УДК 544.344:544.013:546.659: 546.665:549.252:549.251:546.22 **О. В. Марчук** – кандидат хімічних наук, доцент кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

Л. Д. Гулай – доктор хімічних наук, завідувач кафедри екології та охорони навколишнього середовища Волинського національного університету імені Лесі Українки

Фазові рівноваги в системах La₂X₃–PbX–SiX₂ (X–S, Se) за температури 770 К

Роботу виконано на кафедрі неорганічної та фізичної хімії ВНУ ім. Лесі Українки

За результатами рентгенофазового аналізу досліджено фізико-хімічну взаємодію компонентів у квазіпотрійних системах La₂S₃–PbS–SiS₂ і La₂Se₃–PbSe–SiSe₂. Побудовано ізотермічні перерізи досліджуваних систем за температури 770 К.

Ключові слова: рідкісноземельні метали, рентгенофазовий аналіз, ізотермічний переріз.

Марчук О. В., Гулай Л. Д. Фазовые равновесия в системах La₂X₃–PbX–SiX₂ (X–S, Se) при температуре 770 К. На основании результатов рентгенофазового анализа исследовано физико-химическое взаимодействие компонентов в квазитройных системах La₂S₃–PbS–SiS₂ и La₂Se₃–PbSe–SiSe₂. Построены изотермические сечения исследуемых систем при температуре 770 К.

Ключевые слова: редкоземельные металлы, рентгенофазовый анализ, изотермическое сечение.

<u>Marchuk O. V., Gulay L. D. Phase Equilibria in the La₂X₃–PbX–SiX₂ (X–S, Se) Systems at 770 K.</u> Interaction of the components in the La₂S₃–PbS–SiS₂ and La₂Se₃–PbSe–SiSe₂ systems have been investigated using X-ray phase analysis. Isothermal sections of the investigated systems have been constructed at 770 K.

Key words: rare-earth, X-ray phase analysis, isothermal section.

Постановка наукової проблеми та її значення. Одним із пріоритетних завдань неорганічного матеріалознавства є одержання нових речовин із широким спектром властивостей. Серед великого різноманіття матеріалів особливий інтерес становлять складні халькогеніди, для яких характерна доступна технологічність, відтворюваність результатів та анізотропія властивостей [10]. У сучасних наукових дослідженнях особливу увагу приділяють халькогенідам рідкісноземельних елементів. Вивчення кристалічних структур РЗМ-вмісних тернарних і тетрарних сполук та фазових рівноваг за їхньої участі дозволяє використовувати їх у подальших дослідженнях, при розробці та прогнозуванні сфер їхнього практичного застосування. Наша робота є одним із етапів систематичного вивчення взаємодії компонентів у квазіпотрійних системах Ln_2X_3 –PbX–D^{IV}X₂ (Ln–P3M; D^{IV}–Si, Ge, Sn; X–S, Se) [4], [1], [2] та ін.

Аналіз останніх досліджень із цієї проблеми. Відомості про діаграми фазових рівноваг у РЗМвмісних квазіпотрійних системах та кристалічну структуру складних халькогенідних сполук, що в них утворюються, використовують як довідковий матеріал у галузі напівпровідникового матеріалознавства та для розширення баз кристалографічних даних і пошуку нових матеріалів. Саме цього аспекту досліджень стосуються роботи [14], [8] тощо. Компонентами досліджуваних систем є квазібінарні сполуки, кристалічна структура яких є детально вивченою (табл. 1).

