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АНОТАЦІЯ 

Сахнюк Михайло Іванович.  

Верифікація асимптотичних методів теорії нелінійних коливань засобами 

СКМ Maple. 

Кваліфікаційна робота присвячена дослідженню точності та меж 

застосовності асимптотичних методів у теорії нелінійних коливань шляхом їх 

верифікації за допомогою системи комп'ютерної математики Maple. 

В роботі розглянуто теоретичні основи виникнення нелінійних коливань 

та проаналізовано класичні наближені методи розв’язання диференціальних 

рівнянь: метод малого параметра (прямого розкладу), метод Лінштедта-

Пуанкаре та метод Крилова-Боголюбова. Об’єктами дослідження обрано 

класичні моделі нелінійної механіки – осцилятор Дуффінга та математичний 

маятник. 

Шляхом порівняння аналітичних розв’язків із точними чисельними 

результатами, отриманими в середовищі Maple, встановлено, що метод 

прямого розкладу призводить до появи секулярних членів, що обмежує його 

застосування малими проміжками часу. Натомість метод Лінштедта-Пуанкаре 

продемонстрував високу точність та ефективність при врахуванні 

неізохронності коливань. Також показано, що врахування кубічної 

нелінійності в рівнянні математичного маятника дозволяє отримати результат, 

який у 5–8 разів точніший за лінійне наближення, проте похибка зростає зі 

збільшенням кута початкового відхилення. 

Ключові слова: нелінійні коливання, асимптотичні методи, метод 

малого параметра, метод Лінштедта-Пуанкаре, метод Крилова-Боголюбова, 

осцилятор Дуффінга, математичний маятник, СКМ Maple. 
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SUMMARY 

Sakhniuk Mykhailo Ivanovych 

Verification of asymptotic methods of nonlinear oscillation theory using CAS 

Maple.  

The master's thesis is devoted to studying the accuracy and applicability limits 

of asymptotic methods in the theory of nonlinear oscillations through their 

verification using the Computer Algebra System (CAS) Maple. 

The work covers the theoretical foundations of nonlinear oscillations and 

analyzes classical approximate methods for solving differential equations: the small 

parameter method (direct expansion), the Lindstedt-Poincaré method, and the 

Krylov-Bogoliubov method. The classical models of nonlinear mechanics—the 

Duffing oscillator and the mathematical pendulum—were chosen as the objects of 

study. 

By comparing analytical solutions with exact numerical results obtained in the 

Maple environment, it was established that the direct expansion method leads to the 

appearance of secular terms, limiting its application to short time intervals. In 

contrast, the Lindstedt-Poincaré method demonstrated high accuracy and efficiency 

in accounting for the non-isochronism of oscillations. It is also shown that including 

cubic nonlinearity in the mathematical pendulum equation yields a result that is 5–8 

times more accurate than the linear approximation, although the error increases with 

the growth of the initial deflection angle. 

Keywords: nonlinear oscillations, asymptotic methods, small parameter 

method, Lindstedt-Poincaré method, Krylov-Bogoliubov method, Duffing 

oscillator, mathematical pendulum, CAS Maple. 
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ВСТУП 

Актуальність теми. Коливальні явища відіграють ключову роль у 

сучасному природознавстві та технічних науках, слугуючи фундаментом для 

функціонування найрізноманітніших систем – від механічних конструкцій та 

гідродинамічних потоків до складних електромагнітних контурів. Глибоке 

розуміння природи цих процесів, побудова адекватних математичних моделей 

та вміння проводити їх детальний аналіз є необхідною передумовою як для 

успішного інженерного проектування, так і для проведення фундаментальних 

наукових досліджень.[1,2,3] 

Окремий і надзвичайно важливий клас складають нелінійні коливання. 

