УДК 546.65: 549.252

 Л. Д. Гулай – доктор хімічних наук, завідувач кафедри екології та охорони навколишнього середовища
Волинського національного університету імені Лесі Українки;
О. І. Гулай – кандидат технічних наук, завідувач кафедри

хімії Луцького національного технічного університету

Дослідження систем Gd-Fe-Pb, Y-Co-Pb, Sm-Co-Pb і Gd-Co-Pb при 870 (670) К

Роботу виконано у ЛНУ ім. І. Франка

Рентгенівським методом порошку побудовано ізотермічні перерізи діаграм стану систем Gd–Fe–Pb, Y–Co–Pb, Sm–Co–Pb і Gd–Co–Pb при 870 (670) К. У досліджених системах підтверджено наявність тернарних сполук $Y_{12}Co_6Pb$, $Y_6Co_{2,23}Pb_{0,57}$, Sm₁₂Co₆Pb, Gd₁₂Co₆Pb і Gd₆Co_{2,37}Pb_{0,56} та виявлено існування нових тернарних сполук Gd₅FePb₃, R₅CoPb₃ (R = Y, Sm, Gd) (структурний тип Hf₅CuSn₃, просторова група P6₃/mcm).

Ключові слова: інтерметаліди, сполуки РЗМ, сполуки Рb, ізотермічний переріз, кристалічна структура, рентгенівський метод порошку.

<u>Гулай Л. Д., Гулай О. И. Исследование систем Gd–Fe–Pb, Y–Co–Pb, Sm–Co–Pb и Gd–Co–Pb при 870</u> (670) <u>К.</u> Рентгеновским методом порошка построены изотермические сечения диаграм состояния систем Gd–Fe–Pb, Y–Co–Pb, Sm–Co–Pb и Gd–Co–Pb при 870 (670) К. В исследованных системах подтверждено существование тройных соединений $Y_{12}Co_6Pb$, $Y_6Co_{2,23}Pb_{0,57}$, Sm₁₂Co₆Pb, Gd₁₂Co₆Pb и Gd₆Co_{2,37}Pb_{0,56}, а также установлено существование нових тройных соединений Gd₅FePb₃, R₅CoPb₃ (R = Y, Sm, Gd) (структурный тип Hf₅CuSn₃, пространственная группа $P6_3/mcm$).

Ключевые слова: интерметаллиды, соединения РЗМ, соединения Рb, изотермическое сечение, кристаллическая структура, рентгеновский метод порошка.

<u>Gulay L. D., Gulay O. I. Investigation of the Gd–Fe–Pb, Y–Co–Pb, Sm–Co–Pb and Gd–Co–Pb systems at</u> <u>870 (670) K.</u> The isothermal sections of the Gd-Fe-Pb, Y-Co-Pb, Sm-Co-Pb and Gd-Co-Pb systems at 870 (670) K were constructed. The existence of the ternary $Y_{12}Co_6Pb$, $Y_6Co_{2,23}Pb_{0,57}$, $Sm_{12}Co_6Pb$, $Gd_{12}Co_6Pb$ and $Gd_6Co_{2,37}Pb_{0,56}$ compounds in the investigated systems was confirmed. Additionally the formation of new ternary Gd ₅FePb₃, R₅CoPb₃ (R = Y, Sm, Gd) compounds (Hf₅CuSn₃ structure type, space group $P6_3/mcm$) was established.

Key words: intermetallic compounds, Rare Earth compounds, Pb compounds, isothermal section, crystal structure, X-ray powder diffraction.

Постановка наукової проблеми та її значення. Одержання більш складних сполук, таких як тернарні, тетрарні, стало основним напрямом в сучасному матеріалознавстві. Серед багатокомпонентних систем важливе місце належить складним інтерметалідам рідкісноземельних металів, які володіють різноманітними фізичними властивостями. Інтерметалічні сполуки рідкісноземельних металів є складовою частиною металічних матеріалів з цікавими магнітними й електричними властивостями, тому їх інтенсивно досліджують, щоб використати для постійних магнітів, важкоферміонних сполук тощо.

