УДК 544.344:546.22-24:546.[28+815+683]

I. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

М. Ю. Мозолюк – аспірант Волинського національного університету імені Лесі Українки;

Л. В. Піскач – кандидат хімічних наук, доцент кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

М. Б. Літвінчук – студентка III курсу хімічного факультету Волинського національного університету імені Лесі Українки;

О. В. Парасюк – кандидат хімічних наук, доцент кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки

Взаємодія компонентів у системах, утворених халькогенідами Tl(I), Hg(II), Pb(II), Si(IV)

Роботу виконано на кафедрі неорганічної та фізичної хімії ВНУ ім. Лесі Українки

Методами РФА та ДТА досліджено фазові рівноваги у квазіпотрійних системах Tl_2X -{Hg, Pb}X-SiX₂ (X – S, Se). Установлено існування нових тетрарних еквімолярних сполук. Методом порошку розшифровано кристалічну структуру Tl_2 HgSiSe₄ (ПГ *I*-42*m*) та Tl_2 PbSiS₄ (ПГ *P*2₁/*a*).

Ключові слова: тетрарні халькогеніди, діаграма стану, кристалічна структура.

<u>Олексеюк И. Д., Мозолюк М. Ю., Пискач Л. В., Литвинчук М. Б., Парасюк О. В. Взаимодействие</u> компонентов в системах, образованых халькогенидами Tl(I), Hg(II), Pb(II), Si(IV). Методами РФА и ДТА исследованы фазовые равновесия в квазитройных системах Tl_2X –{Hg, Pb}X–SiX₂ (X – S, Se). Установлено существование новых эквимолярных тетрарных фаз. Методом порошка розшифрованы кристаллические структуры $Tl_2HgSiSe_4$ (ПГ *I*-42*m*) и Tl_2PbSiS_4 (ПГ *P*2₁/*a*).

Ключевые слова: тетрарные халькогениды, диаграмма состояния, кристаллическая структура.

<u>Olekseyuk I. D., Mozolyuk M. Yu., Piskach L. V., Litvinchuk M. B., Parasyuk O. V. Interaction in the</u> <u>Systems with Tl(I), Hg(II), Pb(II), Si(IV).</u> The phase equilibria of the quasi-ternary systems Tl_2X -{Hg, Pb}X-SiX₂ (X – S, Se) were investigated by X-ray phase analyse and DTA. New quaternary phases with equil ratio components were found in these systems. Crystal structures of $Tl_2HgSiSe_4$ (S. G. *I*-42*m*) and Tl_2PbSiS_4 (S. G. *P*2₁/*a*) were determinated by X-ray powder diffraction.

Key words: quaternary chalcogenides, phase diagram, crystal structure.

Постановка наукової проблеми та її значення. Порівняно недавно вчені розпочали досліджувати талієвмісні халькогенідні системи $Tl_2X-B^{II}X-D^{IV}X_2$ (B^{II} – Cd, Hg, Pb, Mn; D^{IV} – Ge, Sn; X – S, Se, Te). Зокрема, є відомості про утворення в цього типу системах сполук еквімолярного складу Tl2PbGeS4 [9] та $Tl_2B^{II}C^{IV}Te_4$ (B^{II} – Cd, Hg, Mn; D^{IV} – Ge, Sn) [15]. Ці системи подібні до систем, у яких одновалентним металом є Ag чи Cu i характерною особливістю фізико-хімічної взаємодії яких є утворення проміжних тетрарних фаз різноманітних складів: (6-1-1-6 (Ag₆HgGeSe₆), 2-3-1-6 (Ag₂Hg₃GeS₆), 4-1-2-7 (Ag₄HgGe₂S₇), 2-1-2-6 (Ag₂HgGe₂Se₆) та 4-3-2-9 (Ag₄Hg₃Sn₂Se₉) [14]. Більшість із них кристалізується в тетрагональній структурі станіну (CT Cu₂FeSnS₄, ПГ *I*-42*m*), що є надструктурою до сфалериту, чи в ромбічній вюрцит-станіну (CT Cu₂CdGeS₄, ПГ *Pmn*2₁), яка надструктурна до вюрциту. Нецентросиметричність структур цих сполук дає підставу рекомендувати їх для використання як матеріали для нелінійної оптики.