Вони виникають у тих фізичних системах, де відновлювальна сила має 

нелінійну залежність від узагальненої координати або швидкості руху. На 

відміну від лінійних систем, для яких справедливий принцип суперпозиції, 

нелінійні диференціальні рівняння здебільшого не мають точних аналітичних 

розв’язків, виражених через елементарні функції. Ця обставина створює 

суттєві математичні труднощі, оскільки традиційні стандартні методи 

інтегрування у таких випадках виявляються неефективними.[4] 

У ситуаціях, коли знаходження точного розв’язку є неможливим, 

вирішальну роль відіграють асимптотичні методи, також відомі як методи 

малого параметра. Саме вони дозволяють отримати наближені аналітичні 

вирази, які з достатньою для практичних потреб точністю описують поведінку 

динамічної системи. Сутність цих методів полягає у вдалому синтезі простоти 

та точності: складна нелінійна задача зводиться до послідовності простіших 

лінійних задач, розв’язок яких будується у вигляді рядів за степенями певного 

малого параметра . 

Стрімкий розвиток сучасних систем комп’ютерної математики (СКМ), 

таких як Maple, відкриває нові широкі можливості для чисельного 

моделювання фізичних процесів.[5] Однак, попри високу точність, чисельні 
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методи часто не дають глибокого аналітичного розуміння фізики процесу. 

Тому актуальним науковим завданням є поєднання потужних обчислювальних 

можливостей комп’ютерів із класичними аналітичними підходами [14]. У цій 

роботі реалізовано порівняльний аналіз точності асимптотичних методів 

шляхом верифікації отриманих результатів засобами СКМ Maple [28]. 

Фундамент асимптотичної теорії нелінійних коливань було закладено у 

класичних працях видатних вчених А. Пуанкаре, О.М. Ляпунова та Б. Ван дер 

Поля. Подальшого суттєвого розвитку ця теорія набула завдяки роботам М.М. 

Крилова та М.М. Боголюбова, які фактично створили нову галузь 

математичної фізики – нелінійну механіку. Ними було розроблено 

систематичні методи дослідження як періодичних, так і квазіперіодичних 

процесів, а також теоретично обґрунтовано загальні закономірності побудови 

асимптотичних наближень [5,6,7]. 

Мета дослідження полягає у встановленні меж застосовності та оцінці 

точності наближених аналітичних розв’язків, отриманих за допомогою 

асимптотичних методів. Досягнення цієї мети реалізується шляхом 

безпосереднього порівняння наближених результатів із точними чисельними 

розв’язками, одержаними у середовищі СКА Maple, на прикладі таких систем, 

як осцилятор Дуффінга, математичний маятник та система зв’язаних 

маятників. 

Для досягнення поставленої мети сформульовано такі завдання: 

 Провести аналіз теоретичних основ та історичних витоків 

виникнення асимптотичних методів у теорії нелінійних коливань. 

 Детально описати математичний алгоритм застосування методу 

малого параметра, методу Лінштедта-Пуанкаре та методу Крилова-

Боголюбова. 

 Отримати наближені аналітичні розв’язки для диференціальних 

рівнянь осцилятора Дуффінга та математичного маятника. 

 Здійснити чисельне моделювання досліджуваних динамічних систем 

у середовищі СКА Maple та отримати точні розв’язки. 
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 Провести порівняльний аналіз аналітичних та чисельних результатів, 

визначити величину похибки асимптотичних методів та встановити 

допустимі часові інтервали їх коректного використання. 

Об’єкт дослідження: нелінійні коливальні системи, зокрема осцилятор 

Дуффінга, математичний маятник та зв’язані маятники. 

Предмет дослідження: точність та ефективність асимптотичних 

методів (зокрема методів Лінштедта-Пуанкаре та Крилова-Боголюбова) у 

порівнянні з чисельними методами системи комп’ютерної математики Maple. 

