УДК 748.736.4

М. Ф. Федина – кандидат хімічних наук, доцент кафедри хімії Національного лісотехнічного університету України; А. О. Федорчук – доктор хімічних наук, професор, завідувач кафедри неорганічної та органічної хімії Львівського національного університету ветеринарної медицини та біотехнологій імені С. З. Гжицького; Л. О. Федина – кандидат хімічних наук, доцент Львівського інституту економіки і туризму

Нові сполуки зі структурою типу Gd₆Cu₈Ge₈

Роботу виконано на кафедрі неорганічної та органічної хімії ЛНУВМБТ ім. С. З. Гжицького

Вперше синтезовано й досліджено рентгенівським дифракційним методом порошку (Huber G670 Imaging Plate Guinier camera, Cu *Ka*₁-випромінювання) кристалічну структуру тетрарної та пентарної фаз Tm₂Sc₄Cu₈Ge₈ i Tm₂Sc₄Cu₈Ge₄Si₄ (структурний тип Gd₆Cu₈Ge₈, символ Пірсона *ol*22, просторова група *Immm*, *a* = 13,4578(2), *b* = 6,56523(7), *c* = 4,04565(4) Å, *V* = 357,45(1) Å³, *R*₁ = 0,0503, *R*_P = 0,0989 для Tm₂Sc₄Cu₈Ge₈; *a* = 13,3404(1), *b* = 6,50470(6), *c* = 4,01382(4) Å, *V* = 348,30(1) Å³, *R*₁ = 0,0622, *R*_P = 0,1066 для Tm₂Sc₄Cu₈Ge₄Si₄). Проаналізовано розділення позицій атомів R- і X-компонентів у структурі досліджених сполук.

Ключові слова: Тулій, Скандій, Купрум, Германій, Силіцій, рентгенівський метод порошку, кристалічна структура.

Федына М. Ф., Федорчук А. А., Федына Л. А. Новые соединения со структурой типа $Gd_6Cu_8Ge_8$. Рентгеновским дифракционным методом порошка (Huber G670 Imaging Plate Guinier camera, Cu K α_1 -излучение) изучена кристаллическая структура впервые синтезированных новых соединений Tm₂Sc₄Cu₈Ge₈ и Tm₂Sc₄Cu₈Ge₄Si₄ (структурний тип Gd₆Cu₈Ge₈, символ Пирсона oI22, пространственная группа Immm, a = 13,4578(2), b = 6,56523(7), c = 4,04565(4) Å, V = 357,45(1) Å³, $R_I = 0,0503$, $R_P = 0,0989$ для Tm₂Sc₄Cu₈Ge₈; a = 13,3404(1), b = 6,50470(6), c = 4,01382(4) Å, V = 348,30(1) Å³, $R_I = 0,0622$, $R_P = 0,1066$ для Tm₂Sc₄Cu₈Ge₄Si₄). Проанализировано разделение позиций атомов R- и X-компонентов в структуре исследованных соединений.

Ключевые слова: тулий, скандий, медь, германий, кремний, рентгеновский метод порошка, кристаллическая структура.

Fedyna M. F., Fedorchuk A. O., Fedyna L. O. New Compounds of the Structure Type Gd₆Cu₈Ge₈. The crystal structures of new quaternary and pentaternary compounds Tm $_2Sc_4Cu_8Ge_8$ and Tm $_2Sc_4Cu_8Ge_4Si_4$ were determined by X-ray powder diffraction (Huber G670 Imaging Plate Guinier camera, Cu *Ka*₁-radiation): structure type Gd₆Cu₈Ge₈, space group *Immm*, Pearson symbol *oI*22, *a* = 13,4578(2), *b* = 6,56523(7), *c* = 4,04565(4) Å, *V* = 357,45(1) Å³, $R_1 = 0,0503$, $R_P = 0,0989$ for Tm $_2Sc_4Cu_8Ge_8$; *a* = 13,3404(1), *b* = 6,50470(6), *c* = 4,01382(4) Å, *V* = 348,30(1) Å³, $R_1 = 0,0622$, $R_P = 0,1066$ for Tm $_2Sc_4Cu_8Ge_4Si_4$. Separation of the positions of atoms R- and X-components in the structure of investigated compounds was analyzed.

