- 11. Боднарь И. В., Болога А. П. Твердые растворы CuGaS_{2x}Se_{2(1-x)} // Неорган. материалы. 1982. Т. 18, № 8.– C. 1257–1260.
- 12. Томашик В. Н., Грыцив В. И. Диаграммы состояния систем на основе полупроводниковых соединений А^{II} В^V.- К., Наук. думка, 1982.- С. 69.
- 13. Галка В. О. Фазові рівноваги в квазіпотрійних системах $A_2^I X B^{II} X C_2^{III} X_3$ ($A^I Cu$, Ag; $B^{II} Zn$, Cd, Hg; С^{III} – Ga, In; X – S, Se, Te): Автореф. дис. ... канд. хім. наук: 02.00.01 / Львівськ. нац. ун-т ім. Івана Франка.- Л., 2001.- 18 с.

Статтю подано до редколегії 22.12.2008 p.

УДК 546.64+546.654+546.815+546.681+546.22/24 Т. О. Філюк – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

> I. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

Л. Д. Гулай – кандидат хімічних наук, доцент, завідувач кафедри екології Волинського національного університету імені Лесі Українки;

I. I. Мазурець – кандидат хімічних наук, старший викладач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Фазові рівноваги у системах R₂X₃-Ga₂X₃-PbX (R – Y, La; X – S, Se, Te) при 770 К

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Методами рентгенофазового та рентгеноструктурного аналізів досліджено фазові рівноваги та побудовано ізотермічні перерізи систем R_2X_3 -Ga₂X₃-PbX (R – Y, La; X – S, Se, Te) при 770 К. Тернарних сполук у системах не виявлено.

Ключові слова: рентгенофазовий аналіз, квазібінарний переріз, твердий розчин.

<u>Филюк Т. О., Олексеюк И. Д., Гулай Л. Д., Мазурец И. И. Фазовые равновесия в системах</u> <u>R₂X₃-Ga₂X₃-PbX (R - Y, La; X - S, Se, Te) при 770 К.</u> Методами рентгенофазового и рентгеноструктурного анализов исследовано фазовые равновесия и построены изотермические разрезы систем R₂X₃-Ga₂X₃-PbX (R – Y, La; X – S, Se, Te) при 770 К. Тернарних соединений в системах не обнаружено.

Ключевые слова: рентгенофазовый анализ, квазибинарный разрез, твердый раствор.

Filyuk T. O., Olekseyuk I. D., Gulay L. D., Mazurets I. I. Phase Equilibria in R₂X₃-Ga₂X₃-PbX (R – Y, La; **X** – **S**, **Se**, **Te**) **Systems at 770 K.** Phase equilibria in the R_2X_3 – Ga_2X_3 –PbX (R – Y, La; X – S, Se, Te) systems at 770 K were investigated using phase X-ray diffraction. Quaternary compounds in the systems is not found. Key words: X-ray diffraction, quasibinary section, solid solution.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Системи типу R₂X₃-PbX-Ga₂X₃ вивчаються у плані пошуку нових напівпровідникових матеріалів. Серед великого різноманіття матеріалів особливий інтерес становлять складні халькогеніди, для яких характерна прозорість в ІЧ-області електромагнітного спектра, доступна технологічність, значна відтворюваність результатів, анізотропія властивостей, висока фоточутливість та інше. Сплави та халькогенідні сполуки мають широкий діапазон різноманітних електричних, магнітних, оптичних властивостей [1].

Згідно з літературними даними, у квазібінарних системах, які обмежують потрійні трикутники $Y(La)_2X_3$ -Ga₂X₃-PbX (X – S, Se, Te), утворюються тернарні сполуки. Так, у системі Y_2S_3 -Ga₂S₃ [2] існує тернарна сполука складу Y₃GaS₆, яка кристалізується у просторовій групі *Cmc*2₁ з періодами елементарної комірки a = 1,045 нм, b = 1,322 нм, c = 0,645 нм, і належить до структурного типу Er₃GaS₆. У системі PbS-Ga₂S₃ існують дві сполуки Pb₂Ga₂S₅ та PbGa₂S₄ [3-5]. Плюмбум тіогалат (PbGa₂S₄) кристалізується в ПГ Fddd (стр. тип EuGa₂S₄) з періодами елементарної комірки

[©] Філюк Т. О., Олексеюк І. Д., Гулай Л. Д., Мазурець І. І., 2008

a = 2,0712(6) нм, b = 2,0431(4) нм, c = 1,2163(3) нм. Згідно з [6], рентгенограма сполуки складу Pb₂Ga₂S₅ проіндексована в ромбічній сингонії, ПГ *Pbca*, з періодами елементарної комірки a = 1,24072 нм, b = 1,19669 нм, c = 1,10181 нм. Система Y₂S₃–PbS характеризується утворенням сполуки Y₂PbS₄, ПГ *Cmc*2₁, a = 0,79015(3) нм, b = 2,8590(1) нм, c = 1,20066(4) нм [7].