Наукова новизна роботи полягає у розробці комплексної схеми 

верифікації асимптотичних методів із використанням сучасних засобів 

комп’ютерної математики. У роботі продемонстровано, як можливості 

символьних обчислень у Maple можуть бути ефективно використані для 

автоматизації громіздких аналітичних перетворень та миттєвої оцінки 

похибки наближених методів. 

Практичне значення. Результати проведеного дослідження дозволяють 

обгрунтовано обирати метод розв’язання нелінійних задач залежно від 

необхідної точності та тривалості часового інтервалу. Матеріали роботи 

можуть бути використані у навчальному процесі при викладанні дисциплін, 

що пов’язані з вивченням коливальних процесів. 

Структура роботи. Логіка дослідження зумовила структуру дипломної 

роботи, яка складається зі вступу, чотирьох розділів, висновків та списку 

використаної джерел. 
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РОЗДІЛ 1  

ТЕОРЕТИЧНІ ОСНОВИ ВИНИКНЕННЯ ТА ЗАСТОСУВАННЯ  

АСИМПТОТИЧНИХ МЕТОДІВ 

1.1 Одновимірні нелійні коливання 

Ангармонічні коливання – це періодичні коливання, форма яких 

відрізняється від гармонічної синусоїди. Якщо гармонічні коливання є 

монохроматичними (їхній спектр містить лише одну частоту), то ангармонічні 

коливання, окрім основної частоти (фундаментальної моди), містять ряд 

вищих гармонік — коливань із кратними частотами. 

У загальному випадку всі реальні коливальні процеси в природі та 

техніці є ангармонічними, оскільки умови ідеальної лінійності системи ніколи 

не виконуються абсолютно точно. 

Класична теорія малих коливань базується на розкладі потенціальної та 

кінетичної енергії системи в ряд Тейлора за координатами та швидкостями, 

обмежуючись доданками другого порядку [14,18]. Це призводить до лінійних 

диференціальних рівнянь руху. Хоча таке наближення є обґрунтованим для 

малих амплітуд, врахування доданків вищих порядків (ангармонізмів або 

нелінійностей) дозволяє виявити якісно нові особливості руху, такі як 

залежність періоду коливань від амплітуди. Фізика нелінійних коливань 

представляє собою широку та важливу область механіки. 

Розглянемо найпростіші особливості нелінійних коливань на прикладі 

одновимірного руху в потенціальному полі. Розкладемо потенціальну енергію 

в ряд поблизу положення рівноваги: 
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𝑈(𝑞) = 𝑈(𝑞0) +
𝑑𝑈

𝑑𝑞
|
𝑞=𝑞0

(𝑞 − 𝑞0)

+
1

2

𝑑2𝑈

𝑑𝑞2
|
𝑞=𝑞0

(𝑞 − 𝑞0)
2                                                    

+
1

3!

𝑑3𝑈

𝑑𝑞3
|
𝑞=𝑞0

(𝑞 − 𝑞0)
3

+
1

4!

𝑑4𝑈

𝑑𝑞4
|
𝑞=𝑞0

(𝑞 − 𝑞0)
4,                           (1.1) 

Оскільки в положенні рівноваги сила дорівнює нулю, 
𝑑𝑈

𝑑𝑞
|
𝑞=𝑞0

= 0. 

Запровадимо зміщення від положення рівноваги 𝑥 = 𝑞 − 𝑞0 та наступні 

позначення для коефіцієнтів:  

𝑑2𝑈

𝑑𝑞2
|
𝑞=𝑞0

= 𝑘, 
𝑑3𝑈

2𝑑𝑞3
|
𝑞=𝑞0

= 𝑚𝛼,  
𝑑4𝑈

6𝑑𝑞4
|
𝑞=𝑞0

= 𝑚𝛽.                 (1.2) 

Запишемо функцію Лагранжа системи: 

𝐿 =
𝑚𝑥2̇

2
−
𝑘𝑥2

2
−
𝑚𝛼𝑥3

3
−
𝑚𝛽𝑥4

4
 .                                       (1.3) 

Тут 𝛼 і 𝛽 – константи, що характеризують нелінійність системи і вважаються 

малими. 