Аналіз останніх досліджень із цієї проблеми. Кристалічні структури сполук R₁₂Co₆Pb і R₆Co_{2,23}Pb_{0,57} (R – P3M) досліджено в роботах [1; 2]. Жодної діаграми стану потрійної системи P3M – Fe (Co) – Pb не побудовано.

Мета й завдання дослідження – побудувати ізотермічні перерізи діаграм стану систем Gd–Fe–Pb, Y–Co–Pb, Sm–Co–Pb і Gd–Co–Pb при 870 (670) К, дослідити кристалічні структури нових сполук, що утворюються в цих системах.

Матеріали й методи дослідження. Синтез зразків проводився за допомогою електродугової плавки. Шихта масою 1,0 г сплавлялась в електродуговій печі з мідним водоохолоджуваним подом і невикористовуваним вольфрамовим електродом в атмосфері очищеного аргону під тиском 0.5×10^5 Па. Контроль складу сплавів проводився шляхом порівняння маси зразка після виплавлення з масою шихти, причому різниця повинна бути не більше 1–2 %. В іншому випадку сплав виготовлявся заново. Сплави досліджувалися в гомогенізованому стані, який полягав у відпалі у вакуумованих до залишкового тиску $1 \cdot 10^{-3}$ Па кварцевих ампулах при 870 К (670 К) протягом 720 годин у муфельних печах типу СНОЛ-1,6.2. Точність контролю температури становила 5 К. Сплави загартовувалися у холодній воді без попереднього розбивання ампул.

© Гулай Л. Д., Гулай О. І., 2010

Для побудови ізотермічних перерізів діаграм стану систем використовувався рентгенівський фазовий аналіз. Дифрактограми одержували за допомогою дифрактометрів ДРОН-2.0 (FeK_{α}-випромінювання, Si-внутрішній еталон), Siemens D5000 (CuK_{α}-випромінювання, зйомка по точках, 10°≤2Θ≤120°, крок зйомки 0,02°, час відліку в точці – 25 с). Періоди комірок уточнювалися за даними дифрактограм (кути 2*Q*, індекси *hkl*) за допомогою методу найменших квадратів (комплекс програм CSD [3]).

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження.

Система Gd-Fe-Pb

За результатами рентгенівського аналізу частково побудовано ізотермічний переріз діаграми стану системи Gd–Fe–Pb (рис. 1). У дослідженій області виявлено наявність сполуки Gd₅FePb₃, яка кристалізується в структурному типі Hf₅CuSn₃ (просторова група $P6_3/mcm$, a = 0,9093(2) нм, c = 0,6639(2) нм).

Рис. 1. Ізотермічний переріз діаграми стану системи Gd-Fe-Pb при 870 К

Система Ү-Со-Рь

Діаграму стану системи Y–Co–Pb досліджено частково (рис. 2). У дослідженій частині діаграми підтверджено існування сполук $Y_{12}Co_6Pb$ і $Y_6Co_{2,23}Pb_{0,57}$, а також встановлено існування і досліджено кристалічну структуру сполуки Y_5CoPb_3 (структурний тип Hf₅CuSn₃, просторова група $P6_3/mcm$, a = 0.8983(2) нм, c = 0.6627(2) нм).

Рис. 2. Ізотермічний переріз діаграми стану системи Ү-Со-Рь при 870 К

16

Система Sm-Co-Pb

Діаграму стану системи Sm–Co–Pb досліджено частково (рис. 3). У дослідженій частині діаграми підтверджено існування сполуки Sm₁₂Co₆Pb і встановлено існування та досліджено кристалічну структуру сполуки Sm₅CoPb₃ (структурний тип Hf₅CuSn₃, просторова група $P6_3/mcm$, a = 0,9171(2) нм, c = 0,6701(2) нм).

