УДК 548.736.5 + 546. 56.48.28.81.24

В. Р. Козер – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки; І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки; О. В. Парасюк – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Система In₂S₃–CdS

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Використовуючи методи диференційно-термічного та ренгенофазового аналізів, досліджено фазові рівноваги системи In_2S_3 —CdS. Підтвержено існування сполуки CdIn₂S₄, яка утворює HPTP із In₂S₃. Встановлено існування нової тернарної сполуки Cd₅In₂S₈ в інтервалі температур 1205–1390 К, яка має дві поліморфні модифікації.

Ключові слова: фазова діаграма, диференційний термічний аналіз, тернарна сполука, ренгенофазовий аналіз.

<u>Козер В. Р., Олексеюк И. Д. Парасюк О. В. Система In₂S₃–CdS.</u> Используючи методы дифференциально-термического та ренгенофазового анализов, иследовано фазовые равновесия системы In₂S₃–CdS. Подтверждено существование соединения CdIn₂S₄, которое образует HPTP с In₂S₃. Установлено существование нового тернарного соединения Cd₅In₂S₈ в интервале температур 1205–1390 К, имеющего две полиморфные модификации.

Ключевые слова: фазовая диаграмма, дифференциальный термический анализ, тернарное соединение, ренгенофазовый анализ.

<u>Kozer V. R., Olekseyuk I. D., Parasyuk O. V. The In_2S_3 -CdS System.</u> Using differential thermal and X-ray phase analysis methods, phase equilibria at the In_2S_3 -CdS system were investigated. The existence of a CdIn₂S₄ compound was confirmed that forms continuous solid solution series with In_2S_3 . The existence of a new ternary compound Cd₅In₂S₈ was established. It exists in a temperature range of 1205–1390 K and has two polymorphous modifications.

Key words: phase diagram, differential thermal analysis, ternary compound, X-ray phase analysis.

Постановка наукової проблеми та її значення. Система In_2S_3 —CdS досліджувалася в роботі [1] і характеризується необмеженою взаємною розчинністю в твердому стані між In_2S_3 та CdIn₂S₄ (рис. 1). Виявлено існування трьох тернарних сполук: CdIn₂S₄, Cd₂In₂S₅, Cd₈In₂S₁₁, з яких CdIn₂S₄ (CT MgAl₂O₄) утворються конгруентно при 1398 K, а Cd₈In₂S₁₁ та Cd₂In₂S₅ утворюються інконгруентно та розкладаються вище 1223 K та 1283 K відповідно. В інтервалі 50–100 % мол. CdS у рідкому стані відбувається розшарування рідини.

© Козер В. Р., Олексеюк І. Д., Парасюк О. В., 2008

In₂S₃ має три поліморфнв модифікації: α-In₂S₃ (до 693 К, ПГ I4₁/*amd*, a = 0,7623 нм, c = 3,2360 нм), β-In₂S₃ (693–1027 К, ПГ $Fd\bar{3}m$, a = 1,0774 нм), γ-In₂S₃ (1027–1363 К, ПГ $P\bar{3}m1$, a = 0,3806 нм, c = 0,9044 нм) [2]. CdS (ПГ $P6_{3}mc$, a = 0,41348 нм) [3]. In₂S₃ та CdS мають конгруентний тип плавлення. CdIn₂S₄ має конгруентний тип плавлення [1] та структуру типу шпінель (CT MgAl₂O₄) – ПГ Fd3m (a = 1,0843 нм) [4].

Матеріали і методи. Фазові рівноваги в системі In_2S_3 -СdS досліджували на 21 зразках. Компонування шихти проводили із високочистих металів та халькогену (Сu: 99,999 ваг. %; Cd: 99,9999 ваг. %; In: 99,99 ваг. %; S: 99,97 ваг. %). Синтез проводили однотемпературним методом у вакуумованих кварцових контейнерах в печі шахтного типу. Максимальна температура нагрівання становила 1473 К, при якій піч витримували 5 год. Відпалювання здійснювали при 870 К упродовж 250 год із наступним гартуванням у холодній воді. Рентгенодифракційні спектри відбиттів одержували на ренгенівському дифрактометрі ДРОН 4-13 із використанням СиК_{α}-випромінювання ($10 \le 2\theta \le 90$). Розрахунок дифрактограм здійснювали із застосуванням комплексу програм CSD [5]. Термічний аналіз проводили на дериватографі системи Раиlik-Рaulik-Erdey, контроль температури здійснювали платина-платинородієвою термопарою (Pt/PtRh).