Для одержання рівняння Лагранжа обчислимо необхідні похідні: 

𝜕𝐿

𝜕𝑥̇
=
𝜕

𝜕𝑥̇
(
𝑚𝑥2̇

2
−
𝑘𝑥2

2
−
𝑚𝛼𝑥3

3
−
𝑚𝛽𝑥4

4
) = 𝑚𝑥̇, 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇
=
𝜕

𝜕𝑡
(𝑚𝑥̇) = 𝑚𝑥̈, 

𝜕𝐿

𝜕𝑥
=
𝜕

𝜕𝑥
(
𝑚𝑥2̇

2
−
𝑘𝑥2

2
−
𝑚𝛼𝑥3

3
−
𝑚𝛽𝑥4

4
) = −𝑘𝑥 −𝑚𝛼𝑥2 −𝑚𝛽𝑥3. 

В результаті маємо: 

𝑚𝑥̈ + 𝑘𝑥 +𝑚𝛼𝑥2 +𝑚𝛽𝑥3 = 0.                                           (1.4) 

Перепишемо рівняння (1.4) залишивши лінійні доданки в лівій стороні, а 

нелінійні перенесемо в право: 

𝑚𝑥̈ + 𝑘𝑥 = −𝑚𝛼𝑥2 −𝑚𝛽𝑥3 .                                               (1.5) 
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Поділимо обидві частини рівняння (1.5) на m та запровадимо позначення √
𝑘

𝑚
=

𝜔0, тоді рівняння (1.5) перепишеться у вигляді: 

𝑥̈ + 𝜔0
2𝑥 = −𝛼𝑥2 − 𝛽𝑥3 .                                           (1.6) 

 Розв’язком цього рівняння є періодична функція часу з періодом  𝑇 =
2𝜋

𝜔
, 

що залежить від енергії. Хоча точний розв’язок і може бути виражений через 

емпіричні функції, однак корисним є наближений розв’язок справедливий при 

малих амплітудах коливань. Для його одержання скористаємося тим, що 

розв’язок, як періодична функція часу, може бути записаний в вигляді ряду 

Фур’є: 

𝑥(𝑡) = ∑𝑎𝑛cos (𝑛𝜔𝑡)

∞

𝑛=0

 . 

Коефіцієнти розкладу 𝑎𝑛 і частота 𝜔 можуть бути знайдені із рівнянь 

руху при заданій початковій частоті, початок відліку вибрано так щоб при t=0, 

відхилення х було максимальне. 

 Якщо підставити розв’язок у вигляді нескінченого ряду Фур’є в рівняння 

і виразити всі степені косинуса в його правій частині через більш високі 

гармоніки, то прирівнявши коефіцієнти в правій і лівій частині рівняння при 

однакових гармоніках, ми одержимо нескінчену систему нелінійних рівнянь, 

в кожне з яких входитиме нескінчене число невідомих коефіцієнтів 𝑎𝑛 і 

невідома частота 𝜔. 

 Природно очікувати, що при малій нелінійності розв’язок мало 

відрізняється від гармонічних коливань. Будемо шукати наближений 

розв’язок цієї системи методом послідовних наближень. В цьому методі 

розв’язок нелінійної задачі зводиться до послідовного розрахунку поправок 

більш високого порядку по а. 

 Обмежимося розрахунком зміщення х, до третього порядку по а 

включно і зсуву частоти до другого порядку по а. У першому наближенні 

розв'язок має вигляд гармонічного коливання: 
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𝑥(1) = 𝑎 cos𝜔𝑡                                                        

з невідомою частотою 𝜔, яка мало відрізняється від 𝜔0 і знаходитиметься із 

наступних наближень.  

Отже, розв’язок шукатимемо у вигляді: 

𝑥 = 𝑥(1) + 𝑥(2),                                                       (1.7) 

де перший доданок це гармонічні коливання. 

