УДК 748.736.4

**М. Ф. Федина** – кандидат хімічних наук, доцент кафедри хімії Національного лісотехнічного університету України;

А. О. Федорчук – доктор хімічних наук, завідувач кафедри неорганічної та органічної хімії Львівського національного університету ветеринарної медицини та біотехнологій імені С. З. Гжицького;

**Л. О. Федина** – кандидат хімічних наук, доцент Львівського інституту економіки і туризму

## Кристалічна структура сполуки TmCu<sub>5</sub>Al<sub>7</sub>

Роботу виконано на кафедрі неорганічної та органічної хімії ЛНУВМБТ ім. С. З. Ґжицького

Рентгенівським дифракційним методом порошку (Huber G670 Imaging Plate Guinier camera, Cu K $a_I$ -випромінювання) досліджено кристалічну структуру тернарного алюмініду TmCu<sub>5</sub>Al<sub>7</sub> (структурний тип CeMn<sub>4</sub>Al<sub>8</sub>, символ Пірсона t/26, просторова група I4/mmm, a = 8,66936(3), c = 5,11125(3) Å, V = 384,15(1) Å<sup>3</sup>,  $R_I = 0,0685$ ,  $R_P = 0,1055$ ). Проаналізовано взаємозв'язок структур тернарних алюмінідів TmCu<sub>5</sub>Al<sub>7</sub> та TmCu<sub>4</sub>Al. **Ключові слова:** Тулій, Купрум, Алюміній, рентгенівський метод порошку, кристалічна структура.

<u>Федына М. Ф., Федорчук А. А., Федына Л. А. Кристаллическая структура соединения TmCu<sub>5</sub>Al<sub>7</sub>.</u> Рентгеновским дифракционным методом порошка (Huber G670 Imaging Plate Guinier camera, Cu K $\alpha_1$ -излучение) изучена кристаллическая структура тернарного алюминида (структурный тип CeMn<sub>4</sub>Al<sub>8</sub>, символ Пирсона tl26, пространственная группа I4/mmm, a = 8,66936(3), c = 5,11125(3) Å, V = 384,15(1) Å<sup>3</sup>, R<sub>1</sub> = 0,0685, R<sub>P</sub> = 0,1055). Проанализировано взаимосвязь структур тернарных алюминидов TmCu<sub>5</sub>Al<sub>7</sub> и TmCu<sub>4</sub>Al.

Ключевые слова: тулий, медь, алюминий, рентгеновский метод порошка, кристаллическая структура.

<u>Fedyna M. F., Fedorchuk A. O., Fedyna L. O. Crystal Structure of the Compounds TmCu<sub>5</sub>Al<sub>7</sub>.</u> The crystal structure of ternary aluminide TmCu<sub>5</sub>Al<sub>7</sub> was determined by X-ray powder diffraction (Huber G670 Imaging Plate Guinier camera, Cu K $a_I$ -adiation): structure type CeMn<sub>4</sub>Al<sub>8</sub>, space group *I*4/*mmm*, Pearson symbol *tI*26, *a* = 8,66936(3), *c* = 5,11125(3) Å, *V* = 384,15(1) Å<sup>3</sup>, *R<sub>I</sub>* = 0,0685, *R<sub>P</sub>* = 0,1055). Interrelations between of the structures of ternary aluminides TmCu<sub>5</sub>Al<sub>7</sub> and TmCu<sub>4</sub>Al were analyzed.

Key words: thulium, copper, aluminium, X-ray powder diffraction, crystal structure.

**Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми.** Уперше про тернарні сполуки TmCu<sub>4</sub>Al<sub>8</sub> та TmCu<sub>6</sub>Al<sub>6</sub> повідомили автори робіт [3, 4], які навели для них лише результати першого етапу структурних досліджень.

Нашою **метою** був синтез тернарної фази складу TmCu<sub>5</sub>Al<sub>7</sub> і вивчення її кристалічної структури для перевірки можливості реалізації структурного типу ThMn<sub>12</sub> чи його впорядкованої надструктури CeMn<sub>4</sub>Al<sub>8</sub> у потрійній системі Tm-Cu-Al.

Матеріали і методи. Сплави масою 1 г виготовлено в електродуговій печі з вольфрамовим невитрачуваним електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону з металів високої чистоти: тулію ТуМ-1 (99,82 мас. % Тт), міді МОК (99,99 мас. % Сu) та алюмінію А999 (осч) (99,999 мас. % Al). Як гетер використано губчастий титан. Зразки гомогенізовано при 870 К протягом 900 год у вакуумованих кварцових ампулах з подальшим гартуванням у холодній воді.

Кристалічну структуру синтезованої сполуки досліджено рентгенівським методом полікристалу за масивом дифракційних даних зразка складу Tm<sub>7,5</sub>Cu<sub>38,5</sub>Ge<sub>54,0</sub>, одержаного на дифрактометрі Guinier Huber G 670 за методом Гіньє на проходження (випромінювання Cu Kα<sub>1</sub>). Профільні та структурні параметри уточнено методом Рітвельда – порівнянням теоретично розрахованих профілів дифрактограм з експериментальними. Усі розрахунки проведено з використанням комплексу програм WinCSD [5].

