УДК 536.42:548.3:546.22 (546.56+546.681.+546.682) **Л. П. Марушко** – старший викладач кафедри органічної та біологічної хімії Волинського державного університету імені Лесі Українки;

**Л. В. Піскач** – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського державного університету імені Лесі Українки;

**О. В. Парасюк** – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського державного університету імені Лесі Українки;

**В. І. Пехньо** – член-кореспондент НАНУ, заступник директора інституту загальної та неорганічної хімії імені В. І. Вернадського

# Система CuGaS<sub>2</sub>–CuInS<sub>2</sub>

Роботу виконано на кафедрі загальної та неорганічної хімії ВДУ ім. Лесі Українки

Методами диференційно-термічного та рентгенофазового аналізів досліджено та побудовано фазову діаграму системи CuGaS<sub>2</sub>–CuInS<sub>2</sub>. Система є перитектичного типу з координатами нонваріантних точок: 45 мол. % CuGaS<sub>2</sub>, 1426 К та 68 мол. % CuGaS<sub>2</sub>, 1451 К.

**Ключові слова:** тернарна сполука, фазові рівноваги, твердий розчин, диференційно-термічний аналіз, рентгенівська порошкова дифрактометрія.

Marushko L. P., Piskach L. V., Parasyuk O. V., Pekhnyo V. I. The CuGaS<sub>2</sub>–CuInS<sub>2</sub> System. Phase the CuGaS<sub>2</sub>–CuInS<sub>2</sub> was investigated using differential thermal and X-ray phase analysis methods. The diagram is of peritectic type with two invariant points at 45 mol. % CuGaS<sub>2</sub>, 1426 K Ta 68 mol. % CuGaS<sub>2</sub>, 1451 K.

Key words: ternary compound, phase equilibria, solid solution, differential thermal analysis, X-ray powder diffraction.



**Рис. 1.** Діаграма стану системи CuGaS<sub>2</sub>—CuInS<sub>2</sub> (за даними [3])

### Вступ

У сучасній фотоенергетиці особлива увага приділяється пошуку нових дешевих та високоефективних матеріалів для тонкоплівкових сонячних елементів. Серед перспективних матеріалів потрібно виділити тернарні халькопіритні сполуки на основі міді, наприклад CuInS<sub>2</sub> та CuInSe<sub>2</sub>, чи тверді розчини на їх основі [1; 2].

Фазова діаграма системи  $CuGaS_2$ – $CuInS_2$ вивчалася раніше [3] і наведена на рис. 1. Автор відносить побудовану діаграму до першого типу за класифікацією Розебома. Зафіксовано два фазові переходи при 1247 та 1313 К, що характерні для CuInS<sub>2</sub>, а також аналогічні фазові переходи для твердих розчинів зі сторони CuInS<sub>2</sub>. Зміна параметрів елементарної комірки зі складом твердого розчину здійснюється відповідно до закону Вегарда.

Система CuGaS<sub>2</sub>–CuInS<sub>2</sub> є обмежуючою у досліджуваній нами обмінній системі CuGaS<sub>2</sub>+CuInSe<sub>2</sub>⇔CuGaSe<sub>2</sub>+CuInS<sub>2</sub>, тому вона потребує детальнішого вивчення.

Тернарні сполуки  $CuGaS_2$  і  $CuInS_2$  вивчені досить повно [4; 5], вони утворюються на

© Марушко Л. П., Піскач Л. В., Парасюк О. В., Пехньо В. І., 2007

перерізах Cu<sub>2</sub>S–Ga<sub>2</sub>S<sub>3</sub> та Cu<sub>2</sub>S–In<sub>2</sub>S<sub>3</sub> відповідно. CuGaS<sub>2</sub> кристалізується в структурі халькопіриту з параметрами елементарної комірки: a=0,534741, c=1,047429 нм, ПГ  $I\overline{4}2d$ , Z=4; плавиться конгруентно при температурі 1523 К. CuInS<sub>2</sub> існує в трьох модифікаціях:  $\alpha$  – зі структурою халькопіриту (T<sub>ПП</sub>  $\alpha \rightarrow \beta$  1253 K),  $\beta$  – зі структурою цинкової обманки (T<sub>ПП</sub>  $\beta \rightarrow \gamma$  1318 K),  $\gamma$  – зі структурою вюрциту і температурою плавлення 1363 К. Параметри елементарної комірки для HT-модифікації CuInS<sub>2</sub>: a=0,552279, c=1,113295 нм, пр. гр.  $I\overline{4}2d$ , Z=4.

### Експериментальна частина

Для дослідження системи CuGaS<sub>2</sub>– $CuInS_2$  було виготовлено 13 зразків. Компонування шихти проводили з простих речовин із вмістом основного компонента не менше 99,99 ваг. %, використовуючи аналітичні терези ВЛР-200.

Синтез проводили у дві стадії. Першу – при локальному нагріві вакуумованих (0,1 Па) кварцових ампул із шихтою в полум'ї киснево-газового пальника з візуальним спостереженням за ходом реакції (до повного зв'язування сірки). Другу стадію синтезу здійснювали в шахтній печі шляхом нагрівання шихти зі швидкістю 50 К/год. Максимальна температура синтезу становила 1250 К. Витримка при максимальній температурі – 3 год. Охолодження проводилося зі швидкістю 10–20 К/год до 870 К, при якій здійснювався гомогенізуючий відпал протягом 500 год. Після цього ампули зі зразками загартовували у холодній воді. В результаті отримували компактні полікристалічні зразки, придатні для дослідження фізико-хімічних властивостей.