 Підставимо (1.7) в (1.6) для одержання наступного наближення: 

𝑥(2):           𝑥̈(2) +𝜔0
2𝑥(2) = −𝛼𝑎2𝑐𝑜𝑠2𝜔𝑡 − 𝛽𝑎3𝑐𝑜𝑠3𝜔𝑡.                               (1.8) 

 Використаємо формули пониження степеня: 

𝑐𝑜𝑠2𝜔𝑡 =
1

2
(1 + 𝑐𝑜𝑠2𝜔𝑡), 

𝑐𝑜𝑠3𝜔𝑡 =
3

4
𝑐𝑜𝑠𝜔𝑡 +

1

4
𝑐𝑜𝑠3𝜔𝑡. 

Підставимо ці формули в (1.8): 

𝑥(2):           𝑥̈(2) + 𝜔0
2𝑥(2)

= −𝛼𝑎2
1

2
(1 + 𝑐𝑜𝑠2𝜔𝑡) − 𝛽𝑎3 (

3

4
𝑐𝑜𝑠𝜔𝑡 +

1

4
𝑐𝑜𝑠3𝜔𝑡)           (1.9) 

Отже 𝑥(2) представляємо у вигляді суми гармонік: 

𝑥(2) = 𝑎0
(2)
+ 𝑎1

(2)
𝑐𝑜𝑠𝜔𝑡 + 𝑎2

(2)
𝑐𝑜𝑠2𝜔𝑡 + 𝑎3

(2)
𝑐𝑜𝑠3𝜔𝑡.                       (1.10) 

Запишемо рівняння (1.9) у вигляді (1.10) тобто відповідно до зростання 

гармонік: 

𝑥̈(2) + 𝜔0
2𝑥(2) = −

𝛼𝑎2

2
−
3

4
𝛽𝑎3𝑐𝑜𝑠𝜔𝑡 −

𝛼𝑎2

2
𝑐𝑜𝑠2𝜔𝑡 −

1

4
𝛽𝑎3𝑐𝑜𝑠3𝜔𝑡.        (1.11) 

У рівнянні (1.11) запровадимо наступні позначення: 

𝑎0
(2)
= −

𝛼𝑎2

2
, 

𝑎1
(2)
= −

3

4
𝛽𝑎3, 

𝑎2
(2)
= −

𝛼𝑎2

2
, 

𝑎3
(2)
= −

1

4
𝛽𝑎3. 
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Знайдемо 𝑥̇(2) та 𝑥̈(2): 

𝑥̇(2) = −𝑎𝜔𝑠𝑖𝑛𝜔𝑡 − 2𝑎2
(2)
𝜔𝑠𝑖𝑛2𝜔𝑡 − 3𝑎3

(2)
𝜔𝑠𝑖𝑛3𝜔𝑡, 

𝑥̈(2) = −𝑎𝜔2𝑐𝑜𝑠𝜔𝑡 − 4𝑎2
(2)
𝜔2𝑐𝑜𝑠2𝜔𝑡 − 9𝑎3

(2)
𝜔2𝑐𝑜𝑠3𝜔𝑡. 

Підставимо 𝑥̇(2) та 𝑥̈(2) в рівняння (1.11): 

−𝑎𝜔2𝑐𝑜𝑠𝜔𝑡 − 4𝑎2
(2)
𝜔2𝑐𝑜𝑠2𝜔𝑡 − 9𝑎3

(2)
𝜔2𝑐𝑜𝑠3𝜔𝑡 + 𝜔0

2𝑎0
(2)
+ 𝑎1

(2)
𝜔0
2𝑐𝑜𝑠𝜔𝑡

+ 𝑎2
(2)
𝜔0
2𝑐𝑜𝑠2𝜔𝑡 + 𝑎3

(2)
𝜔0
2𝑐𝑜𝑠3𝜔𝑡 =

= −
𝛼𝑎2

2
−
3

4
𝛽𝑎3𝑐𝑜𝑠𝜔𝑡 −

𝛼𝑎2

2
𝑐𝑜𝑠2𝜔𝑡 −

1

4
𝛽𝑎3𝑐𝑜𝑠3𝜔𝑡 

Згрупуємо доданки в лівій частині рівняння: 