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. У системі підтверджено існування сполуки $CdIn_2S_4$ та її конгруентний тип плавлення. $CdIn_2S_4$ кристалізується в структурі типу шпінель ПГ $Fd\bar{3}m$ (a = 1,08542(1) нм). Встановлено існування нової ендотермічної тернарної сполуки приблизного складу $Cd_5In_2S_8$, яка утворюється перитектично та має поліморфне перетворення при 1265 К. Температурний інтервал існування $Cd_5In_2S_8$ складає 1205–1390 К. Сполуки типу $B^{II}_5C^{III}_2X^{VI}_8$ не є винятком для систем $C^{III}_2X^{VI}_3$ – $B^{II}X^{VI}$. У літературі відома ендотермічна сполука $Cd_5Ga_2S_8$ (інтервал існування 1093–1238 К) [6], в системах HgSe–Ga₂Se₃ та HgSe–In₂Se₃ при температурах нижче 639 К відбувається впорядкування твердих розчинів складу Hg₅ $C^{III}_2Se_8$ [7]. Відомості про кристалічну структуру цих тетрарних сполук невідомі.

Існування сполук складу $Cd_8In_2S_{11}$ та $Cd_2In_2S_5$, про які згадувалося в роботі [1], у даній системі нами не підтверджено. Частину перерізу $CdS-CdIn_2S_4$ побудовано, виходячи з результатів РФА зразків, відпалених при 870 К, та ДТА (рис. 3). Поява горизонталі при 1265 К є наслідком поліморфного перетворення $Cd_5In_2S_8$.

Фазові рівноваги на перерізі In_2S_3 -CdS при 870 К містили такі фазові поля: твердий розчин на основі CdS (ПГ *P6₃mc*), твердий розчин із кубічною структурою на основі In_2S_3 та CdIn₂S₄ та двофазну область їх сумісного існування в інтервалі 52–100 мол. % CdS. В інтервалі 0–52 мол. % CdS сплави є однофазними і кристалізуються в кубічній структурі (ПГ *Fd3m*) (рис. 4).

Рис. 4. Дифрактограми сплавів системи In₂S₃–CdS, відпалених при 870 К (склади подано в мол. % CdS): 1 – 0; 2 – 25; 3 – 50; 4 – 60; 5 – 65; 6 – 70; 7 – 75; 8 – 80; 9 – 85; 10 – 90; 11 – 95; 12 – 100

Зміна параметрів елементарної комірки даного інтервалу є лінійною (рис. 5), зі збільшенням вмісту $CdIn_2S_4$ спостерігається лінійне збільшення періоду *a* та об'єму комірки кубічної структури.

Для CdIn₂S₄ запропоновано таке розташування атомів у кубічній ґратці: ПСТ 8*a* заповнена Cd, ПСТ 16*d* – In, ПСТ 32e - S (рис. 6). Заселеність кристалографічних позицій в обраховуваній моделі була повною.

Рис. 6. Розташування атомів у кубічній тратці CdIn₂S₄

Сульфур міститься в тетраедричному оточенні, Cd координаційна сфера – тетраедр, In – октаедр. Координати атомів та параметри теплового коливання атомів для CdIn₂S₄ подано в табл. 1.