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. У результаті уточнення структурних параметрів було підтверджено належність структури тернарної сполуки складу TmCu<sub>5</sub>Al<sub>7</sub> до структурного типу CeMn<sub>4</sub>Al<sub>8</sub> [15]. Положення атомів Ce займають атоми Tm, атомів Mn – Cu, а частину положень атомів Al – статистична суміш з атомів Al та Cu. Експериментальні, розраховані та різницеві дифрактограми однофазного зразка Tm<sub>7.5</sub>Cu<sub>38.5</sub>Ge<sub>54.0</sub>, представлено на рисунку 1. Умови одержання масивів дифракційних даних та результати уточнення структури сполуки наведено в таблиці 1, координати та ізотропні параметри коливання атомів – у

<sup>©</sup> Федина М. Ф., Федорчук А. О., Федина Л. О., 2012

таблиці 2, а елементарну комірку структури сполуки TmCu<sub>5</sub>Al<sub>7</sub> та координаційні многогранники атомів – на рисинку 2.



**Рис. 1.** Експериментальна (точки), розрахована(суцільні лінії) та різницева (суцільні лінії внизу рисунків) дифрактограми зразка Tm<sub>7,5</sub>Cu<sub>38,5</sub>Ge<sub>54,0</sub>. Вертикальні риски вказують положення відбить hkl сполуки TmCu<sub>5</sub>Al<sub>7</sub>

Таблиця 1

## Умови проведення експерименту та результати уточнення структури сполуки TmCu<sub>5</sub>Al<sub>8</sub>

|                                              | -                                 |
|----------------------------------------------|-----------------------------------|
| Склад зразка                                 | $Tm_{7,5}Cu_{38,5}Ge_{54,0}$      |
| Склад сполуки                                | TmCu <sub>5</sub> Al <sub>8</sub> |
| Символ Пірсона                               | tI26                              |
| Просторова група                             | I4/mmm                            |
| Кількість формульних одиниць, Z              | 2                                 |
| Параметри комірки: <i>а</i> , Å              | 8,66936(3),                       |
| <i>c</i> , Å                                 | 5,11125(3)                        |
| Об'єм комірки V, Å <sup>3</sup>              | 384,15(1)                         |
| Розрахована густина, г/см <sup>3</sup>       | 5,8231(1)                         |
| Коефіцієнт абсорбції, см <sup>-1</sup>       | 428,17                            |
| Інтервал 2 <i>θ</i> , °                      | 5-100                             |
| Експозиція, хв                               | 6 x 15                            |
| Фактори достовірності: <i>R</i> <sub>I</sub> | 0,0685                            |
| $R_{\rm P}$                                  | 0,1055                            |

Таблиця 2

## Координати та ізотропні параметри коливання атомів у структурі сполуки TmCu<sub>5</sub>Al<sub>7</sub>

| Атом | ПСТ           | x         | у   | Z   | $B_{\rm iso}, {\rm \AA}^2$ |
|------|---------------|-----------|-----|-----|----------------------------|
| Tm   | 2(a)          | 0         | 0   | 0   | 0,53(2)                    |
| Cu   | 8( <i>f</i> ) | 1/4       | 1/4 | 1/4 | 0,89(2)                    |
| A11  | 8( <i>i</i> ) | 0,3457(2) | 0   | 0   | 1,00(6)                    |
| Al2* | 8( <i>f</i> ) | 0,2814(2) | 1/2 | 0   | 0,85(5)                    |

\* Al2 0,237( 3) Cu + 0,763( 3) Al



Рис. 2. Елементарна комірка структури сполуки ТтСи<sub>5</sub>Al7 та координаційні многогранники атомів

Координаційні многогранники атомів у структурі сполуки  $TmCu_5Al_7$  тотожні відповідним поліедрам прототипу, а саме: гексагональні призми з вісьмома додатковими атомами [ $TmAl_4Cu_8(Al,Cu)_8$ ], пентагональні антипризми з двома додатковими атомами навпроти базисних граней [ $CuCu_2Tm_2Al_4(Al,Cu)_4$ ] та [<u>Al2</u>Cu\_4Tm\_2Al\_4(Al,Cu)\_2] і гексагональні антипризми з двома додатковими атомами навпроти базисних граней [<u>Al1</u>Cu\_4TmAl\_5(Al,Cu)\_4].

Кристалічна структура сполуки TmCu<sub>5</sub>Al<sub>8</sub> близькоспоріднена до структури іншого тернарного алюмініду TmCu<sub>4</sub>Al [5], з яким при температурі дослідження перебуває в рівновазі: координаційні поліедри обох сполук (рис. 3) є гексагональними призмами з вісьмома додатковими атомами для першої та шістьма для другої. Названі многогранники щільно заповнюють простір в обох сполуках. Суттєвою відмінністю є заповнення правильних систем точок для тернарного алюмініду зі структурою CaCu<sub>5</sub> статистичними сумішами атомів Купруму та Алюмінію, тоді як в структурі дослідженої нами сполуки спостерігається більш упорядкований варіант заповнення.