Таблиця 1

Сполика	Просторова	Періоди комірки, нм			
Сполука	група	а	b	С	Лі-ра
La_2S_3	Pnma	0,766	0,422	1,950	[23]
La ₂ Se ₃	$I\overline{4} 3d$	0,90521	_	_	[11]

Кристалографічні характеристики сполук La₂X₃, PbX та SiX₂ (X–S, Se)

© Марчук О. В., Гулай Л. Д., 2012

	n	•	•	• • • •	• • •
Науковии вісн	ник Колинськог	о нашонального) VH188NCUM81	ту імені Лес	1 צאחמוואנע
maynoonn oren	min Dommeonoe		ymocpenner	<i>my when it it c</i> c	· · · · · · · · · · · · · · ·

PbS	$Fm\overline{3}m$	0,59297	_	_	[24]
PbS	Fm3m	0,5996	-	-	[5]
PbS	Fm3m	0,3289	-	-	[12]
PbSe	$Fm\overline{3}m$	0,6124	-	-	[21]
PbSe	Fm3m	0,6128(1)	-	-	[6]
PbSe	$Fm\overline{3}m$	0,6133	-	-	[17]
PbSe	$Fm\overline{3}m$	0,6128	-	-	[16]
PbSe	$Fm\overline{3}m$	0,6122	-	-	[22]
SiS ₂	$I\overline{4}2d$	0,5420(4)	0,5420(4)	0,8718(4)	[20]
SiS ₂	Ibam	0,9545(3)	0,5564(2)	0,5552(2)	[19]
SiSe ₂	Ibam	0,9669(3)	0,5998(2)	0,5851(2)	[19]

Метою роботи є встановлення фазових рівноваг у квазіпотрійних системах La_2S_3 –PbS–SiS₂ і La_2Se_3 –PbSe–SiSe₂ за температури 770 К для пошуку нових тетрарних халькогенідних матеріалів.

Матеріали і методи. Синтез сплавів квазіпотрійних систем La₂S(Se)₃–PbS(Se)–SiS(Se)₂ проводили з простих речовин із вмістом основного компонента не менше 99,99 ваг. % в електричній муфельній печі з програмним управлінням технологічними процесами МП-30. Максимальна температура синтезу становила 1370 К. Гомогенізуючий відпал при температурі 770 К проводили протягом 500 годин. Рентгенофазовий аналіз здійснювали за дифрактограмами, які були зняті на дифрактометрі ДРОН-4-13 у межах $2\Theta = 10-80^{\circ}$ (СиК_{α}-випромінювання, крок сканування – 0,05°, експозиція у кожній точці – 1 с). Обробку даних та визначення кристалічної структури здійснювали за допомогою пакету програм CSD [9].

Виклад основного матеріалу й обгрунтування отриманих результатів дослідження. В обмежувальних системах нами підтверджено існування шести потрійних сполук La₂PbS(Se)₄ (пр. гр. $I\overline{4}$ 3*d*, [18]), Pb₂SiS(Se)₄ (пр. гр. $P2_1/c$, [13]), La₂SiS₅ (пр. гр. $P12_1/c_1$, [15]), La₆Si₄Se₁₇ (пр. гр. $p\overline{1}$, [3]). Пітверджено також існування двох тетрарних сполук La₂PbSi₂S₈ та La₂PbSi₂Se₈ (пр. гр. R-3c) [7].

Комплекс проведених досліджень дав змогу побудувати ізотермічні перерізи досліджуваних квазіпотрійних систем за температури 770 К.

*Система La*₂S₃–*PbS*–*SiS*₂. У сульфурвмісній системі за температури відпалу сплавів встановлено існування семи однофазних, тринадцяти двофазних та шести трифазних полів (табл. 2).

Розчинність на основі вихідних компонентів квазіпотрійної системи (рис. 1) є незначною ($\approx 1-2$ мол. % відповідного компонента). Найбільша розчинність спостерігається на основі бінарної сполуки La₂PbS₄. Твердий розчин складу La_{2+2/3x}Pb_{1-x}S₄ (x = 0–0,86) локалізований уздовж квазібінарної системи La₂S₃–PbS (поле 2).

