- Patrie M., Guittard M., Pardo M. P. N⁰ 655. Systèmes L₂X₃–PbX (L = lantanides, X = S, Se, Te) // Bull. Soc. Chim. Fr.– 1969.– № 11.– P. 3832–3834.
- Loireau Lozac'h A., Guittard M. Systeme ternaire La₂Se₃–Ga₂Se₃–GeSe₂. Diagramme de phase Etude des verres // Mater. Res. Bull. 1977. Vol. 12. P. 887–893.
- 15. Loireau Lozac'h A., Guittard M. № 2.– Systemes L₂Se₃–Ga₂Se₃ (L lanthanides at Y). Etude cristallographique. Diagrammes des phases des systemes formes par L = La, Nd, Gd et Y // Bull. Soc. Chim. Fr.– 1976.– P. 6–11.
- Kraus W., Noltze G. Powder Cell a program for structure representation and manipulation // J. Appl. Cryst.– 1996.– Vol. 29.– P. 301–303.

Статтю подано до редколегії 30.09.2008 р.

УДК 546.57: 546.681: 546.811: 546.23

М. В. Шевчук – асистент кафедри хімії Луцького національного технічного університету;
І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Система SnSe₂–SnS₂

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Методами фізико-хімічного аналізу досліджено діаграму стану системи $SnSe_2-SnS_2$. Встановлено, що вона є квазібінарним перерізом із необмеженою розчинністю в рідкому і твердому стані. Визначено зміну періодів комірки твердих розчинів.

Ключові слова: період комірки, квазібінарний переріз, твердий розчин.

Шевчук М. В., Олексеюк И. Д. Система SnSe₂–SnS₂. Методами физико-химического анализа исследована диаграмма состояния системы SnSe₂–SnS₂. Установлено, что она есть квазибинарным разрезом с неограниченной растворимостью в жидком и твердом состояниях. Определено смену периодов решетки твердых растворов.

Ключевые слова: период решетки, квазибинарный разрез, твердый раствор.

Shevchuk M. V., Olekseyuk I. D. The SnSe₂–SnS₂ System. Phase diagram of the SnSe₂–SnS₂ system was investigated by physico-chemical analysis methods. It was established that the system is a quasi-binary section with unlimited solid and liquid solubility. The change of the lattice parameters of the solid solutions was determined.

Key words: lattice parameter, quasi-binary section, solid solution.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Дослідження діаграми стану системи $SnSe_2-SnS_2 \in$ частиною систематичних досліджень потрійної взаємної системи $AgGaS_2 + SnSe_2 \Leftrightarrow AgGaSe_2 + SnS_2$. У літературі відсутні відомості про діаграму стану системи $SnSe_2-SnS_2$. У той же час, декілька робіт присвячено дослідженню фізичних властивостей твердих розчинів $SnS_{2x}Se_{2-2x}$ [1; 2]. З огляду на це дослідження діаграми стану системи $SnSe_2-SnS_2 \in$ актуальним. За даними [3; 4] $SnSe_2$ та SnS_2 плавляться конгруентно при 898 і 1143 К та кристалізуються в моноклінній сингонії, ПГР $\overline{3}m1$; a = 0,3811 нм, c = 0,6137 нм [5] і a = 0,3646 нм, c = 0,5879 нм [4] відповідно.

Матеріали і методи. При вивченні системи SnSe₂–SnS₂ виготовлено і досліджено 21 сплав. Синтез сплавів проводили двохтемпературним методом із елементарних компонентів чистотою Sn – 99,99 мас. %, Se – 99,997 мас. %, S – 99,9997 мас. %, у вакуумованих до 0,1 Па кварцових