Рис. 3. Взасмозв'язок структур тернарних алюмінідів ТтСи<sub>5</sub>Al<sub>7</sub> та ТтСи<sub>4</sub>Al

Значення розрахованих міжатомних віддалей добре корелюють із сумами атомних радіусів компонентів (табл. 3). Найбільше скорочення міжатомних віддалей ( $\Delta = (d-\Sigma r)/\Sigma r \cdot 100$  %; ( $r_{\text{Tm}} = 1,74$  Å,  $r_{\text{Cu}} = 1,28$  Å та  $r_{\text{Al}} = 1,43$  Å) [6]) виявлено між атомами Al-Cu (~2-7 %), Al-Al(~3-6 %) та Al-Tm (~5 %), що може свідчити про незначну частку ковалентного зв'язку між ними.

Таблиця З

| Атоми |        | d, Å      | D <i>d</i> ,% | КЧ | Атоми |         | d, Å      | D <i>d</i> ,% | КЧ |
|-------|--------|-----------|---------------|----|-------|---------|-----------|---------------|----|
| Tm–   | - 4A11 | 2,997(2)  | -5,46         |    | Cu–   | - 4Al2  | 2,5307(1) | -6,62         |    |
|       | - 8A12 | 3,1815(8) | 0,36          | 20 |       | - 2Cu   | 2,556(1)  | -0,16         | 12 |
|       | – 8 Cu | 3,321(1)  | 9,97          |    |       | - 4A11  | 2,6493(6) | -2,25         | 12 |
|       |        |           |               |    |       | – 2Tm   | 3,321(1)  | 9,97          |    |
| Al1-  | - 4Cu  | 2,6493(6) | -2,25         |    | A12-  | - 4Cu   | 2,5307(1) | -6,62         |    |
|       | – Al1  | 2,675(3)  | -6,47         |    |       | -4A12   | 2,680(1)  | -6,29         |    |
|       | - 2A12 | 2,782(1)  | -2,73         | 14 |       | – 2 Al1 | 2,7831(9) | -2,69         | 12 |
|       | - 2A12 | 2,7831(9) | -2,69         |    |       | – 2Tm   | 3,1815(8) | 0,36          | 12 |
|       | -Tm1   | 2,997(2)  | -5,46         |    |       |         |           |               |    |
|       | -4A11  | 3,180(1)  | 11,19         |    |       |         |           |               |    |

Міжатомні віддалі *d*, скорочення міжатомних віддалей D*d* та координаційні числа атомів у структурі сполуки TmCu<sub>5</sub>Al<sub>7</sub>

**Подяка.** Автори висловлюють подяку дирекції Інституту Макса Планка хімічної фізики твердих тіл (Max Planck Institute for Chemical Physics of Solids) (м. Дрезден, Німеччина) за допомогу в проведенні частини експериментальних досліджень.

## Список використаної літератури

- 1. Кристаллические структуры тернарных соединений в системах церий переходный металл алюминий / [О. С. Заречнюк, П. И. Крипякевич] // Кристаллография. – 1962. – Т. 7. – С. 543–554.
- 2. Эмсли Дж. Элемент. М. : Мир, 1993. 256 с.
- 3. Crystal structures of ternary rare-earth-3d transition metal compounds of the RT <sub>6</sub>Al<sub>6</sub> type / [Felner I.] // J. Less-Comm. Metals. 1980. Vol. 72. T. 1. P. 241–249.
- 4. Crystal structure of RCu<sub>4</sub>Ag and RCu<sub>4</sub>Al (R= rare earth) intermetallic compounds / [Takeshita T., Malik S. K., Wallace W. E.] // Rare Earths in Modern Science and Technology. 1980. Vol. 1980. P. 347–352.

- CSD –universal program package for single crystal or powder structure data treatment / [Akselrud L. G., Grin Yu. M., Pecharsky V. K., et al] // Coll. Abstr. 12th Europ. Crystallogr. Meeting. Moskow. August 20–29, 1989. 1989. – Vol. 3. – P. 155.
- 6. Magnetism and hyperfine interactions of <sup>57</sup>Fe, <sup>151</sup>Eu, <sup>155</sup>Gd, <sup>161</sup>Dy, <sup>166</sup>Er and <sup>170</sup>Yb in RMM compounds / [Felner I., Nowik I.] // J. Phys. Chem. Solids. 1979. Vol. 40. P. 1035–1044.

<u>Адреса для листування:</u> 79049 Львів, вул Вернадського, 34/105 Тел. 223-60-39 e-mail: <u>fmf@ua.fm</u> Стаття надійшла до редколегії 12.04.2012 р.