Таблиця 2

Поле	Фази
1	$La_2S_3 + La_{2,57}Pb_{0,14}S_4$
2	$La_{2+2/3x}Pb_{1-x}S_4 \ (x=0-0,86)$
3	$PbS + La_2PbS_4$
4	$PbS + Pb_2SiS_4$
5	$SiS_2 + Pb_2SiS_4$
6	$SiS_2 + La_2SiS_5$
7	$La_2S_3 + La_2SiS_5$
8	$La_{2}SiS_{5} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0,39 - 0,86)$
9	$La_{2+2/3x}Pb_{1-x}S_4 (x = 0 - 0,39) + La_2PbSi_2S_8$
10	$PbS + La_2PbSi_2S_8$
11	$Pb_2SiS_4 + La_2PbSi_2S_8$
12	$SiS_2 + La_2PbSi_2S_8$
13	$La_2SiS_5 + La_2PbSi_2S_8$

Фазові поля в системі La₂S₃ – PbS – SiS₂ за температури 770 К

14	$La_2S_3 + La_2SiS_5 + La_{2,57}Pb_{0,14}S_4$
15	$La_2SiS_5 + La_2PbSi_2S_8 + La_{2,26}Pb_{0,61}S_4$
16	$PbS + La_2PbS_4 + La_2PbSi_2S_8$
17	$SiS_2 + La_2SiS_5 + La_2PbSi_2S_8$
18	$PbS + Pb_2SiS_4 + La_2PbSi_2S_8$
19	$SiS_2 + Pb_2SiS_4 + La_2PbSi_2S_8$

Рис. 1. Ізотермічний переріз системи La_2S_3 -PbS-SiS $_2$ за температури 770 К

Система La₂Se₃—PbSe–SiSe₂. У селенвмісній системі за температури відпалу сплавів співіснує шість однофазних, десять двофазних та п'ять трифазних полів (табл. 2). Розчинність на основі вихідних компонентів квазіпотрійної системи є також незначною ($\approx 1-2$ мол. % відповідного компонента) (рис. 2).

Таблиця З

Поле	Фази
1	$La_{2+2/3x}Pb_{1-x}Se_4 (x = 0 - 1)$
2	$PbSe + La_2PbSe_4$
3	$PbSe + Pb_2SiSe_4$
4	$SiSe_2 + Pb_2SiSe_4$
5	$SiSe_2 + La_6Si_4Se_7$
6	$La_6Si_4Se_7 + La_{2+2/3x}Pb_{1-x}Se_4 (x = 0,66 - 1)$
7	$La_{2+2/3x}Pb_{1-x}Se_4 (x = 0 - 0.66) + La_2PbSi_2Se_8$
8	$La_2PbSe_4 + Pb_2SiSe_4$
9	$La_6Si_4Se_7 + La_2PbSi_2Se_8$
10	$Pb_2SiSe_4 + La_2PbSi_2Se_8$
11	$SiSe_2 + La_2PbSi_2Se_8$
12	$La_{2+2/3x}Pb_{1-x}Se_4 (x = 0,66) + La_6Si_4Se_7 + La_2PbSi_2Se_8$
13	$La_2PbSe_4 + Pb_2SiSe_4 + La_2PbSi_2Se_8$

Фазові поля в системі La	a ₂ Se ₃ – PbSe –	- SiSe ₂ за тем	ператури 770 Н	K
+ usobi nom b enerem La			meparyph 7701	

Науковий вісник Волинського національного університету імені Лесі Українки

14 $PbSe + La_{2}PbSe_{4} + Pb_{2}SiSe_{4}$	
$\frac{15}{15} \qquad \qquad$	
$\frac{15}{16} \qquad \frac{15}{\text{SiSe}_2 + 162\text{Si}_2\text{Si}_2\text{Si}_4 + 1627\text{Si}_2\text{Si}_2\text{Si}_8}{16}$	
$II - La_2 PbSi_2S_8 \qquad 1 \qquad \qquad IIa_2Se_3 \qquad 770 K$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{10 15 11}{\text{PbSe 3}} \frac{20 \text{Pb} \text{SiSe}^{40} 60}{\text{Pb} \text{SiSe}} \frac{80 \text{SiSe}}{\text{SiSe}}$	
мол. % SiS ₂	

