УДК 54-161.6 : 546.56 : 546.56 : 546.289 : 546.19 : 546.23 **І. Д. Олексеюк** – доктор хімічних наук, завідувач кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

Т. А. Остап'юк – старший лаборант кафедри нерганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

О. Ф. Змій – кандидат хімчних наук, доцент кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

А. М. Власюк – студентка кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки

Діаграма стану системи AgSbSe₂-SnSe

Роботу виконано на кафедрі неорганічної та фізичної хімії ВНУ ім. Лесі Українки

Методами диференційного термічного, рентгеноструктурного та мікроструктурного аналізів установлено, що переріз AgSbSe₂–SnSe є квазіподвійною системою евтектичного типу з утворенням обмежених твердих розчинів на основі вихідних компонентів.

Ключові слова: диференційний термічний аналіз, твердий розчин, мікроструктура.

Олексеюк И. Д., Остапюк Т. А., Змий О. Ф., Власюк А. Н. Взаимодействие компонентов на разрезе AgSbSe₂-SnSe. Методами диференциального термического, рентгеноструктурного и микроструктурного анализов установлено, что разрез AgSbSe₂-SnSe является квазидвойной системой эвтектического типа с образованием ограниченных твердых растворов на основе исходных компонентов.

Ключевые слова: диференциальный термический анализ, твердый раствор, микроструктура.

<u>Olekseyuk I. D., Ostapyuk T. A., Zmiy O. F., Vlasyuk A. M. Interaktion of the Compounds in the AgSbSe₂-SnSe.</u> AgSbSe₂ – SnSe section is quasi-binary system of eutectic type with formation of limited solid solution ranges of initial components. It was researched using X-ray phase, differential thermal and microstructure analysis methods.

Key words: differential thermal analysis, solid solution, microstructure.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Інтерес до сполуки AgSbSe₂ та твердих розчинів на її основі зумовлений тим, що вони мають порівняно низьку теплопровідність і одночасно високі значення термоелектрорушійної сили й електропровідності. Так рухливість носіїв струму в зразку AgSbSe₂, який очищений зонною плавкою, досягає 1500см² /с [1; 7; 11].

Напівпровідникова сполука SnSe, як і інші сполуки складу $A^{IV}B^{VI}$ та тверді розчини на їхній основі, є одним із базових матеріалів сучасної ІЧ-оптоелектроніки, які використовують для інжекторних гетеролазерів, світлодіодів і фотоприймачів, що працюють у середньому й далекому ІЧдіапазоні. Окрім цього, вони мають можливість перебудувати їхні спектральні характеристики за зміни складу, температури, тиску та магнітного поля, що зумовлене залежністю ширини забороненої зони від цих параметрів. Перспективним є їхнє використання як термоелектричних пристроїв, що можуть працювати в інтервалі температур від кімнатної до 800–900 К [2].

Сполука AgSbSe₂ (аргентум метастибіт) утворюється в системі Ag₂Se–Sb₂Se₃ і має область гомогенності 50–62 мол.% Sb₂Se₃. Вона плавиться конгруентно при 893 К, максимум температури плавлення зміщений у бік Sb₂Se₃ (53 мол.%) [5]. Сполука кристалізується в кубічній сингонії, пр. гр. Fm3m, структурний тип NaCl; період елементарної комірки a = 0,5786 нм [6], атоми Ag та Sb статистично займають позиції Na.

Сполука SnSe (станум моноселенід), що утворюється в системі Sn–Se, плавиться конгруентно при 1153 К [4, 5]. α -SnSe (низькотемпературна модифікація) кристалізується в ромбічній сингонії, пр. гр. Pnma, структурний тип SnS, періоди елементарної комірки: a=0,4445 нм, b=1,1501 нм, c=0,4153 нм. β -SnSe (високотемпературна модифікація) кристалізується також у ромбічній сингонії, але з базоцентрованою коміркою, пр.гр. Стст, періоди елементарної комірки: a = 1,1705 нм,

© Олексеюк І. Д., Остап'юк Т. А., Змій О. Ф., Власюк А. М., 2012

b = 0,4318 нм, c = 0,4410 нм. Уважають, що фазовий перехід $\alpha \leftrightarrow \beta$ для SnSe є переходом другого роду і розтягнутий у температурному інтервалі на 200 К [9, 10]. Структура β -SnSe є похідною від NaCl і утворилася зміщенням шарів октаедрів один відносно одного на a/2. Такий фазовий перехід класифікується як хімічна реакція S_N2 [10]. Ті ж автори вважають, що за температури, близької до температури плавлення, може існувати третя γ -модифікація SnSe зі структурою NaCl [10]. Зважаючи на вищенаведениі міркування, можна очікувати на перерізі AgSbSe₂–SnSe утворення твердих розчинів значної протяжності на основі вихідних компонентів.