𝜔0
2𝑎0

(2)
+ 𝑎(𝜔0−

2 𝜔2)𝑐𝑜𝑠𝜔𝑡 + 𝑎2
(2)(𝜔0

2 − 4𝜔2)𝑐𝑜𝑠2𝜔𝑡 + 𝑎3
(2)(𝜔0

2 − 9𝜔2)𝑐𝑜𝑠3𝜔𝑡

=

= −
𝛼𝑎2

2
−
3

4
𝛽𝑎3𝑐𝑜𝑠𝜔𝑡 −

𝛼𝑎2

2
𝑐𝑜𝑠2𝜔𝑡

−
1

4
𝛽𝑎3𝑐𝑜𝑠3𝜔𝑡              (1.12) 

Прирівняємо коефіцієнти при однакових гармоніках одержимо: 

𝜔0
2𝑎0

(2)
= −

𝛼𝑎2

2
,                                                                        (1.13) 

(𝜔0
2 −𝜔2) =

−
3

4
𝛽𝑎3,                                                                (1.14) 

𝑎2
(2)(𝜔0

2 − 4𝜔2) = −
𝛼𝑎2

2
,                                                       (1.15) 

𝑎3
(2)(𝜔0

2 − 9𝜔2) = −
1

4
𝛽𝑎3.                                                    (1.16) 

В рівняння (1.14) входить тільки невідома частота 𝜔. Вважаючи нелінійний 

зсув частоти малим, так що (𝜔2 −𝜔0
2) = 2𝜔0(𝜔 − 𝜔0), тоді 

𝛿𝜔(2) = 𝜔 − 𝜔0 =
3𝛽𝑎2

8𝜔0
. 

Амплітуди гармонік знаходимо із рівнянь (1.13), (1.15) і (1.16): 
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𝑎0
(2)
= −

𝛼𝑎2

2𝜔0
2, 

𝑎2
(2)
=
𝛼𝑎2

2𝜔0
2, 

𝑎3
(2)
=

1

32𝜔0
2 𝛽𝑎

3. 

Таким чином, в другому наближенні ми отримали амплітуди нульової і другої 

гармоніки, а також поправку до частоти в другому порядку по а і амплітуду 

третьої гармоніки в третьому порядку по а. [13,28] 

 Тепер друге наближення можна підставити в нелінійну частину 

рівняння, щоб отримати третє наближення і так продовжуючи, будемо 

знаходити амплітуди все більш високих гармонік, які будуть мати більш 

високі порядки по а. 

Проте, важливо, що в третьому наближенні з’являються нові поправки 

третього порядку по а і їх потрібно врахувати. Дійсно, при підстановці другого 

наближення в квадратичний член рівняння, з’являють члени пропорційні 

𝑎0
(2)
: 𝑎cos𝜔𝑡 і 𝑎2

(2)
: 𝑎cos 𝜔𝑡𝑐𝑜𝑠2𝜔𝑡, порядку 𝑎3, врахування яких змінить 

рівності (1.14) і (1.16) і приведе ще до однієї поправки в частоті 𝛿𝜔(3) =
5𝛼2𝑎2

12𝜔30
 , 

і доданку до амплітуди третьої гармоніки:  

𝑎3
(3)
=
𝛼2𝑎3

48𝜔0
4. 

Легко переконатися, що ще одне наближення не змінить поправок 

другого і третього порядку по а. 