Key words: thulium, scandium, copper, germanium, silicon, X-ray powder diffraction, crystal structure.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Серед структурних типів (СТ), які найчастіше реалізуються серед тернарних германідів, силіцидів та станідів Купруму (табл. 1), поряд із структурами типу CeGa₂Al₂ та AlB₂ трапляється CT Gd₆Cu₈Ge₈ (символ Пірсона *ol*22, просторова група *Immm*) [23]. Особливістю цього типу є два різних положення правильних систем точок, які зайняті атомами R- та X-компонента, відповідно: 2d (0 ½ 0) і 4e (x 0 0) та 4f (x $\frac{1}{2}$ 0) і 4h (0 x $\frac{1}{2}$). Кристалографічно незалежні положення для атомів рідкісноземельних металів з найменшою відносною електронегативністю, крім цього, виділяються і різним найближчим координаційним оточенням (НКО): пентагонально-призматичним для 2d та гексагонально-призматичним для 4e (рис. 1). Тому актуально було б одержати тетрарні сполуки з двома різними РЗМ та пентарні – із різними р-елементами. Гексагональні призми доволі часто можна виділити для сполук систем R-Cu-{Si, Ge, Sn}, тоді як пентагонально-призматичне оточення атомів з найменшою відносною електронегативністю знайдено серед відомих тернарних силіцидів та германідів Купруму еквіатомного складу для атомів Скандію [2-4]. Раніше нами синтезовано тетрарну фазу складу Tm₂Sc₄Cu₈Si₈, однак при дослідженні її кристалічної структури рентгенівським методом порошку встановлено лише часткове упорядкування атомів R-компонента [7]. Кристалічна структура вихідного тернарного германіду детально вивчена нами як методом порошку [24], так і монокристалу [5].

Таблиця 1

72

[©] Федина М. Ф., Федорчук А. О., Федина Л. О., 2011

Склад	Sc	La	Ce	Pr	Nd	Sm	Eu	Y	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
$R_6Cu_8Si_8$	+	-	-	+	-	-	-	+	+	+	+	+	+	+	+	+
$R_6Cu_8Ge_8$	+	-	+	+	+	+	—	+	+	+	+	+	+	+	+	+
$R_6Cu_8Sn_8$	-	_	+	+	+	+	_	+	+	+	+	+	+	+	_	—

Реалізація структурного типу Gd₆Cu₈Ge₈ серед тернарних сполук систем R–Cu–{Si, Ge, Sn} (R = Sc, Y, P3M) [3; 4; 11–13; 15–23; 26]

Рис. 1. Найближче координаційне оточення для атомів із найменшою електронегативністю та просторове укладання многогранників у структурі сполуки Tm₂Sc₄Cu₈Ge₄Si₄

Нашою метою був синтез тетрарної фази складу $Tm_2Sc_4Cu_8Ge_8$ і вивчення її кристалічної структури для перевірки можливості утворення інтерметаліду з упорядкованим розташуванням атомів із найменшим значенням електронегативності (Tm i Sc) та пентарної – $Tm_2Sc_4Cu_8Ge_4Si_4$ з можливим розділенням кристалографічних положень як 2*d* і 4*e*, так і 4*f* та 4*h*, між атомами *R*- та *X*-компонента, відповідно.

Матеріали і методи. Сплави масою 1 г виготовлено в електродуговій печі з вольфрамовим невитрачуваним електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону з металів високої чистоти: тулію ТуМ-1 (99,82 мас. % Тт), скандію СкМ-1 (99,50 мас. % Sc), міді МОК (99,99 мас. % Си), полікристалічного германію (99,99 мас. % Ge) і кремнію (99,99 мас. % Si). Як гетер використано губчастий титан. Зразки гомогенізовано при 870 К протягом 900 год у вакуумованих кварцових ампулах з подальшим гартуванням у холодній воді.