Рис. 3. Ізотермічний переріз діаграми стану системи Sm-Co-Pb при 670 К

Система Gd-Co-Pb

Діаграму стану системи Gd–Co–Pb досліджено частково (рис. 4). У дослідженій частині діаграми підтверджено існування сполук Gd₁₂Co₆Pb і Gd₆Co_{2,37}Pb_{0,56}, а також встановлено існування та досліджено кристалічну структуру сполуки Gd₅CoPb₃ (структурний тип Hf₅CuSn₃, просторова група $P6_3/mcm$, a = 0.9093(2) нм, c = 0.6635(2) нм).

Рис. 4. Ізотермічний переріз діаграми стану системи Gd-Co-Pb при 870 К

У структурі сполук R_5MPb_3 (структурний тип Hf_5CuSn_3 , просторова група $P6_3/mcm$) атоми R2 і M формують сітки 3⁶, атоми R1 і Pb – деформовані сітки 6³ (рис. 5). Сітки двох типів чергуються між собою вздовж напряму Z.

Рис. 5. Сітки 3^6 атомів R2 і M та сітки 6^3 атомів R1 і Pb у структурі сполук R_5MPb_3

Кристалічну структуру сполук R_5MPb_3 (структурний тип Hf_5CuSn_3 , просторова група $P6_3$ /mcm) можна отримати зі структури сполук R_5Pb_3 (структурний тип Mn_5Si_3 , просторова група $P6_3$ /mcm) шляхом заповнення атомами M октаедричних пустот останніх. Укладка центрованих атомами R2 деформованих гексагональних призм [R2R1₆Pb₆], центрованих атомами M октаедрів [MR1₆] чи незаповнених октаедрів [$\Box R1_6$] в структурах сполук R_5Pb_3 та R_5MPb_3 , зображена на рисунку 6.

Рис. 6. Укладка центрованих атомами R2 деформованих гексагональних призм $[R2R1_6Pb_6]$, центрованих атомами M октаедрів $[MR1_6]$ чи незаповнених октаедрів $[\Box R1_6]$ в структурах сполук R_5Pb_3 та R_5MPb_3

Висновки й перспективи подальших досліджень. У роботі вивчено системи Gd–Fe–Pb, Y–Co–Pb, Sm–Co–Pb і Gd–Co–Pb при 870 (670) К. Підтверджено існування тернарних сполук $Y_{12}Co_6Pb$, $Y_6Co_{2,23}Pb_{0,57}$, $Sm_{12}Co_6Pb$, $Gd_{12}Co_6Pb$ і $Gd_6Co_{2,37}Pb_{0,56}$ та виявлено існування нових тернарних сполук Gd_5FePb_3 , R_5CoPb_3 (R = Y, Sm, Gd).

Подальші дослідження стосуватимуться вивчення фізичних властивостей отриманих сполук.

Література

- Crystal structure of R₁₂Ni₆Pb (R = Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Ho) and R₁₂Co₆Pb (R = Y, La, Pr, Nd, Sm, Gd) compounds / [L. D. Gulay, Ya. M. Kalychak, M. Wołcyrz, K. Łukaszewicz] // J. Alloys Compd. 2000. Vol. 311. P. 238–240.
- 1. Gulay L. D. Crystal structure of $R_6Co_{2+x}Pb_{1-y}$ (R = Y, Gd, Tb, Dy, Ho, Er, Tm, Lu) and $R_6Ni_{2+x}Pb_{1-y}$ (R = Tb, Dy, Ho, Er, Tm, Lu) compounds / L. D. Gulay, M. Wołcyrz // J. Alloys Compd. 2001. Vol. 315. P. 164–168.
- CSD-Universal program packade for single crystal or powder strucutre data treatment / L. G. Aksel'rud, Yu. N. Grin', P. Yu. Zavalij et al. // 12th European Crystallographic Meetting, August 20–29, 1989: Collected Abstracts. Moscow, 1989. Vol. 3. P. 155.

Статтю подано до редколегії 29.09.2010 р.

18