Таблиця 1

Координати атомів та параметри теплового коливання атомів для CdIn₂S₄ та Cd_{0,2}In_{1,6} S_{2,6}

Атом	КГП	x	у	z	Заповнення КГП	$\begin{array}{c} \mathbf{B}_{i3o} \times 10^2\\ \mathbf{HM}^2 \end{array}$	ПЕК, нм	R_i	R_p			
CdIn ₂ S ₄												
Cd	8 <i>a</i>	1/8	1/8	1/8	1	0,63(7)	a = 1.08547(3)	4,08	8,44			
In	16 <i>d</i>	1/2	1/2	1/2	1	0,65(6)	u = 1,00347(3) V = 1.27895(6)					
S	32 <i>e</i>	0,2578(4)	х	x	1	0,77(9)	V = 1,27000(0)					
Cd	-4S	0,2526(4) нм	1	S	–Cd	0,2526(4) нм						
In	и −6S 0,2616(4) нм				-3In	0,2616(4) нм						
Сd _{0,2} In _{1,6} S _{2,6} (80 мол. % In ₂ S ₃ – 20 мол. % CdS)												
M1	8 <i>a</i>	1/8	1/8	1/8	0,4Cd+0,4In	1,04(8)	- 1.090(2/2)	6,33	11,87			
In	16 <i>d</i>	1/2	1/2	1/2	0,8	1,07(8)	a = 1,08003(3) V = 1.26193(4)					
S	32 <i>e</i>	0,2600(4)	x	x	0,85	1,02(2)	v = 1,20195(4)					
M1	-4S	0,2526(5) нм	1	S	-M1	0,2526(5) H	IM					
In	-6S	бS 0,2598(5) нм			-3In	0,2598(5) н	IM					

Для розрахунку твердого розчину $Cd_xIn_{(2-2x)}S_{(3-2x)}$, x = 0-0,5 використовували моделі на основі In_2S_3 та $CdIn_2S_4$. Модель для розрахунку твердого розчину $Cd_{0,2}In_{1,6}S_{2,6}$ (80 % мол. $In_2S_3 - 20$ % мол. CdS) подано у табл. 2.

Таблиця 2

	In_2S_3			$Cd_{0,2}In_{1,6}S_{2,6}$				$CdIn_2S_4$		
In	8a [1/8 1/8 1/8]	Т 0,66	$\longrightarrow _{Cd}^{In}$	8 <i>a</i> 1/8 1/8 1/8	т 0,4 0,4	.—	Cd	8a 1/8 1/8 1/8	Т 1	
In	16d	0,66	—• In	16 <i>d</i>	0,8	-	In	$\frac{16d}{t_2 t_2 t_2}$	1	
s	32e	0,75	s	32e	0,8	•	S	32e 1/4 1/4 1/4	5	

Модель розрахунку твердого розчину Cd_{0,4}In_{2,4}S₄

Експериментальну розраховану та різницеву дифрактограму $Cd_{0,2}In_{1,6}S_{2,6}$ (80 мол. % $In_2S_3 - 20$ мол. % CdS) подано на рис. 7. Координати атомів та параметри теплового коливання атомів для $Cd_{0,2}In_{1,6}S_{2,6}$ подано в табл. 1.

Рис. 7. Експериментальна, розрахована та різницева дифрактограма Cd_{0.2}In_{1.6}S_{2.6} при 870 К

Здатність утворення НРТР між В^{II}In₂S₄ та β -In₂S₃ характерна для більшості перерізів В^{II}S–In₂S₃ (В – Cd, Hg, Fe, Co, Ni, Cr, Mn). Усі сполуки складу В^{II}In₂S₄, як і In₂S₃, кристалізуються в структурному типі шпінелі. Здатність β -In₂S₃ утворювати НРТР характерно також і для іншого типу перерізу – A^I₂S–In₂S₃, (A^I – Ag, Cu). У цих системах НРТР реалізується між A^IIn₅S₈ та β -In₂S₃. В даному випадку A^IIn₅S₈ можна подати у вигляді BIn₂S₄, де B – (0,5A^I+0,5In), що є дещо спільним з типом сполук B^{II}In₂S₄.

Висновки. Методами ФХА побудовано діаграму стану системи In_2S_3 -CdS. Підтвержено існування необмеженої розчинності між In_2S_3 та $CdIn_2S_4$ та їх конгруентний тип плавлення. Встановлено існування тернарної сполуки $Cd_5In_2S_8$ зі сторони CdS. Сполука $Cd_5In_2S_8$ існує в обмеженому температурному інтервалі та має поліморфне перетворення при 1265 К.