Кристалічну структуру синтезованих сполук досліджено рентгенівським методом полікристала за масивами дифракційних даних зразків складу Tm₉Sc₁₈Cu₃₆Ge₃₇ та Tm₉Sc₁₈Cu₃₆Ge₁₉Si₁₈, одержаних на дифрактометрі Guinier Huber G 670 за методом Гіньє на проходження (випромінювання CuKα₁). Профільні і структурні параметри уточнено методом Рітвельда – порівнянням теоретично розрахованих профілів дифрактограм з експериментальними. Усі розрахунки проведено з використанням комплексу програм WinCSD [12].

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Експериментальні, розраховані та різницеві дифрактограми однофазних зразків Tm₉Sc₁₈Cu₃₆Ge₃₇ та Tm₉Sc₁₈Cu₃₆Ge₁₉Si₁₈ представлено на рисунку 2. Умови одержання масивів дифракційних даних та результати уточнення структур сполук наведено в таблиці 2. Координати та ізотропні параметри коливання атомів – у таблиці 3.

Таблиця 2

Умови проведення експерименту та результати уточнення структури сполук Tm₂Sc₄Cu₈Ge₈ i Tm₂Sc₄Cu₈Ge₄Si₄

Склад зразка	$Tm_9Sc_{18}Cu_{36}Ge_{37}$	$Tm_9Sc_{18}Cu_{36}Ge_{19}Si_{18}$
Склад сполуки	$Tm_2Sc_4Cu_8Ge_8$	$Tm_2Sc_4Cu_8Ge_4Si_4$
Символ Пірсона		oI22
Просторова група	In	nmm

73

Науковий вісник Волинського національного університету імені Лесі Українки

Кількість формульних одиниць, Z	4			
Параметри комірки: а, Å	13,4578(2)	13,3404(1)		
<i>b</i> , Å	6,56523(7)	6,50470(6)		
<i>c</i> , Å	4,04565(4)	4,01382(4)		
Об'єм комірки V, Å ³	357,45(1)	348,30(1)		
Розрахована густина, г/см ³	7,4650(3)	6,8723(2)		
Інтервал 2 <i>θ</i> , °	5-	-100		
Експозиція, хв	6	× 15		
Програма для уточнення	WinCSD			
Фактори достовірності: <i>R</i> _I	0,0503	0,0622		
R _P	0,0989	0,1066		

Таблиця 3

Координати, коефіцієнти заповнення позицій та ізотропні параметри коливання атомів у структурі сполук Tm₂Sc₄Cu₈Ge₈ і Tm₂Sc₄Cu₈Ge₄Si₄

Атом	ПСТ	x	у	z	$B_{\rm iso}, {\rm \AA}^2$		
$Tm_2Sc_4Cu_8Ge_8*$							
R1	2d	0	1/2	0	0,37(4)		
R2	4e	0,12806(8)	0	0	0,41(3)		
Cu	8 <i>n</i>	0,32861(7)	0,1945(1)	0	0,82(3)		
Ge1	4f	0,21687(8)	1/2	0	0,80(3)		
Ge2	4h	0	0,1918(2)	1/2	0,47(3)		
$Tm_2Sc_4Cu_8Ge_4Si_4**$							
R'1	2d	0	1/2	0	0,59(4)		
R'2	4 <i>e</i>	0,12792(7)	0	0	0,33(3)		
Cu	8 <i>n</i>	0,32903(7)	0,1913(1)	0	0,85(3)		
X1	4f	0,2175(1)	1/2	0	0,69(5)		
X2	4h	0	0,1921(2)	1/2	0,69(4)		

Рис. 2. Експериментальні (точки), розраховані (суцільні лінії) та різницеві (суцільні лінії внизу рисунків) дифрактограми зразків Tm₉Sc₁₈Cu₃₆Ge₃₇ та Tm₉Sc₁₈Cu₃₆Ge₁₉Si₁₈. Вертикальні риски вказують положення відбиття hkl сполук Tm₂Sc₄Cu₈Ge₈ i Tm₂Sc₄Cu₈Ge₄Si₄