Вивчення отриманих сплавів здійснювали методами диференційного термічного (ДТА) та рентгенофазового (РФА) аналізів. ДТА проводили на установці, що складалася з печі регульованого нагріву "Термодент" (Pt/Pt-Rh термопара) та двохкоординатного самописця H307/1. РФА зразків проводили методом порошкової дифракції на дифрактометрі ДРОН-4-13 (СиК<sub>а</sub>-випромінювання, Ni-фільтр, 2/22-сканування в діапазоні кутів  $10 \le 22 \le 90^\circ$ , крок – 0,05°, час експозиції – 1 с). Розрахунок періодів елементарних комірок зразків проводили повнопрофільним методом Рітвельда за допомогою пакету програм CSD [6].





## Результати та їх обговорення

За результатами ДТА побудували діаграму стану системи CuGaS<sub>2</sub>-CuInS<sub>2</sub> (рис. 2).

Встановлено, що система CuGaS<sub>2</sub>–CuInS<sub>2</sub> є перитектичного типу з координатами двох перитектик: 45 мол. % CuGaS<sub>2</sub>, 1426 К та 68 мол. % CuGaS<sub>2</sub>, 1451 К. В системі утворюється неперервний ряд твердих розчинів ( $\alpha$ ), а також два обмежених твердих розчини ( $\beta$  і  $\gamma$ ) на основі BT(1)- і BT(2)-модифікацій CuInS<sub>2</sub> відповідно.

За результатами РФА (рис. 3) підтверджено дані [3] про те, що при температурі відпалу в повному концентраційному інтервалі сплави є однофазні.

Усі зразки добре проіндексувалися в тетрагональній структурі (пр. гр.  $I\overline{4}2d$ ). Пораховані параметри для тернарних сполук (a=0,53494, c=1,0477 нм для CuGaS<sub>2</sub>, a=0,55205, c=1,1136 нм для CuInS<sub>2</sub>) добре узгоджуються з літературними даними [4].



Рис. 3. Дифрактограми сплавів системи CuGaS<sub>2</sub>-CuInS<sub>2</sub> (у мол. % CuInS<sub>2</sub>): 1-0, 2-10, 3-20, 4-25, 5-30, 6-40, 7-50, 8-60, 9-70, 10-75, 11-80, 12-90, 13-100



**Рис. 4.** Залежність параметрів та об'єму елементарної комірки зразків системи CuGaS<sub>2</sub>–CuInS<sub>2</sub> від складу

На всій протяжності твердого розчину CuGa<sub>1-x</sub>In<sub>x</sub>S<sub>2</sub> спостерігається лінійне зростання параметрів елементарних комірок при збільшенні вмісту CuInS<sub>2</sub> (рис. 4), що узгоджується із більшою величиною іонного радіуса In<sup>3+</sup> (0,076 нм) у порівнянні з Ga<sup>3+</sup> (0,061 нм) [7].

#### Висновки

Побудовано фазову діаграму системи CuGaS<sub>2</sub>–CuInS<sub>2</sub>. Система є перитектичного типу з координатами нонваріантних точок: 45 мол. % CuGaS<sub>2</sub>, 1426 К та 68 мол. % CuGaS<sub>2</sub>, 1451 К. Зміна періодів елементарної комірки зразків досліджуваної системи здійснюється відповідно до закону Вегарда.

### Література

- 1. Goetzberger A., Hebling C., Schock H.-W. Photovoltaic materials, history, status and outlook // Materials Science and Engineering.- 2003.- R 40.- P. 1-46.
- 2. Miles R. W., Hynes K. M., Forbes I. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues // Progress in Crystal Growth and Characterization of Materials. 2005. 51. P. 1–42.
- 3. Боднарь И. В. Выращивание монокристаллов и исследование свойств твердых растворов CuGa<sub>x</sub>In<sub>1-x</sub>S<sub>2</sub> // Неорган. материалы. 1981. Т. 17, № 4. С. 583–587.
- 4. Лазарев В. Б., Киш З. З., Переш Е. Ю., Семрад Е. Е. Сложные халькогениды в системах А<sup>II</sup>-В<sup>III</sup>-С<sup>VI</sup>.-М.: Металлургия, 1993.- 140 с.
- Chakrabarti D. J., Laughlin D. E. Crystal structure of CuInS<sub>2</sub> // Bull. Alloy Phase Diagrams.– 1981.– Vol. 2.– P. 305–308.
- Aksel'rud L. G., Gryn' Yu. N., Zavalij P. Yu., Pecharsky V. K., Fundamentsky V. K. CSD Universal program package for single crystal or powder structure data treatment // Collected Abstracts 12<sup>th</sup> European Crystallographic Meeting. Moscow, 20–29 August 1989.– M.: Nauka, 1989.– Vol. 3.– P. 155.
- Wiberg N. Lehrbuch der Anorganischen Chemie // Walter de Gruyter.- Berlin; New York.- 1995.-S. 1838-1841.

Статтю подано до редколегії 18.10.2007 р.