Література

- 1. Томашик В. Н., Грыцив В. И. Диаграммы состояния систем на основе полупроводниковых соединений А^{II}В^{VI}.− К.: Наук. думка, 1982.− 168 с.
- 2. Diehl R., Nitsche R. Vapour and flux growth of γ -In₂S₃, a new modification of indium sesquisulphide // J. Cryst. Growth.– 1973.– Vol. 20.– P. 38–46.
- 3. Полупроводниковые халькогениды и сплавы на их основе / Н. Х. Абрикосов, В. Ф. Банкина, Л. В. Порецкая и др.– М.: Наука, 1975.– 219 с.
- Haeuseler H. X-ray investigations in the system CdIn₂S₄-CdIn₂Se₄ // J. Solid State Chem.- 1979.- Vol. 29.-P. 121-123.
- Akselrud L. G., Zavalij P. Yu., Grin' Yu. N., Pecharsky V. K., Baumgartner B., Wolfel E. CSD-Universal program package for single crystal or powder structure data treatment // Materials Science Forum.– 1993.– Vol. 133.– P. 335.
- 6. Olekseyuk I. D., Parasyuk O. V., Halka V. O. et al. Phase equilibria in the quasi-ternary system Ag₂S-CdS-Ga₂S₃ // J. Alloys Compds.- 2001.- Vol. 325.- P. 167-179.
- 7. Метлинский Н. Н., Тырзиу В. Г., Маркус М. М., Дерид О. П. Диаграмма состояния системы HgSe-Ga₂Se₃ // В сб.: Монокристаллы и техника.– Харьков, 1973.– № 1(8).– С. 52–56.

Статтю подано до редколегії 30.09.2008 р.

УДК 546.47'865:546.5

П. М. Милян – кандидат хімічних наук, старший науковий співробітник, завідувач лабораторії НДІ фізики і хімії твердого тіла Ужгородського національного університету;
О. О. Семрад – кандидат хімічних наук, доцент кафедри неорганічної хімії Ужгородського національного університету;
В. І. Сідей – кандидат хімічних наук, старший науковий співробітник НДІ фізики і хімії твердого тіла Ужгородського національного університету;

А. М. Соломон – кандидат фізико-математичних наук, старший науковий співробітник Інституту електронної фізики НАНУ

Фазові рівноваги в системі ZnO-Sb₂O₅

Роботу виконано на кафедрі неорганічної хімії та лабораторії НДІ фізики і хімії твердого тіла УжНУ

Методом твердофазної реакції одержано сплави системи ZnO-Sb₂O₅. За результатами рентгенофазового та хімічного аналізів проведено їх ідентифікацію. Доведено існування двох тернарних сполук ZnSb₂O₆ та Zn₇Sb₂O₁₂. Вивчено деякі фізико-хімічні властивості та побудовано структурні моделі для цих сполук.

Ключові слова: рентгенофазовий аналіз, тернарна сполука, властивості.

<u>Милян II. М., Семрад Е. Е., Сидей В. И., Соломон А. М. Фазовые равновесия в системе ZnO–Sb₂O₅.</u> Методом твердофазной реакции получены сплавы системы ZnO–Sb₂O₅. По результатам рентгенофазового и химического анализов проведена их идентификация. Доказано существование двух тернарних соединений ZnSb₂O₆ и Zn₇Sb₂O₁₂. Изучены некоторые физико-химические свойства и построены структурные модели для этих соединений.

Ключевые слова: рентгенофазовий анализ, тернарное соединение, свойства.

<u>Milyan P. M., Semrad E. E., Sidey V. I., Solomon A. M. Phase Equilibria in the $ZnO-Sb_2O_5$ System.</u> The series of samples of the $ZnO-Sb_2O_5$ quasibinary system have been synthesized by solid-state reactions and characterized by using X-ray powder diffraction techniques (XRD) and chemical analysis. Two intermediate ternary

[©] Милян П. М., Семрад О. О., Сідей В. І., Соломон А. М., 2008