У системі PbSe–Ga₂Se₃ утворюється сполука PbGa₂Se₄, ПГ *Fddd* з періодами елементарної комірки a = 21,37(2) нм, b = 21,47(2) нм, c = 12,72(1) нм [8]. У системі Y₂Se₃–PbSe існують сполуки Y₆Pb₂Se₁₁ (кристалізується у ПГ *Стст* і має періоди елементарної комірки a = 0,40620(8) нм, b = 1,3467(2) нм, c = 3,7624(7) нм) [9; 10] та Y_{4,2}Pb_{0,7}Se₇ (ПГ *Ст*, дифракційні відбиття якої проіндексовані в моноклінній сингонії з періодами комірки a = 1,3357(1) нм, b = 0,40469(3) нм, c = 1,22357(8) нм, $\beta = 104,529(3)^{\circ}$ [11]).

У системі РbTe–Ga₂Te₃ відома сполука складу PbGa₆Te₁₀, ПГ *Сс*, періоди елементарної комірки a = 14,465(2) нм, b = 14,462(2) нм, c = 17,718(4) нм [12].

У системі La₂Se₃–PbSe, згідно з роботою [13], існує тернарна сполука La₂PbSe₄, ПГ *I* 4 3*d* з періодами елементарної комірки a = 0,9106 нм. Квазібінарна система La₂Se₃–Ga₂Se₃ характеризується утворенням сполуки La₃Ga_{1.67}Se₇, ПГ *P*6₃, a = 1,053, c = 0,639 нм [14; 15].

Матеріали і методи. Зразки для дослідження фазових рівноваг у системах $Y(La)_2X_3$ -Ga₂X₃-PbX (X – S, Se, Te) синтезовано прямим однотемпературним методом із простих речовин високого ступеня чистоти (Y – 99,9 мас. %, La – 99,9 мас. %, Ga – 99,997 мас. %, Pb – 99,99 мас. %, S – 99,997 мас. %, Se – 99,997 мас. %. Te – 99,99 мас. %). При максимальній температурі проводили відпал при 770 К протягом 250 год. Відпалені зразки гартували на повітрі. Для встановлення кількості та якості фаз при побудові ізотермічних перерізів проводили рентгенофазовий аналіз. Порошкові дифрактограми отримано на дифрактометрі ДРОН 4-13 (СиК_α-випромінювання) у інтервалі 10–80⁰ 20 з кроком лічильника 0,05° та часом збору 1 с у точці [16].

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. У квазібінарних системах, які обмежують концентраційні трикутники Y(La)₂X₃–Ga₂X₃–PbX (X – S, Se, Te), при температурі відпалу 770 К підтверджено існування потрійних сполук. Періоди елементарних комірок усіх сполук добре узгоджуються з літературними даними.

Дослідження показали, що при температурі 770 К усі фази у системі Y_2S_3 -Ga₂S₃-PbS існують у твердому стані (рис. 1). При цій температурі у системі існують сім однофазних, одинадцять двофазних і п'ять трифазних областей. Однофазні області належать компонентам системи та тернарним сполукам.. Трифазні області Pb₂Ga₂S₅ + Y₂PbS₄ + PbS, Pb₂Ga₂S₅ + Y₂PbS₄ + Y₃GaS₆, Y₃GaS₆ + Y₂PbS₄ + Y₂S₃, Pb₂Ga₂S₅ + PbGa₂S₄ + Y₃GaS₆, Ga₂S₃ + PbGa₂S₄ + Y₃GaS₆ + PbGa₂S₄ + Y₃GaS₆, Ga₂S₅ + PbGa₂S₄ + Y₃GaS₆, Y₃GaS₆ + PbGa₂S₄ + Y₂PbS₄ + Y₂PbS₄ + Y₃GaS₆, Y₃GaS₆ + PbGa₂S₄ + X₂PbS₄ + Y₂PbS₄ + Y₃GaS₆, Y₃GaS₆ + PbGa₂S₅, Pb₂GaS₅ + Y₂PbS₄ + Y₃GaS₆, Y₃GaS₆ + PbGa₂S₄, які містяться на відповідних перерізах. Інші сім двофазних областей розташовано на обмежуючих сторонах. По стороні PbS-Y₂S₃ розчинність Y₂S₃ y PbS не перевищує 3 мол. % Y₂S₃. На основі інших бінарних і тернарних сполук розчинність є незначною.

