3</sub>In<sub>1,67</sub>Se<sub>7</sub> та La<sub>4</sub>In<sub>4,72</sub>Se<sub>13</sub>. Зразок складу LaInSe<sub>3</sub> виявився двофазним.

Система  $Y_2Se_3$ —PbSe. У системі  $Y_2Se_3$ —PbSe підтверджено існування тернарних сполук  $Y_{4,2}Pb_{0,7}Se_7$  та  $Y_6Pb_2Se_{11}$ . Дослідження зразка складу  $Y_2PbSe_4$  показало, що він не однофазний і існування цієї сполуки не підтвердилось. У системі присутня розчинність на основі вихідних компонентів і тернарних сполук.

Система Y2Se3-In2Se3. У результаті проведених досліджень встановлено, що в системі Y2Se3-In2Se3



 $12 - Y_{4,2}Pb_{0,7}Se_7 + PbIn_2Se_4 + Y_6Pb_2Se_{11};$ 

 $13 - Y_6Pb_2Se_{11} + PbIn_2Se_4 + PbSe$ 

вання відомої з літератури сполуки складу УInSe<sub>3</sub> [7] не підтвердилося.

Система PbSe–In<sub>2</sub>Se<sub>3</sub>. У результаті досліджень встановлено існування твердого розчину Pb<sub>1-x</sub>In<sub>2(1+x)</sub>Se<sub>2(2+x)</sub>, де  $0 \le x \le 0,12$  (PbIn<sub>2</sub>Se<sub>4</sub>–Pb<sub>7,12</sub>In<sub>18,88</sub>Se<sub>34</sub>) (просторова група Pbam, a = 2,375-2,378 нм, b = 1,5803-1,5781 нм, c = 0,4053-0,4052 нм). Відому із літературних даних сполуку складу Pb<sub>2</sub>In<sub>6</sub>Se<sub>11</sub> ідентифікувати не вдалося. У системі існує розчинність PbSe в In<sub>2</sub>Se<sub>3</sub> (0,05 мол. част. PbSe).

тернарні сполуки не утворюються. Існу-

Ізотермічний переріз системи  $Y_2Se_3$ —*PbSe*—*In*<sub>2</sub>*Se*<sub>3</sub>. Результати фазового аналізу системи  $Y_2Se_3$ —*PbSe*—*In*<sub>2</sub>*Se*<sub>3</sub> при 870 К наведено на рис. 2. У цій системі існують чотири трифазні поля (10–13), дев'ять двофазних (1–9) та шість однофазових на основі компонентів системи на тернарних фаз.

*Ізотермічний переріз системи La*<sub>2</sub>Se<sub>3</sub>-*PbSe*-*In*<sub>2</sub>Se<sub>3</sub>. Результати фазового аналізу системи La<sub>2</sub>Se<sub>3</sub>-*PbSe*-*In*<sub>2</sub>Se<sub>3</sub> при 870 К наведено на рис. 3. У цій системі



 $<sup>13 -</sup> La_2PbSe_4 + PbIn_2Se_4 + PbSe$ 

існують чотири трифазні поля (10–13), дев'ять двофазних (1–9) та шість однофазних полів на основі бінарних та тернарних сполук.

Висновки. Побудовано ізотермічні перерізи діаграм стану систем Y(La)<sub>2</sub>Se<sub>3</sub>–PbSe–In<sub>2</sub>Se<sub>3</sub> при 870 К. У системі La<sub>2</sub>Se<sub>3</sub>–PbSe встановлено існування твердого розчину La<sub>2(1-x)</sub>Pb<sub>x</sub>Se<sub>3-x</sub> ( $0 \le x \le 0,5$ ), а в системі PbSe–In<sub>2</sub>Se<sub>3</sub> – твердого розчину на основі PbIn<sub>2</sub>Se<sub>4</sub> (PbIn<sub>2</sub>Se<sub>4</sub>–Pb<sub>7,12</sub>In<sub>18,88</sub>Se<sub>34</sub>). Встановлено також, що в досліджуваних системах тетрарні сполуки не утворюються.