В аспекті пошуку нових сполук актуальним є вивчення фізико-хімічної взаємодії компонентів квазіпотрійних систем Tl_2X –{Hg, Pb}X–SiX₂, де X – S, Se, а також кристалічної структури виявлених тетрарних фаз.

Аналіз останніх досліджень із цієї проблеми. Квазібінарні системи, які обмежують потрійні Tl_2X –{Hg, Pb}X–SiX₂ (X – S, Se), вивчені раніше. Кристалохімічні характеристики тернарних халькогенідів зібрані в табл. 1. Співвідношення компонентів, температури й характер плавлення сполук у досліджуваних системах наведено в табл. 2.

62

[©] Олексеюк І. Д., Мозолюк М. Ю., Піскач Л. В., Літвінчук М. В., Парасюк О. В., 2012

Таблиия 1

Проміжна фаза	ПГ	П	Timonomuma			
		a	b	С	лпература	
$Tl_2Hg_3S_4$	C2/c	1,1493	0,66953	1,2937	[17]	
			[10]			
$Tl_2Hg_3Se_4$	C2/c	1,1977	0,69264	1,3203	[16]	
			[10]			
α -Tl ₄ PbS ₃	_	0,8346	0,8346	1,2526	[4]	
β-Tl ₄ PbS ₃	_	0,8916	0,8795	0,8211	[4]	
Tl ₄ PbSe ₃	P4/ncc	0,85346	-	1,26871	[6]	
Tl ₂ SiS ₃	<i>P</i> -1	0,6699	0,6645	0,8380	[7]	
		$\alpha = 90, 3$	[/]			
Tl_4SiS_4	Сс	1,2518	1,1241	0,7567	[9]	
			[0]			
Tl ₂ SiSe ₃	<i>P</i> -1	0,6875	0,6866	0,8731	[7]	
		$\alpha = 90, $	[/]			
Tl ₄ SiSe ₄	C2/c	1,1664	0,7277	2,4903	[8]	
			وم			
Hg_4SiS_6	Сс	1,23020	0,71031	1,22791	[11]	
			[11]			
α-Hg₄SiSe ₆	Cc	1,28110	0,74034	1,27471	[11]	
			[11]			
Pb ₂ SiS ₄	<i>P</i> 2 ₁ / <i>c</i>	0,64721	0,66344	1,6832	[10]	
			[10]			
Pb ₂ SiSe ₄	$P2_{1}/c$	0,8567	0,7074	1,3616	[10]	

Кристалохімічні характеристики тернарних халькогенідів

Таблиия 2

Температури утворення і характер плавлення сполук у досліджуваних системах

Система		Література					
	1:1	2:1	1:2	1:3	3:2	4:1	
Tl ₂ S–HgS	_	_	_	648 i	_	_	[14]
Tl ₂ Se–HgSe	—	_	-	691 i	-	—	[5]
Tl ₂ S–PbS	_	725 к	-		-	—	[4]
Tl ₂ Se–PbSe	-	803 к	-	-	-	-	[2]
Tl ₂ S–SiS ₂	853 к	700 к	925 к		-	_	[1]
Tl ₂ Se–SiSe ₂	833 к	_	657 к	-	-	_	[1]
HgS–SiS ₂	_	_	-	-	-	?	[11]
HgSe–SiSe ₂	-	-	-	-	-	1440 к	[13]
PbS–SiS ₂	—	?	_		1080 к	_	[3]
PbSe–SiSe ₂	_	?	-	-	-	—	[10]

к – конгруентний характер плавлення;

і – інконгруентний характер плавлення.