Рис. 1. Ізотермічний переріз системи Y_2S_3 -Ga₂S₃-PbS при 770 K: 1 – PbS + Y₂PbS₄; 2 – Y₂PbS₄ + Y₂S₃; 3 – Y₂S₃ + Y₃GaS₆; 4 – Y₃GaS₆ + Ga₂S₃; 5 – PbS + Pb₂Ga₂S₅; 6 – Pb₂Ga₂S₅ + PbGa₂S₄; 7 – PbGa₂S₄ + Ga₂S₃; 8 – Y₂PbS₄ + Y₃GaS₆; 9 – Y₂PbS₄ + Pb₂Ga₂S₅; 10 – Y₃GaS₆ + Pb₂Ga₂S₅; 11 – Y₃GaS₆ + PbGa₂S₄; 12 – Y₂S₃ + Y₂PbS₄ + Y₃GaS₆; 13 – PbS + Y₂PbS₄ + Pb₂Ga₂S₅; 14 – Y₂PbS₄ + Y₃GaS₆ + Pb₂Ga₂S₅; 15 – Pb₂Ga₂S₅ + Y₃GaS₆ + PbGa₂S₄; 16 – Ga₂S₃ + PbGa₂S₄ + Y₃GaS₆ Із результатів дослідження видно, що у системі Y_2Se_3 -Ga $_2Se_3$ -PbSe (рис. 2) існує три трифазні області $Y_6Pb_2Se_{11} + PbGa_2Se_4 + PbSe$, $PbGa_2Se_4 + Y_2Se_3 + Ga_2Se_3$, $Y_6Pb_2Se_{11} + PbGa_2Se_4 + Y_2Se_3$, які обмежені двофазними, що розміщені на перерізах $Y_6Pb_2Se_{11}$ -PbGa $_2Se_4$, PbGa $_2Se_4$ -Y $_2Se_3$. Ще чотири двофазні області містяться на обмежуючих сторонах. У системі існують тверді розчини. Розчинність Y_2Se_3 у PbSe сягає 4 мол. % Y_2Se_3 , i PbSe у Ga $_2Se_3$ становить 7 мол. %. У системі Y_2Se_3 -Ga $_2Se_3$ -PbSe сполука $Y_{4,2}Pb_{0,7}Se_7$ розкладається при температурі, вищій ніж температура відпалу. Тетрарних сполук при температурі 770 К у досліджуваних системах не виявлено.

У системі PbSe–Ga₂Se₃–La₂Se₃ при температурі відпалу 770 К (рис. 3) у обмежуючій системі La₂Se₃–PbSe існує область твердого розчину α в проміжку 50–100 мол. % La₂Se₃. Зміну періодів комірки твердого розчину представлено на рис. 4. Сполука La₂PbSe₄, про яку було сказано в [13], фактично виявилася граничним складом твердого розчину α на основі La₂Se₃, про що свідчить зміна параметрів елементарної комірки. Трифазні області α + PbSe + PbGa₂Se₄, α + PbGa₂Se₄ + La₃Ga_{1,67}Se₇, PbGa₂Se₄ + La₃Ga_{1,67}Se₇ + Ga₂Se₃ обмежені двофазними, що містяться на перерізах PbSe + α , PbSe + PbGa₂Se₄, PbGa₂Se₄ + La₃Ga_{1,67}Se₇ + Ga₂Se₃, PbGa₂Se₄ + Ga₂Se₃ відповідно.

Рис. 4. Зміна періодів комірки твердого розчину La₂Se₃

У системі PbTe–Ga₂Te₃–Y₂Te₃ (рис. 5) встановлено п'ять двофазних рівноваг PbTe–PbGa₆Te₁₀, PbGa₆Te₁₀–Ga₂Te₃, Ga₂Te₃–Y₂Te₃, PbTe–Y₂Te₃, Y₂Te₃–PbGa₆Te₁₀, дві трифазних PbTe + Y₂Te₃ + PbGa₆Te₁₀, PbGa₆Te₁₀ + Y₂Te₃ + Ga₂Te₃. Розчинність Y₂Te₃ у PbTe становить 6 мол. % уздовж сторони Y₂Te₃–PbTe. Інші однофазні поля незначні.