Запишемо друге наближення, враховуючи амплітуди гармонік: 

𝑥(2) = −
𝛼𝑎2

2𝜔0
2 +

𝛼𝑎2

6𝜔0
2 𝑐𝑜𝑠2𝜔𝑡 + −

𝛼𝑎3

48𝜔0
4 𝑐𝑜𝑠3𝜔𝑡 + −

𝛽𝑎2

32𝜔0
2 3с𝑜𝑠3𝜔𝑡.         (1.17) 

Підставимо (1.17) і (1.8) в загальний розв’язок рівняння: 

𝑥 = 𝑎𝑐𝑜𝑠𝜔𝑡 −
𝛼𝑎2

6𝜔0
2
(3 − 𝑐𝑜𝑠2𝜔𝑡) ±

𝑎3

16𝜔0
2 (
𝛽

2
−

𝛼

3𝜔0
2) 𝑐𝑜𝑠3𝜔𝑡.               (1.18) 
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Уточнимо тепер умови застосування отриманих формул. Із вимоги 

малості амплітуд гармонік в порівняні з а і малості поправки до частоти в 

порівняні з 𝜔0 отримаємо, що повинні виконуватися нерівності 
𝛼𝑎2

𝜔0
2 ≪ 1, 

𝛽𝑎2

𝜔0
2 ≪

1. 

 

1.2. Витоки асимптотичних методів в теорії нелінійних коливань 

Асимптотичні методи – це сукупність математичних прийомів, що 

дозволяють знаходити наближені розв'язки диференціальних рівнянь, які 

містять малий параметр. Ці методи зародилися в небесній механіці ще у XVIII 

ст. (теорія збурень) і широко застосовувалися у працях Ж. Лагранжа та У. 

Левер'є. 

Створення асимптотичної теорії власне нелінійних коливань (нелінійної 

механіки) пов'язане з іменами М.М. Крилова та М.М. Боголюбова. У 30-х 

роках XX століття вони розробили нові методи розв'язання нелінійних задач, 

узагальнивши класичні результати А. Пуанкаре та Б. Ван дер Поля. 

У 1932 році у монографії «Дослідження поздовжньої стійкості 

аероплану» та серії доповідей у Паризькій академії наук М.М. Крилов і М.М. 

Боголюбов виклали основи нового підходу, який дозволяв досліджувати як 

стаціонарні, так і нестаціонарні коливальні процеси. Фундаментальна праця 

«Вступ до нелінійної механіки» (1937) завершила формування асимптотичних 

методів як окремого напрямку математичної фізики. Автори обґрунтували 

принцип усереднення та метод еквівалентної лінеаризації. 

Важливо зазначити, що особливістю нелінійних систем є такі ефекти: 

 Неізохронність: залежність частоти коливань від амплітуди; 

 Генерація вищих гармонік: спотворення форми коливань; 

 Мультистабільність: залежність усталеного режиму від початкових 

умов (гістерезис); 

 Автоколивання: здатність системи підтримувати незатухаючі коливання 

за рахунок неперіодичного джерела енергії. 
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Для аналізу таких систем класичні методи теорії збурень виявилися 

недостатніми через появу так званих секулярних (вікових) членів, які 

необмежено зростають з часом і порушують умову періодичності розв'язку. 

Подолання цієї проблеми стало головним завданням нових асимптотичних 

методів . 

 

1.3. Асимптотичні  методи теорії нелінійних коливань 

1.3.1 Метод малого параметра 

Розглянемо осцилятор з квадратичною нелінійністю: 

𝑥̈ + 𝜔̈2𝑥 + 𝛼𝑥2 = 0.                                                     (1.19) 

Це рівняння можна привести до універсального вигляду, що не містить 

параметрів. Нехай, відомо деякий характерний масштаб коливань А. 