Матеріали та методи. Для дослідження фазових рівноваг у квазіпотрійних системах Tl_2X –{Hg, Pb}X–SiX₂ (X – S, Se) як вихідні компоненти для виготовлення сплавів використовували прості речовини: талій, свинець, кремній, сірку, селен (усі чистотою не менше 99,99 мас. %) і попередньо одержані меркурій (II) сульфід чи селенід. Синтез зразків проводили однотемпературним методом у вакуумованих кварцових ампулах, які нагрівали зі швидкістю 30 К/год до 1220 К. За цієї температури розплави витримували впродовж шести годин та охолоджували зі швидкістю 10 К·год⁻¹ до 520 К. Гомогенізуючий відпал за цієї температури тривав 250 год. Процес синтезу завершувався гартуванням ампул зі сплавами в холодній воді.

Рентгенодифракційні спектри відбиттів одержували на приладі ДРОН 4-13 із Ni-фільтром у режимі покрокового сканування з використанням CuK_α-випромінювання (10°≤2*θ*≤80°, кроком лі-

чильника 0,05° та часом експозиції 3 с у точці – для РФА). Обробку даних здійснювали за допомогою пакета програм PDWin2.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження Ізотермічні перерізи систем Tl₂X–HgX–SiX₂ при 520 К

Для вивчення взаємодії компонентів у квазіпотрійній системі Tl₂S–HgS–SiS₂ синтезовано 59 зразків. Фазовий та хімічний склади сплавів, а також ізотермічний переріз представлено на рис. 1.

У системі при 520 К виявлено дві нові тетрарні фази: Tl₂HgSiS₄, яка утворюється при еквімолярному співвідношенні бінарних сульфідів, і тетрарної проміжної фази, найбільш чиста дифрактограма якої одержана для сплаву зі складом 20 мол. % Tl₂S, 20 мол. % HgS, 60 мол. % SiS₂, що відповідає формулі ~Tl₂HgSi₃S₈.

За результатами дослідження 57 сплавів побудовано ізотермічний переріз діаграми стану системи $Tl_2Se-HgSe-SiSe_2$ при 520 К, який разом із хімічним та фазовим складами виготовлених зразків представлено на рис. 2. У межах концентраційного трикутника вперше встановлено існування двох тетрарних сполук: $Tl_2HgSiSe_4$ та $Tl_2HgSi_2Se_6$. Кількість фазових полів у системі досить значна, оскільки концентраційний трикутник містить десять сполук, дві з яких тетрарні. Дев'ятнадцять двофазних рівноваг системи обмежують десять полів сумісної кристалізації трьох фаз.

Кристалічну структуру фази Tl₂HgSiSe₄, яка кристалізується в тетрагональній сингонії (ПГ $I\overline{4} 2m$), розраховано методом порошку (a = 0.80407(1) нм, c = 0.68852(2) нм).

Ізотермічні перерізи систем Tl₂X–PbX–SiX₂ при 520 К

Фазові рівноваги у квазіпотрійній системі Tl_2S –PbS–SiS₂ при 520 К установлювали дослідженням 58 сплавів. Хімічний та фазовий склади зразків наведено на рис. 3. За результатами РФА та РСА побудовано ізотермічний перетин діаграми стану квазіпотрійної системи за температури відпалу. За умов дослідження вперше встановили існування двох тетрарних сполук при співвідношенні бінарних компонентів 1:1:1 та 1:1:3, які описуються формулами Tl_2PbSiS_4 , $-Tl_2PbSi_3S_8$, відповідно.

Рис. 1. Хімічний та фазовий склади сплавів, ізотермічний переріз системи Tl₂S–HgS–SiS₂ при 520 К

Рис. 2. Хімічний та фазовий склади сплавів, ізотермічний переріз системи Tl₂Se–HgSe–SiSe₂ при 520 SiS₂

Рис. 3. Хімічний та фазовий склади сплавів, ізотермічний переріз системи Tl₂S–PbS–SiS₂ при 520 К

Кристалічна структура Tl₂PbSiS₄, розрахована методом порошку, є моноклінною (ПГ $P2_1/a$, a = 0,88141(4), b = 0,90150(5), c = 1,04383(5) нм, $\beta = 94,490(4)$ °). Склад ~Tl₂PbSi₃S₈ є приблизним і встановлений відповідно до найбільш чистої дифрактограми та рівноваг, які утворює ця фаза з іншими сполуками системи. Обидва тетрарні халькогеніди триангулюють площину концентраційного трикутника на десять трифазних областей.