Рис. 5. Ізотермічний переріз системи Y_2Te_3 -G a_2Te_3 -PbTe при 770 K: $1 - PbTe + Y_2Te_3$; $2 - Y_2Te_3 + PbGa_6Te_{10}$; $3 - Y_2Te_3 + Ga_2Te_3$; $4 - PbTe + PbGa_6Te_{10}$; $5 - PbGa_6Te_{10} + Ga_2Te_3$; $6 - Y_2Te_3 + PbGa_6Te_{10} + PbTe$; $7 - Y_2Te_3 + PbGa_6Te_{10} + Ga_2Te_3$

За результатами дослідження встановили, що ізотермічний переріз системи PbTe–Ga₂Te₃–La₂Te₃ (рис. 6) подібний до попереднього. Встановлено п'ять двофазних рівноваг PbTe–La₂Te₃, Ga₂Te₃–La₂Te₃, PbTe–PbGa₆Te₁₀, PbGa₆Te₁₀–Ga₂Te₃, La₂Te₃–PbGa₆Te₁₀, дві трифазних PbTe + La₂Te₃ + PbGa₆Te₁₀ і PbGa₆Te₁₀ + La₂Te₃ + Ga₂Te₃ та чотири однофазних рівноваги біля компонентів системи та тернарної сполуки.

Рис. 6. Ізотермічний переріз системи La₂Te₃–Ga₂Te₃–PbTe при 770 К: 1 – La₂Te₃ + PbTe; 2 – La₂Te₃ + PbGa₆Te₁₀; 3 – La₂Te₃ + Ga₂Te₃; 4 – PbTe + PbGa₆Te₁₀; 5 – PbGa₆Te₁₀ + Ga₂Te₃; 6 – PbTe + La₂Te₃ + PbGa₆Te₁₀; 7 – La₂Te₃ + Ga₂Te₃ + Ga₂Te₃ + PbGa₆Te₁₀

Висновки. Отже, досліджено і побудовано п'ять ізотермічних перерізів $Y(La)_2X_3$ -Ga₂X₃-PbX (X – S, Se, Te). Підтверджено існування восьми потрійних сполук Y_3GaS_6 , Y_2PbS_4 , $Pb_2Ga_2S_5$, $Y_6Pb_2Se_{11}$, PbGa₂Se₄, PbGa₆Te₁₀, La₂PbSe₄, La₃Ga_{1,67}Se₇. Встановлено існування на основі PbX (X – S, Se, Te) та Ga₂Se₃ твердих розчинів, і в інтервалі La₂PbSe₄-La₂Se₃ розчинність La₂Se₃ становить 50 мол. %.

Література

- Eliseev A. A., Kuzmichyeva G. M. Handbook on the physics and chemistry of rare earths. Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements.– Elsevier Science Publishers B. V.– 1990.– Vol. 13.– Ch. 89.– P. 191–281.
- Loireau Lozac'h A., Guittard M., Hahaut J. Systemes L₂Se₃–Ga₂Se₃ (L La, Ce, Dy, Er at Y). Diagrammes de phases // Mater. Res. Bull.– 1977.– Vol. 12.– P. 881–886.
- Блецкан Д. И. Кристалические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе.– Ужгород, ВАТ "Вид-во Закарпаття".– 2004.– Т. 1.–536 с.
- Головей В. М., Оболончик В. А., Головей М. И. Система Ga₂S₃–PbS // Журнал неорган. химии.– 1981.– Т. 26, № 7.– С. 1976–1978.
- Chilouet Par A., Mazurier A., Guittard M. System Ga₂S₃–PbS. Diagram de phase, etude cristallographique // Mater. Res. Bull.– 1979.– Vol. 14.– № 9.– P. 1119–1124.
- 6. Філюк Т. О., Олексеюк І. Д., Мазурець І. І. Ізотермічний переріз системи HgS–Ga₂S₃–PbS при 670 К // Наук. вісн. Волин. держ. ун-ту ім. Лесі Українки.– 2007.– № 13.– С. 12–14.
- Gulay L. D., Shemet V. Ya., Olekseyuk I. D., Stepien'-Damm J., Petraszhko A., Koldun L. V., Filimonyuk J. O. Investigation of the R₂S₃-Cu₂S-PbS (R = Y, Dy, Ho and Er) systems // J. Alloys and compaunds.- 2007.-Vol. 431.- P. 77-84.
- Klee W., Schaefer H. Zur Kenntnis von PbAl₂Se₄ und PbGa₂Se₄ // Mater. Res. Bull.– 1980.– Vol. 15.– P. 1033–1038.
- Gulay L. D., Shemet V. Ya., Stepien'-Damm J., Petraszhko A., Olekseyuk I. D. Crystal strukture of the R₆Pb₂Se₁₁ (R = Y, Dy and Ho) compaunds // J. Alloys and compaunds.– 2006.– Vol. 420.– P. 58–62.
- 10. Шемет В. Я., Гулай Л. Д., Стемпень-Дамм Ю., Петрашко А., Олексеюк І. Д. Кристалічна структура сполуки Y₆Pb₂Se₁₁ // Львівські хімічні читання-2005.– Л., 2005.– С. Н11.
- Shemet V. Ya., Gulay L. D., Olekseyuk I. D. Isothermal sections of the Y₂Se₃-Cu₂Se-Sn(Pb)Se systems at 870 K and crystal structure of the Y_{4.2}Pb_{0.7}Se₇ compound // Polish J. Chem.- 2005.- Vol. 79.- P. 1315–1326.
- Kienle L., Duseoth H. J. SnAl₁₆Te₁₀, SnGa₆Te₁₀ and PbGa₆Te₁₀: superstructures, symmetry realtions and structural chemistry of filles beta-manganese phase // Zeitschrift fuer Kriestallographie ZEKRG.– 1998.– Vol. 213.– P. 569–574.