Рис. 2. Ізотермічний переріз системи La₂Se₃-PbSe-SiSe₂ за температури 770 К

Висновки й перспективи подальших досліджень. У роботі досліджено взаємодію компонентів у квазіпотрійних La_2S_3 –PbS–SiS₂ та La_2Se_3 –PbSe–SiSe₂ системах за температури 770 К. Побудовано ізотермічні перерізи діаграм фазових рівноваг та підтверджено існування шести тернарних $(La_2PbS(Se)_4, Pb_2SiS(Se)_4, La_2SiS_5 i La_6Si_4Se_{17})$ та двох тетрарних $La_2PbSi_2S(Se)_8$ сполук.

Подальші дослідження стосуватимуться аналізу взаємодії компонентів у квазіпотрійних системах Ln_2X_3 -PbX-D^{IV}X₂ (Ln-P3M; D^{IV}-Si, Ge, Sn; X-S, Se) і встановлення закономірностей у взаємодії компонентів вказаних квазіпотрійних систем при переходах Si \rightarrow Ge \rightarrow Sn ta S \rightarrow Se.

Список використаної літератури

- 1. Олексеюк І. Д. Системи Sm(Er)₂Se₃ PbSe GeSe₂ при температурі 770 К / І. Д. Олексеюк, Л. Д. Гулай, О. В. Марчук // Наук. вісн. ВНУ ім. Лесі Українки. Хімічні науки. № 24. 2009. С. 14–19.
- Система La₂Se₃ PbSe GeSe₂ при 770 K / Блашко Н. М., Руда І. П., Марчук О. В., Гулай Л. Д.] // Матеріали IV Міжнар. наук.-практ. конф. студ. і аспірантів «Волинь очима молодих науковців: минуле, сучасне, майбутнє». Луцьк, 12–13 травня 2010 р. – Луцьк: PBB «Вежа» ВНУ ім. Лесі Українки, 2010. – Т. 2. – С. 331–332.
- Система La₂Se₃ PbSe SiSe₂ при 770 К та кристалічна структура сполуки La₂PbSi₂Se₈ / [Л. В. Ходаковська, І. П. Руда, О. В. Марчук, Л. Д. Гулай] // Матеріали III Міжнародної науково-практичної конференції студентів і аспірантів «Волинь очима молодих науковців: минуле, сучасне, майбутнє». Луцьк, 13–14 травня 2009 р. – Луцьк : ВНУ ім. Лесі Українки, 2009. – Т. 2. – С. 296–298.
- 4. Фазові рівноваги в системах Y₂S(Se)₃ PbS(Se) SiS(Se)₂ при 770 К / О. В. Марчук, І. П. Руда, Л. Д. Гулай, І. Д. Олексеюк] // Наук. вісн. ВНУ, серія «Хімічні науки». № 13. 2008. С. 24–27.
- Abe S. Lead sulfide / Abe S., Mochizuki K., Masumoto K. // Journal of the Japan Institut of Metals 1992. V. 56 (12). – P. 1479–1484.
- 6. Charge distribution and atomic thermal vibration in lead chalcogenide crystals / [Noda Y., Ohba S., Sato S., Saito Y.] // Acta Crystallographica B 1983. V. 39. P. 312–317.