Для вивчення фізико-хімічної взаємодії у квазіпотрійній системі $Tl_2Se-PbSe-SiSe_2$ синтезовано 55 зразків, із яких – 9 однофазних, 34 двофазних та 12 трифазних. Хімічний та фазовий склад, а також ізотермічний переріз зображено на рис. 4.4. На обмежуючих сторонах трикутника Гіббса існує п'ять тернарних сполук: Tl_4SiSe_4 , Tl_2SiSe_3 , $Tl_2Si_2Se_5$, Tl_4PbSe_3 , Pb_2SiSe_4 . При 520 K у дослідженій системі утворюється тетрарна сполука $Tl_2PbSiSe_4$, яка має бінарні рівноваги з силіцієвмісними талій (I) та плюмбум (II) селенідами. У системі мають місце вісім триангулюючих перетинів, які відмежовують вісім трифазних областей.

Політермічні перерізи Tl₂SiX₃-{Hg, Pb}X

Для встановлення характеру та температури плавлення еквімолярних тетрарних проміжних фаз було досліджено перерізи Tl₂SiX₃-{Hg, Pb}X.

Перерізи Tl₂SiX₃–HgX

Діаграма фазових рівноваг системи Tl₂SiS₃–HgS представлена політермічним перерізом на рис. 5, а. У системі утворюється тетрарна фаза Tl₂HgSiS₄ за перитектичною реакцією L+HgS $\leftrightarrow \gamma$ -Tl₂HgSiS₄ при 654 К. Ця сполука володіє поліморфним перетворенням при 585 К. На діаграмі також має місце евтектична взаємодія з координатами нонваріантної точки 36 мол. % HgS та 640 К. Фазовий перехід β-HgS $\leftrightarrow \beta$ '-HgS представлено горизонталлю при 616 К. Розчинність вихідного бінарного халькогеніду в Tl₂SiS₃ не перевищує 5 мол. %.

За результатами дослідження зразків квазібінарного перерізу Tl₂SiSe₃–HgSe побудовано його фазову діаграму стану (рис. 5, δ). Ліквідус системи складається з трьох гілок первинної кристалізації Tl₂SiSe₃, HgSe та Tl₂HgSiSe₄. Тетрарна сполука утворюється внаслідок перитектичного процесу L+HgSe \leftrightarrow Tl₂HgSiSe₄ при 703 К. При 653 К протікає евтектичний розпад рідини (поле 1) на Tl₂SiSe₃ та Tl₂HgSiSe₄ в точці з вмістом 35 мол. % HgSe.

Рис. 4. Хімічний та фазовий склади сплавів, ізотермічний переріз системи Tl₂Se-PbSe-SiSe₂ при 520 К

Рис. 5. Діаграми фазових рівноваг перерізів Tl₂SiS₃–HgS ma Tl₂SiS₈–HgSe: (a): 1 – L, 2 – L + β-HgS, 3 – L + α, 4 – L + γ-Tl₂HgSiS₄, 5 – α, 6 – γ-Tl₂HgSiS₄ + α, 7 – γ-Tl₂HgSiS₄ + β-HgS, 8 – γ-Tl₂HgSiS₄ + β'-HgS, 9 – α + γ'-Tl₂HgSiS₄, 10 – γ'-Tl₂HgSiS₄ + β'-HgS; (б): 1 – L, 2 – L + HgSe, 3 – L + Tl₂SiSe₃, 4 – L + Tl₂HgSiSe₄, 5 – Tl₂HgSiS₄ + Tl₂SiSe₃, 6 –Tl₂HgSiSe₄ + HgSe **Перерізи Tl₂SiX₃–PbX**