Уточнення кристалічної структури сполук підтвердило приналежність їх до структурного типу $Gd_6Cu_8Ge_8$, однак очікуваного упорядкування атомів Tm i Sc не виявлено. Як i у випадку раніше дослідженої фази $Tm_2Sc_4Cu_8Si_8$ [7], обидві правильні системи точок – 2d i 4e – зайняті статистичними сумішами атомів Тулію та Скандію і склад статистичної суміші є різним для обох положень. Правильна система точок 2d зайнята атомами Tm i Sc у співвідношенні ~1:1, тоді як 4e – у співвідношенні ~1:3. Отже, у структурах як тетрарної, так і пентарної фаз простежується лише часткове упорядкування атомів. Кореляція такого упорядкування вказує, що воно є оптимальним для Скандію і Тулію у випадку структурного типу $Gd_6Cu_8Ge_8$, незалежно від Х-компонента (Si чи Ge).

Для пентарної фази $Tm_2Sc_4Cu_8Ge_4Si_4$ виявлено нами тільки часткове упорядкування і для положень правильної системи точок X-компонента: 4*f* зайнято статистичною сумішшю атомів Силіцію і Германію у співвідношенні ~3:2, тоді як 4*h* – 2:3 (табл. 3).

Таблиця 4

Among	d, Å	Among	d, Å	ГП	
Атоми	Tm ₂ Sc ₄ Cu ₈ Ge ₈	Атоми	Tm ₂ Sc ₄ Cu ₈ Ge ₄ Si ₄		
<i>R</i> 14 Ge2	2,8610(7)	<i>R</i> 14 X2	2,8351(9)		
- 2 Ge1	2,919(1)	- 2 X1	2,901(2)		
- 8 Cu	3,3231(7)	- 8 Cu	3,2830(7)	20	
-4 R2	3,7075(5)	-4 R2	3,6728(5)		
-2 R1	4,0457(1)	-2 R1	4,0138(1)		
R22 Ge1	2,906(1)	R24 Cu	2,8967(6)		
- 4 Cu	2,9076(7)	- 2 X1	2,878(1)		
- 4 Ge2	2,9407(8)	-4 X2	2,9157(8)		
- 2 Cu	2,986(1)	- 2 Cu	2,957(1)	10	
- 2 Ge1	3,4934(6)	- 2 X1	3,4648(6)	19	
-1 R2	3,447(2)	-1 R2	3,413(1)		
-2 R1	3,7075(1)	-2 R1	3,6728(5)		
-2 R2	4,0457(1)	-2 R2	4,0138(1)		
Cu 1 Ge2	2,424(1)	Cu 1 X2	2,404(1)		
- 2 Ge1	2,4693(6)	- 2 X1	2,4413(6)		
- 1 Cu	2,554(1)	- 1 Cu	2,488(1)		
- 1 Ge1	2,507(1)	- 1 X1	2,500(1)	12	
-2 R2	2,9076(7)	-2 R2	2,8967(6)	12	
-1 R2	2,986(1)	-1 R2	2,957(1)		
- 2 Cu	3,016(1)	- 2 Cu	3,009 (1)		
-2 R1	3,3231(7)	-2 R1	3,2830(7)		
Ge1 – – 4 Cu	2,4693(6)	X1 – – 4 Cu	2,4413(6)		
- 2 Cu	2,507(1)	- 2 Cu	2,500(1)	0	
-1 R1	2,919(1)	-1 R1	2,8351(9)	7	
$-2 R^2$	2,906(1)	-2 R2	2,9157(8)		
Ge^22Cu	2,424(1)	X22Cu	2,404(1)		
- 1 Ge2	2,519(1)	- 1 X2	2,500(2)	0	
-2 R1	2,8610(7)	-2 R1	2,8351(9)	7	
-4 R2	2,9407(8)	-4 R2	2,9157(8)		

Міжатомні віддалі *d* та координаційні числа атомів у структурі сполук Tm₂Sc₄Cu₈Ge₈ і Tm₂Sc₄Cu₈Ge₄Si₄

У структурі пентарної фази спостерігається ущільнення віддалей між атомами меншого розміру, розміщення скорочених зв'язків представлено на рисунку 3.