- 13. Patrie M., Guittard M., Pardo M. P. N⁰ 655. Systèmes L₂X₃–PbX (L = lantanides, X = S, Se, Te) // Bull. Soc. Chim. Fr.– 1969.– № 11.– P. 3832–3834.
- Loireau Lozac'h A., Guittard M. Systeme ternaire La₂Se₃–Ga₂Se₃–GeSe₂. Diagramme de phase Etude des verres // Mater. Res. Bull. 1977. Vol. 12. P. 887–893.
- 15. Loireau Lozac'h A., Guittard M. № 2.– Systemes L₂Se₃–Ga₂Se₃ (L lanthanides at Y). Etude cristallographique. Diagrammes des phases des systemes formes par L = La, Nd, Gd et Y // Bull. Soc. Chim. Fr.– 1976.– P. 6–11.
- 16. Kraus W., Noltze G. Powder Cell a program for structure representation and manipulation // J. Appl. Cryst.– 1996.– Vol. 29.– P. 301–303.

Статтю подано до редколегії 30.09.2008 р.

УДК 546.57: 546.681: 546.811: 546.23

М. В. Шевчук – асистент кафедри хімії Луцького національного технічного університету;
І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Система SnSe₂–SnS₂

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Методами фізико-хімічного аналізу досліджено діаграму стану системи $SnSe_2-SnS_2$. Встановлено, що вона є квазібінарним перерізом із необмеженою розчинністю в рідкому і твердому стані. Визначено зміну періодів комірки твердих розчинів.

Ключові слова: період комірки, квазібінарний переріз, твердий розчин.

Шевчук М. В., Олексеюк И. Д. Система SnSe₂–SnS₂. Методами физико-химического анализа исследована диаграмма состояния системы SnSe₂–SnS₂. Установлено, что она есть квазибинарным разрезом с неограниченной растворимостью в жидком и твердом состояниях. Определено смену периодов решетки твердых растворов.

Ключевые слова: период решетки, квазибинарный разрез, твердый раствор.

Shevchuk M. V., Olekseyuk I. D. The SnSe₂–SnS₂ System. Phase diagram of the SnSe₂–SnS₂ system was investigated by physico-chemical analysis methods. It was established that the system is a quasi-binary section with unlimited solid and liquid solubility. The change of the lattice parameters of the solid solutions was determined.

Key words: lattice parameter, quasi-binary section, solid solution.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Дослідження діаграми стану системи $SnSe_2-SnS_2 \in$ частиною систематичних досліджень потрійної взаємної системи $AgGaS_2 + SnSe_2 \Leftrightarrow AgGaSe_2 + SnS_2$. У літературі відсутні відомості про діаграму стану системи $SnSe_2-SnS_2$. У той же час, декілька робіт присвячено дослідженню фізичних властивостей твердих розчинів $SnS_{2x}Se_{2-2x}$ [1; 2]. З огляду на це дослідження діаграми стану системи $SnSe_2-SnS_2 \in$ актуальним. За даними [3; 4] $SnSe_2$ та SnS_2 плавляться конгруентно при 898 і 1143 К та кристалізуються в моноклінній сингонії, ПГР $\overline{3}m1$; a = 0,3811 нм, c = 0,6137 нм [5] і a = 0,3646 нм, c = 0,5879 нм [4] відповідно.

Матеріали і методи. При вивченні системи SnSe₂–SnS₂ виготовлено і досліджено 21 сплав. Синтез сплавів проводили двохтемпературним методом із елементарних компонентів чистотою Sn – 99,99 мас. %, Se – 99,997 мас. %, S – 99,9997 мас. %, у вакуумованих до 0,1 Па кварцових

[©] Шевчук М. В., Олексеюк І. Д., 2008