Рентгенівські дослідження 13 сплавів перерізу Tl_2SiS_3 –PbS при 520 К указують на існування в системі проміжної еквімолярної тетрарної фази Tl_2PbSiS_4 (рис. 4.1). Ліквідус системи складається з трьох полів первинної кристалізації PbS, Tl_2SiS_3 та Tl_2PbSiS_4 . Солідус утворений двома горизонталями: перитектичною при 818 К і евтектичною при 723 К. Уміст PbS у нонваріантній евтектичній точці – 19 мол. %, а перитектичній – 46 мол. %. Тетрарна сполука утворюється за перитектичною реакцією L+PbS \leftrightarrow Tl₂PbSiS₄.

Puc. 6. Діаграми фазових рівноваг перерізів Tl_2SiS_3 —PbS ma Tl_2SiS_3 —PbSe: (a): 1 - L, 2 - L + PbS, $3 - L + Tl_2SiS_3$, $4 - L + Tl_2PbSiS_4$, $5 - Tl_2PbSiS_4 + Tl_2SiS_3$, $6 - Tl_2PbSiS_4 + PbS$; (b): 1 - L, 2 - L + PbSe, $3 - L + Tl_2SiSe_3$, $4 - L + \gamma - Tl_2PbSiS_4$, $5 - L + \gamma' - Tl_2PbSiS_4$, $6 - \gamma - Tl_2PbSiS_4 + PbS$, $7 - \gamma' - Tl_2PbSiS_4 + Tl_2SiSe_3$, $8 - \gamma' - Tl_2PbSiS_4 + PbSe$

Діаграма стану системи Tl₂SiSe₃–PbSe побудована за результатами дослідження 13 сплавів (рис. 6, δ). Ліквідус утворений чотирма моноваріантними лініями, які відмежовують поля первинної кристалізації вихідних компонентів і HT- та BT-модифікацій тетрарної фази Tl₂PbSiSe₄, яка утворюється в результаті перитектичної взаємодії L+PbSe \leftrightarrow Tl₂PbSiSe₄ при 788 К. Під час пониження температури для тетрарної сполуки відбувається поліморфний перехід γ -Tl₂PbSiSe₄ $\leftrightarrow \gamma'$ -Tl₂PbSiSe₄. Геометричним відображенням цього процесу виступає горизонталь при 732 К. Координати перитектики 40 мол. % та 788 К. Tl₂PbSiSe₄ із Tl₂SiSe₃ утворює евтектику при 687 К і 17 мол. % PbSe.

Висновки. Результатами дослідження фазових рівноваг у системах $Tl_2X-{Hg,Pb}X-SiX_2$ (X – S, Se) представлені їх ізо- та політермічними перетинами. У всіх системах мають місце сполуки еквімолярного складу, які плавляться інконгруентно. Температури утворення плюмбумовмісних сполук є значно вищими порівняно з меркурієвмісними. Крім сполук $Tl_2{Hg, Pb}SiX_4$, знайдені $Tl_2{Hg, Pb}Si_3S_8$ та $Tl_2HgSi_2Se_6$.