Рис. 3. Скорочення окремих зв'язків між атомами меншого розміру у структурі сполуки Tm₂Sc₄Cu₈Ge₄Si₄

Висновки. Вперше синтезовано й досліджено рентгенівським дифракційним методом порошку кристалічну структуру тетрарної та пентарної фаз $Tm_2Sc_4Cu_8Ge_8$ і $Tm_2Sc_4Cu_8Ge_4Si_4$. Встановлено, що вони належать до структурного типу $Gd_6Cu_8Ge_8$.

Автори висловлюють подяку дирекції Інституту Макса Планка хімічної фізики твердих тіл (Max Planck Institute for Chemical Physics of Solids) (м. Дрезден, Німеччина) за допомогу в проведенні частини експериментальних досліджень.

Список використаної літератури

- 1. Бодак О. Ізотермічний переріз системи Тb-Cu-Si при 870 К / [О. Бодак, Л. Чорнобривець, Д. Березюк] // Вісн. Львів. ун-ту. Сер. хім. 2006. Вип. 47. С. 7-11.
- Котур Б. Я. Кристаллохимия тройных силицидов скандия и переходных металлов IV периода / [Б. Я. Котур, О. И. Бодак] // Неорган. материалы. – 1980. – Т. 16. – С. 459–463.
- 3. Котур Б. Я. Система скандій-мідь-кремній / [Б. Я. Котур, Н. З. Литвинко, О. І. Бодак] // Доп. Акад. наук УРСР. Сер. Б. 1985. Т. 1. С. 34–36.
- 4. Котур Б. Я. Система скандий-медь-германий / [Б. Я. Котур, Р. И. Андрусяк] // Вестн. Львов. ун-та. Сер. хим. 1984. Вып. 25. С. 35–37.
- 5. Кристалічна структура сполуки Tm₆Cu₈Ge₈ / [М. Ф. Федина, А. О. Федорчук, Л. О. Федина, Я. О. Токайчук] // Вісн. нац. ун-ту «Львівська політехніка». Сер. «Хімія, технологія речовин та їх застосування». – 2008. – № 609. – С. 70–74.
- Кристалічна структура сполук R₆Cu₈Ge₈ (R = Sm, Dy) / [Л. Федина, О. Бодак, А. Федорчук та ін.] // Вісн. Львів. ун-ту. Сер. хім. – 2005. – Вип. 46. – С. 80–85.
- 7. Кристалічна структура сполук Tm₆Cu₈Si₈, Sc₆Cu₈Si₈ та Tm₂Sc₄Cu₈Si₈ / [М. Ф. Федина, Л. О. Федина, А. О. Федорчук, Я. О. Токайчук] // Вісн. Львів. ун-ту. Сер. хім. 2011. Вип. 52. С. 92–99.
- 8. Нові представники структурного типу Gd₆Cu₈Ge₈ в системах R-{Fe, Cu}-Ge / [М. Ф. Федина, О. Я. Олексин, Н. С. Білоніжко, О. В. Гуляк] // Вісн. Львів. ун-ту. Сер. хім. 1994. Вип. 33. С. 53–54.
- 9. Сколоздра Р. В. Кристаллическая структура и магнитные свойства соединений R₆Cu₈Sn₈ (R = Gd, Tb, Dy, Ho, Er, Tm) / [P. В. Сколоздра, Л. П. Комаровская, Л. Г. Аксельруд] // Укр. физ. журн. 1984. Т. 29, № 9. С. 1395–1398.
- 10. Чорнобривець Л. Д. Кристалічна структура сполуки Y₆Cu₈Si₈ / [Л. Д. Чорнобривець] // Вісн. Львів. ун-ту. Сер. хім. 1994. Вип. 33. С. 57–59.
- 11. Чорнобривець Л. Система Gd-Cu-Si / [Л. Чорнобривець, О. Бодак, Д. Березюк] // Вісн. Львів. ун-ту. Сер. хім. 2001. Вип. 40. С. 44-47.