Матеріали і методи дослідження. Для синтезу вихідних компонентів AgSbSe₂ і SnSe та зразків проміжних складів використовували прості речовини високої чистоти: Ag-99,999 мас.%, Sn-99,999 мас.%, Sb-99,999 мас.%, Se-99,999 мас.%. Синтез здійснювали прямим однотемпературним ампульним методом у кварцових контейнерах вакуумованих до 0,1 Па залишкового тиску. Максимальна температура синтезу становила 1270 К. Гомогенізуючий відпал здійснювався при 670 К протягом 500 годин. Від цієї температури зразки гартувались у воду кімнатної температури. Синтезовані зразки досліджували рентгеноструктурним, диференційним термічним та мікроструктурним методами аналізу. Рентгеноструктурний аналіз здійснювали за дифрактограмами, знятими на дифрактометрі ДРОН -4 -13 з використанням CuK_α-випромінювання, діапазон сканування $10^0 \le 2\theta \le 80^0$, крок сканування $0,05^0$, час експозиції –2 с. Фазовий аналіз проводили з використанням пакетів програм DRWin та Powder Cell.

Диференційний термічний аналіз здійснювали, використовуючи Pt – Pt/Rh термопари та двокоординатного самописця марки Н 307/11. Швидкість нагріву зразків становила 10 К/хв., охолодження проводили в режимі вимкненої печі.

Мікроструктурний аналіз і помір мікротвердості проводили з використанням мікротвердоміра Leica VMHT Auto.

Виклад основного матеріалу й обгрунтування отриманих результатів дослідження. Для дослідження перерізу AgSbSe₂–SnSe синтезовано 17 зразків у повному концентраційному інтервалі. Усі зразки досліджували описаними вище методами. У табл. 1 наведені температури термічних ефектів синтезованих зразків перерізу.

Таблиця 1

N⁰	Склад зразка AgSbSe ₂ –SnSe	Термічні ефекти в К			
1	100 % SnSe	807			1152
2	10 % AgSbSe2 – 90 % SnSe	789	803	1049	1110
3	15 % AgSbSe2 – 85 % SnSe	791	803	1003	1078
4	20 % AgSbSe2 – 80 % SnSe	792		911	1053
5	25 % AgSbSe2 – 75 % SnSe	791		865	1033
6	30 % AgSbSe2 – 70 % SnSe	791		866	1023
7	35 % AgSbSe2 – 65 % SnSe	791		867	912
8	40 % AgSbSe2 - 60 % SnSe	792		866	—
9	45 % AgSbSe2 – 55 % SnSe	792		868	876
10	50 % AgSbSe2 – 50 % SnSe	792		869	879
11	55 % AgSbSe2 – 45 % SnSe			869	882
12	60 % AgSbSe2 – 40 % SnSe			869	884
13	70 % AgSbSe2 – 30 % SnSe			869	886
14	80 % AgSbSe2 – 20 % SnSe			869	886
15	90 % AgSbSe2 – 10 % SnSe	_	_	869	888
16	95 % AgSbSe2 – 05 % SnSe	_	_	870	888
17	100 % AgSbSe2	_	_	_	890

Склад шихти й температури термічних ефектів зразків перерізу AgSbSe₂-SnSe

Як видно з результатів ДТА, система квазіподвійна, у ній існує необмежена розчинність у рідкому стані й обмежена розчинність у твердому стані. Температура плавлення AgSbSe₂ становить 890 K, а SnSe плавиться при 1152 K і має поліморфне перетворення α↔β при 807 K. Ці дані добре узгоджуються з відомими в літературі.

106

Результати рентгенофазового аналізу (рис. 1) показали, що на основі сполуки AgSbSe2 при 670 К існує твердий розчин великої протяжності.

Рис. 1. Дифрактограми зразків системи AgSbSe₂ – SnSe

Лише в зразку 55 мол.% AgSbSe₂ i 45 мол.% SnSe присутня фаза SnSe. Твердий розчин на основі SnSe менший 10 мол.%.

На рис. 2 наведено зміну періоду *a* та об'єму *V* елементарної комірки в межах твердого розчину (a = 0,5784 нм для 100 мол.% AgSbSe₂ до a = 0,5838 нм для зразка 60 мол.% AgSbSe₂ та від V = 0,1935 нм³ до V = 0,1989 нм³ відповідно.