- Crystal structures and magnetic properties of R₂PbSi₂S₈ (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho), R₂PbSi₂Se₈ (R = La, Ce, Pr, Nd, Sm, Gd) and R₂PbGe₂S₈ (R = Ce, Pr) compounds / [Daszkiewicz M., Marchuk O. V., Gulay L. D., Kaczorowski D.] // J. Alloys and compounds. 2012. V. 519 P. 85–91.
- Crystal structures of the R₂Pb₃Sn₃S₁₂ (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er and Tm) compounds / [Gulay L. D., Ruda I. P., Marchuk O. V., Olekseyk I. D.] // J. Alloys and compounds. – 2008. – V. 457. – P. 204–208.
- CSD-Universal program package for single crystal and powder structure data treatment / [L. G. Aksel 'rud, Yu. N. Grin', P.Yu. Zavalii and others] // Collected Abstracts 12th European Crystallogr. Meet., Moscow, USSR, 20–28 August, – 1989. – Vol. 3. – P.155.
- Eliseev A. A., Kuzmichyeva G. M. Handbook on the physics and chemistry of rare earths. Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements. – Elsevier Science Publishers B. V. – Vol. 13., Ch. 89. 1990. – P. 191–281.
- 11. Folchnandt M. Single Crystals of C-La₂Se₃, C-Pr₂Se₃, and C-Gd₂Se₃ with Cation-Deficient Th₃P₄-Type Structure / M. Folchnandt, Th. Schleid // Z. Anorg. Allg. Chem. 2001. Vol. 627. P. 1411–1413.
- High-pressure X-ray diffraction study of the structural phase transition in PbS, PbSe and PbTe with synchrotron radiation / [Chattopadhyay T. K., von Schnering H. G., Grosshans W. A., Holzapfel W. B.] // Physica B and C (Netherland) – 1986. – V. 139. – P. 356–360.
- Iglesias J. E. Thernary Chalcogenide compounds AB₂X₄: The crystal structures of SiPb₂S₄ and SiPb₂Se₄ / J. E. Iglesias, H. Steinfink // Journal of Solid State Chemistry 1973. V. 6. P. 93–98.
- 14. Investigation of the Y_2S_3 PbS SnS₂ system at 770 K / [Marchuk O. V., Ruda I. P., Gulay L. D., Olekseyuk I. D.] // Polish journal of the chemistry. 2007. V. 81. P. 425–432.
- 15. La₂SiS₅ / [Daszkiewicz M., Gulay L. D., Ruda I. P. et al.] // Acta Crystallographica E, Structure Reports Online. 2007. E63. i197.
- Lead selenide / [Nasibov I.O., Sultanov T. I., Murguzov M. I., Shafagatova G. G.] // Inorganic Materials (USSR) 1989.– V. 25(4). – P. 485–487.
- 17. Leute V. Lead selenide / V. Leute, H. J. Koller // Zeitschrift fuer Physikalische Chemie 1986. V. 149. P. 213–227.
- 18. Patrie M. Systemes L_2X_3 PbX (L = lanthanides, X = S, Se, Te) / M. Patrie, M. Guittard, M. P Pardo // Reference Bulletin de la Societe Chimique de France 1969. V. 11. P. 3832–3834.
- 19. Peters J. Silicon disulphide and silicon diselenide: A reinvestigation / J. Peters, B. Krebs // Acta Crystallographica B 1982 V. 38. P. 1270–1272.
- Prewitt C.T. Germanium and silicon disulfides: Structure and synthesis / C. T. Prewitt, H. S. Young // Science 1965. – V. 149. – P. 535–537.
- Ravindra N. M. Lead selenide / N. M. Ravindra, V. K. Srivastava // Physica Status Solidi, Sectio A: Applied Research – 1980 – V. 58. – P. 311–316.
- 22. Skums V. F. Lead selenide / V. F. Skums, R. L. Pink, M. R. Allasov // Inorganic Materials (USSR) 1991. V. 27(8). – P. 1336–1340.
- 23. Sur les varietes alpha et beta des sulfures L₂S₃ des terres rares / [Basancon P., Adolphe C., Flahaut J., Laruelle P.] // Materials Research Bulletin 1969. V. 4. P. 227–238.
- 24. Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe [Noda Y., Matsumoto K., Ohba S. et al.] // Acta Crystallographica C 1987. V.43. P. 1443–1445.

Стаття надійшла до редколегії 04.04.2012 р.