[©] Шевчук М. В., Олексеюк І. Д., 2008

ампулах із використанням вібраційного перемішування. Максимальна температура синтезу становила 1170 К. Відпал отриманих сплавів проводили при 720 К протягом 960 год із наступним гартуванням у холодній воді. При дослідженні сплавів використовували диференційний термічний, рентгенофазовий і мікроструктурний аналізи. Диференційний термічний аналіз проводили на термографі VDTA-8M3. Як репери використовували In, Sn, Zn, Al, NaCl, Ge, Ag, Cu, Fe. Як еталон застосовано вольфрам. Швидкість нагрівання та охолодження складала 10 К/хв. Температурний контроль здійснювали термопарою W-Re 0,05/W-Re 0,2. Рентгенофазовий аналіз проведено на ДРОН 4-13, CuK_{α}-випромінювання, обробка результатів РФА відбувалася за допомогою методу найменших квадратів. Мікроструктурний аналіз проводили на мікротвердометрі Leica VMHT Auto.

Результати й обговорення. Результати диференційного термічного аналізу представлено в табл. 1. З наведених даних випливає, що вихідні сполуки плавляться конгруентно при 898 К (SnSe₂) та 1143 К (SnS₂). Ці дані повністю узгоджуються з літературними [3; 4]. Для сплавів характер плавлення і температури відповідають утворенню твердих розчинів.

Таблиця 1

No	Склад сплаву, мол. %		Температура, К	
сплаву	SnSe ₂	SnS ₂	Тлікв.	Тсол
1	100	0	898	_
2	95	5	921	909
3	90	10	938	921
4	85	15	950	925
5	80	20	960	928
6	75	25	979	932
7	70	30	995	938
8	65	35	1004	951
9	60	40	1017	953
10	55	45	1025	964
11	50	50	1036	970
12	45	55	1047	984
13	40	60	1053	992
14	35	65	1064	999
15	30	70	1070	1018
16	25	75	1080	1034
17	20	80	1087	1045
18	15	85	1098	1058
19	10	90	1117	1073
20	5	95	1128	1100
21	0	100	1143	_

Результати диференційного термічного аналізу сплавів системи SnSe₂-SnS₂.

Результати рентгенофазового аналізу та визначення періодів комірки твердих розчинів зображено на рис. 1. Як видно, при 720 К у системі існує необмежена взаємна розчинність у твердому стані. Параметри гратки змінюються від a = 0,3811 нм, c = 0,6137 нм для SnSe₂ до a = 0,3646 нм, c = 0,5879 нм для SnS₂ (рис. 1).

Рис. 1. Зміна періодів та об'єму комірки твердих розчинів системи SnSe₂-SnS₂

Мікроструктурним аналізом підтверджено однофазність усіх зразків. На основі отриманих результатів побудовано діаграму стану системи SnSe₂–SnS₂ (рис. 2), яка відповідає І типу за класифікацією Розебома.

Висновки. Отже, вперше побудовано діаграму стану системи SnSe₂–SnS₂. Встановлено існування в цій системі необмеженої розчинності в рідкому і твердому станах.

Література

- 1. Блецкан Д. И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе.-Ужгород: ВАТ Вид-во "Закарпаття", 2004.- 292 с.
- Rimmington H. P. B., Balchin A. A. Crystal data for layer compounds in the series SnS_xSe_{2-x} // Phys. Status solidi (a).– 1971.– Vol. 6.– № 1.– P. 47–50.
- 3. Гаджиева А. З., Рустамов П. Г., Мардахаев Б. Н. Физико-химическое исследование системы In₂Se₃-SnSe₂ // Азерб. хим. журн. 1973. № 4. С. 138–141.
- 4. Караханова М. И., Пашинкин А. С., Новоселова А. В. О диаграмме плавкости олово сера // Изв. АН СССР. Неорган. материалы.– 1966.– Т. 2, № 6.– С. 991–996.
- 5. Абрикосов Н. Х., Шелимова Л. Е. Полупроводниковые материалы на основе А^{IV}В^{VI}.– М.: Наука, 1975.– 192 с.

Статтю подано до редколегії 08.12.2008 р.