Список використаної літератури

- 1. Лазарев В. Б. Фазовые равновесия в системах Tl₂S(Se)–SiS₂(Se₂) / В. Б. Лазарев, Е. Ю. Переш, В. И. Староста // Журн. неорг. химии. 1983. Т. 28, № 8. С. 2097–2099.
- Малаховська-Росоха Т. О. Системи Tl-Sn(Pb)-S(Se, Te): фазові рівноваги, одержання монокристалів тернарних сполук та їх властивості : автореф. дис. на здобуття наук. ступеня канд. хім. наук : спец. 02.00.01 «Неорганічна хімія» / Т. О. Малаховська-Росоха. – Ужгород, 2009. – 20 с.
- 3. Шелимова Л. Е. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Si, Ge, Sn, Pb) / Л. Е. Шелимова, В. Н. Томашик, В. И. Грыцив. М. : Наука, 1991. 368 с.
- 4. Фізико-хімічна взаємодія у системі Tl₂S–PbS / М. Й. Філеп, М. Ю. Сабов, І. Є. Барчій, А. М. Соломон // Наук. вісн. Ужгород. нац. ун-ту. 2011. № 26. С. 9–12.
- Asadov M. M. Phase equilibria and thermodynamic properties of the Hg Tl Se system / M. M. Asadov, M. B. Babanly, A. A. Kuliev // Zhurn. neorgan. khimii. – 1982. – № 27. – P. 3173–3178.
- 6. Crystal structure of the Tl₄PbSe₃ ternary compound / T. O. Malakhovska, M. Yu. Sabov, E. Yu. Peresh, V. Pavlyuk, B. Marciniak // Chem. Met. Alloys. 2009. № 2. P. 15–17.

- Eulenberger G. Ternaere Thalliumchalkogenide mit Tl₄Ge₂S₆-Struktur / G. Eulenberger // Monatsh. Chem. Teile Wissensch. – 1982. – V. 113. – P. 859–867.
- Eulenberger G. Structures of Tetrathallium(I) Tetrathiosilicate(IV) and Tetrathallium(I) Tetraselenosilicate(IV) / G. Eulenberger // Acta Cryst. (C) – 1986. – V. 42. – P. 528–534.
- Eulenberger G. Darstellung und Kristallstruktur des Dithallium (I)blei(II) tetra- thiogermanats(IV) Tl2PbGeS4 / G. Eulenberger // Z. Naturforsch., B. Anorg. Chem., Org. Chem. – 1980. – V. 35. – P. 335–339.
- Iglesias J. E. Thernary Chalcogenide compounds AB₂X₄: The crystal structures of SiPb₂S₄ and SiPb₂Se₄ / J. E. Iglesias, H. Steinfink // J. Solid State Chem. 1973. V. 6. № 1. P. 93–98.
- 11. Gulay L. D. Crystal structure of the Hg_4SiS_6 and Hg_4SiSe_6 compounds / L. D. Gulay, I. D. Olekseyuk, O. V. Parasyuk // J. Alloys Compd. 2002. No 347. P. 115–120.
- Parasyuk O.V. Phase relations in the quasi-binary Cu₂GeS₃–ZnS and quasi-ternary Cu₂S–Zn(Cd)S–GeS₂ systems and crystal structure of Cu₂ZnGeS₄ / O. V. Parasyuk, L. V. Piskach, Ya. E. Romanyuk et al. // J. Alloys Compd. 2005. V. 397. P. 85–94.
- 13. Parasyuk O. V. The Ag₂Se–HgSe–SiSe₂ system in the 0–60 mol. % SiSe₂ region / O. V. Parasyuk, L. D. Gulay, Ya. E. Romanyuk, I. D. Olekseyuk // J. Alloys Compd. 2003. V. 348. P. 157–166.
- Phase equilibria in the Tl₂S–HgS and Tl₂Se–HgSe systems (in Russian) / A. A. Kuliev, M. M. Asadov, R. A. Kuliev, M. B. Babanly // Zhurn. neorgan. khimii. – 1978. – № 23. – P. 854–856.
- 15. Tl₂AXTe₄ (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, and Thermoelectric Properties / M. A. McGuire, Th. J. Scheidemantel, J. V. Badding, F. J. DiSalvo // Chem. Mater. 2005. V. 17. P. 6186–6191.
- 16. Tl₂Hg₃Q₄ (Q = S, Se, and Te): High-Density, Wide-Band-Gap Semiconductors / S. Johnsen, S. C. Peter, S. L. Nguyen, J.-H. Song, H. Jin, A. J. Freeman, M. G. Kanatzidis // Chem. Mater. 2011. № 23. P. 4375–4383.

Стаття надійшла до редколегії 11.04.2012 р.