Рис. 2. Зміна періодів елементарної комірки а та об'єму V зразків перерізу AgSbSe₂ – SnSe в межах твердого розчину

Для деяких зразків системи AgSbSe₂–SnSe поміряна мікротвердість; зміна величини мікротвердості в межах твердого розчину, представлена на рис. 3, становить від 1,8 ГПа для 100 мол.% AgSbSe₂ до 2,42 ГПа для складу 60 мол.% AgSbSe₂.

Рис. 3. Зміна мікротвердості в зразках системи AgSbSe₂-SnSe

За результатами описаних досліджень побудовано діаграму стану системи AgSbSe₂–SnSe. Діаграма стану евтектичного типу з утворенням твердих розчинів на основі вихідних компонентів. Координати евтектичної точки становлять 868 К і 40 мол.% AgSbSe₂ (рис. 4). При евтектичній температурі спостерігається значна розчинність на основі вихідних компонентів (у межах 100–50 мол.% зі сторони AgSbSe₂ та 100–70 мол.% зі сторони SnSe). Криві ліквідусу й солідусу твердого розчину на основі AgSbSe₂ (γ)мало відрізняються за температурою (8–18 К). Твердий розчин на основі β -SnSe при 791 К терпить твердофазний евтектоїдний розпад за реакцією $\beta \leftrightarrow \alpha + \gamma$. Розчинність на основі α -SnSe є істотно меншою і при 670 К не перевищує 5 мол.% AgSbSe₂ (рис. 3).

108

Рис. 4. Діаграма стану системи $AgSbSe_2 - SnSe$ L; 2 - L+ β , 3 - L+ γ , 4 - β + γ , 5 - β , 6 - γ , 7 - α + β , 8 - α , 9 - α + γ

Висновки. Побудована діаграма фазових рівноваг квазіподвійної системи AgSbSe₂–SnSe. Отримані результати підтвердили утворення твердих розчинів значної протяжності на основі вихідних компонентів. Це тверді розчини гетеровалентного заміщення без зміни числа атомів в елементарній комірці. Таке заміщення зумовлене близькістю кристалічних структур сполук AgSbSe₂ та β -SnSe і сум іонних радіусів атомів,що заміщуються (2r Sn²⁺ = 0,28 нм; r Ag⁺ +r Sb³⁺ =0,275 нм). Усі три елементи-катіони є елементами п'ятого періоду Періодичної системи.

Список використаної літератури

- 1. Бургер Л. И. Тройные алмазоподобные полупроводники / Л. И. Бургер, В. Д. Прочухан. М. : Металлургия. 1968. 94 с.
- Блецкан Д. И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе / Д. И. Блецкан. – Ужгород : Закарпаття, 2004. – 290 с.
- 3. Жданов. В. В. Фазовый переход второго рода в SnSe / В. В. Жданов // Физ. тверд. тела. 1961. Т. 3. № 5. С. 1619–1620.
- 4. Изучение диаграммы состояния системы олово-селен / А. М. Гаськов, В. П. Зломанов, Ю. А. Сапожников, А. В. Новоселова // Вестн. Моск. ун-та. Сер. : Химия. 1968. № 3. С. 48–51.
- 5. Караханова М. И. О диаграмме плавкости олово-селен / М. И. Караханова, Ф. С. Пашинкин, Ф. В. Новоселова // Неорг. матер. Изв. АН СССР. –1966. – Т. 2, № 7 – С. 1186–1189.
- 6. К вопросу о фазовом переходе второго рода у SnSe / С. А. Дембовский, Б. Н. Егоров, А. С. Пашинкин, Ю. А. Поляков // Неорг. химии. 1963. Т. 8. № 4. С. 1025–1026.
- Wernick J. H. New Semiconductors / J. H. Wernick, S. Geller, K. E. Benson // J. Phys Chem. Sol. 1958. V. 4. – P. 154.
- Deckription du systeme rernaire Ag–Sb–Se / [A. Doutserrit, R. Ollitrault-Fichet, J. Rivet et J. Dugue] // J. Alloys. Comp. – 1993. – P. 223–232.

- Geller S. Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe 2, AgSbTe2, AgBiS2, AgBiSe2./ S.Geller and I.H. Wernik // Acta Crystall. 1959. 12. P. 46.
- 10. Schnering H. G. The High Temperature Structure of β-SnS and β-SnSe and B16-to-B33 type λ-transition path / H. G. Schnering, H. Wiedemeier // Z. Kristallogr. 1981. –Bd. 156. № 1–2. S. 143–150.
- Structural and Termoelectric Propetis of AgSbSe₂ and AgSbTe₂ / [K.Wojciechowski, J. Tobola, M. Schmidt, R. Zybala] // 5th European Conference on Termoelectric Odessa. Ukraine, September, 10–12. – 2007. – P. 117–121.

Стаття надійшла до редколегії 12.04.2012 р.