## Література

- Eatough N. L., Webb A. W., Hall H. T. High-Pressure Th<sub>3</sub>P<sub>4</sub>-Type Polymorphs of Rare Earth Sesquiselenides // Inorg. Chem.– 1970.– Vol. 9.– P. 417–418.
- Folchnandt M., Schleid T. Single Crystals of C-La<sub>2</sub>Se<sub>3</sub>, C-Pr<sub>2</sub>Se<sub>3</sub>, and C-Gd<sub>2</sub>Se<sub>3</sub> with Cation-Deficient Th<sub>3</sub>P<sub>4</sub>-Type Structure // Z. Anorg. Allg. Chem.- 2001.- Vol. 627.-P. 1411-1413.
- 3. Noda Y., Masumoto K., Ohba S., Saito Y., Toriumi K., Iwata Y., Shibuya I. Temperature dependence of atomic thermal parameters of

lead chalcogenides PbS, PbSe and PbTe // Acta Cryst.- 1987.- C. 43.- P. 1443-1445.

- Marian A. N., Chopra K. L. Polymorphism in some IV–VI compounds induced by high pressure and twin-film epitaxial growth // Applied Physics Letters.– 1967.– Vol. 10.– P. 282–284.
- Chattopadhyay T., Schnering H. G., Grosshans W. A., Holzapfel W. B. High pressure X-ray diffraction study on the structural phase transitions in PbS, PbSe and PbTe with synchrotron radiation // Physica B and C.– 1986.– Vol. 139–140.– P. 356–360.
- Popović S., Tonejc A., Gržeta-Plenković B., Čelustka B., Trojko R. Revised and new crystal data for indium selenides // J. Appl. Cryst. 1979.– Vol. 12.– P. 416.
- Eliseev A. A., Kuzmichyeva G. M. Handbook on the physics and chemistry of rare earths. Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements.– Elsevier Science Publishers B. V.– 1990.– Vol. 13.– Ch. 89.– P. 191–281.
- Gulay L. D., Huch M. R., Olekseyuk I. D., Pietraszko A. Crystal structures of the R<sub>4</sub>In<sub>4,72</sub>Se<sub>13</sub> (R = La and Ce) compounds // Journal of Alloys and Compounds.–2007.– Vol. 429.– P. 216–220.
- Patrie M., Guittard M., Pardo M. P. № 655.– Systèmes L<sub>2</sub>X<sub>3</sub>–PbX (L = lantanides, X = S, Se, Te) // Bull. Soc. Chim. Fr.– 1969.– № 11.– P. 3832–3834.
- Shemet V. Ya., Gulay L. D., Olekseyuk I. D. Isothermal sections of the Y<sub>2</sub>Se<sub>3</sub>-Cu<sub>2</sub>Se-Sn(Pb)Se systems at 870 K and crystal structure of the Y<sub>4,2</sub>Pb<sub>0,7</sub>Se<sub>7</sub> compound // Polish J. Chem.- 2005.- Vol. 79.- P. 1315–1326.
- 11. Gulay L. D., Shemet V. Ya., Stepień-Damm J., Pietraszko A., Olekseyuk I. D. Crystal structure of the R<sub>6</sub>Pb<sub>2</sub>Se<sub>11</sub> (R = Y, Dy and Ho) compounds // J. Alloys Comp.– 2005.– Vol. 403.– P. 206–210.
- 12. Шелимова Л. Е., Томашик В. Н., Грыцив В. И. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Si, Ge, Sn, Pb).– М.: Наука, 1991.– 369 с.
- Eddike D., Ramdani A., Brun G., Liautard B., Tedenac J. C., Tillard M., Belin C. Crystal structure of Pb<sub>7,12</sub>In<sub>18,88</sub>Se<sub>34</sub> // European J. Solid State Inorg. Chem.– 1997.– Vol. 34.– P. 309–316.
- Tedenac J. C., Brun G., Liautard B., Marin-Ayral R. M., Haidoux A. Phase equilibria in multicomponent chalcogenides. Application of phase diagrams in semiconductor science // Powder Metall. Met. Ceram.– 1997.– Vol. 36.– P. 3–14.

Статтю подано до редколегії 30.09.2008 р.