- 12. CSD universal program package for single crystal or powder structure data treatment / [L. G. Akselrud, Yu. M. Grin, V. K. Pecharsky et al.] // Coll. Abstr. 12th Europ. Crystallogr. Meeting (Moskow, August 20 – 29, 1989). – 1989. – Vol. 3. – P. 155.
- Gondek L. Complex magnetic properties of Ho₃Cu₄Sn₄ / [L. Gondek, A. Szytula, D. Kaczorowski et al.] // Intermetallics. – 2007. – Vol. 15. – P. 583–592.
- Hanel G. Silicide und Germanide mit Gd₆Cu₈Ge₈-Struktur / [G. Hanel, H. Nowotny] // Monatsh. Chem. 1970. – Bd. 101. – S. 463–468.
- 15. Magnetic ordering in Er₃Cu₄X₄ (X = Si, Ge, Sn) / [D. H. Ryan, J. M. Cadogan, R. Gagnon, I. P. Swainson] // J. Phys.: Condens. Matter. – 2004. – Vol. 16. – P. 3183–3198.
- 16. Magnetic properties of R₃Cu₄Sn₄ (R= Ce, Gd and Y) / [S. Singh, S. K. Dhar, P. Manfrinetti, A. Palenzona] // J. Alloys Comp. – 2000. – Vol. 298. – P. 68–72.
- 17. Magnetic structure of $R_3Cu_4Si_4$ (R = Dy, Ho and Er) / [E. Wawrzynska, J. Hernandez Velasco, B. Penc, A. Szytula] // J. Magn. Magn. Mater. 2004. Vol. 280. P. 234–242.
- Magnetic structure of Tb₃Cu₄Si₄ / [E. Wawrzynska, B. Penc, N. Stusser et al.] // Solid State Commun. 2003. Vol. 126. – P. 527–530.
- 19. Magnetic structures of R₃Cu₄Ge₄ (R = Tb, Dy, Ho, Er) / [E. Wawrzynska, J. Hernandez Velasco, B. Penc et al.] // J. Magn. Magn. Mater. 2003. Vol. 264. P. 192–201.
- Morozkin A. V. Dy-Cu-Si system at 1170 K / [A. V. Morozkin, P. Manfrinetti] // J. Alloys Compd. 2007. Vol. 437. P. 165–168.
- 21. New ternary compounds with Gd₆Cu₈Ge₈-type / [P. S. Salamakha, O. V. Zaplatynsky, O. L. Sologub, O. I. Bodak] // Polish J. Chem. 1996. Vol. 70. P. 158–161.
- 22. Oesterreicher H. Magnetic studies on compounds RCuSi, R₆Cu₈Si₈ and RCu₂Si₂ (R = Pr, Gd, Tb) / [H. Oesterreicher] // Phys. Stat. Solidi. 1976. Vol. 34. P. 723–728.
- Rieger W. Die Kristallstruktur von Gd₆Cu₈Ge₈ und isotypen Phasen / [W. Rieger] // Monatsh. Chem. 1970. Bd. 101. – S. 449–462.
- 24. Ternary system Tm–Cu–Ge: isothermal section of the phase diagram at 870 K and crystal structures of the compounds / [L. O. Fedyna, O. I. Bodak, Ya. O. Tokajchuk et al.] // J. Alloys Comp. 2004. Vol. 367. P. 70–75.
- 25. Thirion F. Structures cristallines de Sc₃Cu₄Ge₄, T.R.₃Cu₄Sn₄ (T.R. = Y, Gd, Tb, Dy, Ho, Er), isotypes de Gd₃Cu₄Ge₄, et de la phase apparentee Tm₃Cu₄Sn₄ / [F. Thirion, J. Steinmetz, B. Malaman] // Mater. Res. Bull. 1983. Vol. 18. P. 1537–1542.
- 26. Zaharko O. Magnetic ordering in Ce₃Cu₄Sn₄ and Ce₃Cu₄Ge₄ / [O. Zaharko, L. Keller, C. Ritter] // J. Magn. Magn. Mater. 2002. Vol. 253. P. 130–139.

Адреса для листування:

79049, Львів, вул. Вернадського, 34/105. <u>Тел.</u> 223-60-39.

Статтю подано до редколегії 26.10.2011 р.