Запровадимо безрозмірні змінні час і координату наступним чином: 

𝑡̇ = 𝜔0𝑡 ,         𝑥̇ =
𝑥

𝐴
.                                                     (1.20) 

Опустивши штрихи в безрозмірних змінних, рівняння (1.19) набуде вигляду: 

𝑥̈ + 𝑥 + 𝜀𝑥2 = 0.                                                            (1.21) 

У цьому рівняння 𝜀 =
𝛼А

𝜔0
2. Розглянемо випадок слабкої нелінійності, коли 𝜀 ≪

1, тобто рівняння (1.21) містить малий параметр. В загальному необхідно 

зауважити, що умовою вживання будь-якого асимптотичного методу є 

наявність малого параметра. 

Рівняння (1.21) близьке до рівняння лінійного консервативного 

осцилятора, а відрізняється від нього малим доданком порядку 𝜀. Тобто, легко 

бачити, що розв’язок можна представити у вигляді квазігармонічних 

(близьких до гармонічних) коливань [29]. Побудуємо наближений розв’язок 

рівняння (1.21). Найбільш простий спосіб очевидно полягає в пошуку 

розв’язку у вигляді ряду по степенях малого параметра 𝜀: 

𝑥(𝑡) = 𝑥1(𝑡) + 𝜀𝑥2(𝑡) + 𝜀
2𝑥3(𝑡)+..                              (1.22) 
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В літературі цей метод називають методом розкладу по малому 

параметру або прямим розкладом. 

Підставляючи ряд (1.22) в рівняння (1.21), одержимо: 

𝑥1̈ + 𝜀𝑥̈2 + 𝜀
2𝑥̈3+. . +𝑥1 + 𝜀𝑥2 + 𝜀

2𝑥3+. . +𝜀𝑥1
2 + 2𝜀2𝑥1𝑥2+. . = 0         (1.23) 

Прирівнюючи в (1.23) члени при однакових степенях 𝜀 приходимо до системи 

взаємозалежних рівнянь: 

𝜀0:     𝑥1̈ + 𝑥1 = 0,                                                    (1.24) 

𝜀1:     𝑥̈2 + 𝑥2 + 𝑥1
2 = 0,                                          (1.25) 

𝜀2:     𝑥̈3 + 𝑥3 + 2𝑥1𝑥2 = 0.                                   (1.26) 

Рівняння (1.24) є рівнянням гармонійного осцилятора і його розв’язок 

записують у вигляді: 

𝑥1 = 𝑎cos(𝑡 + 𝜑),                                                     (1.27) 

де амплітуда 𝑎 і початкова фаза 𝜑 – сталі, що визначаються з початкових умов. 

Підставимо розв’язок (1.27) в рівняння (1.25) щоб знайти 𝑥2: 

𝑥̈2 + 𝑥2 = −𝑥1
2 = −

𝑎2

2
−
𝑎2

2
cos 2(𝑡 + 𝜑).                             (1.28) 

Це рівняння формально збігається з рівнянням лінійного консервативного 

осцилятора під дією зовнішньої сили, розв’язок якого слід шукати як суму 

розв’язків однорідного і неоднорідного рівнянь, що записують у вигляді:  

𝑥2 = 𝑥2
𝑜 + 𝑥2

н,                                                            (1.29) 

𝑥2
𝑜 = 𝑎1cos(𝑡 + 𝜑1).                                                 (1.30) 

Де (1.30) розв’язок однорідного рівняння 𝑥2
𝑜 описує власні коливання 

осцилятора. Його амплітуда 𝑎1 і початкова фаза 𝜑1 і надалі визначаються з 

початкових умов. Другий доданок 𝑥2
н – частинний розв’язок неоднорідного 

рівняння, який представляє собою вимушенні коливання осцилятора, тобто 

відповіть на зовнішній вплив на систему.  

Як відомо з теорії лінійних коливань в спектрі вимушених коливань 

містяться ті частоти, що присутні в спектрі вимушеної сили. В даному випадку 

це нульова та друга гармоніка. Виходячи з цього одержуємо що: 
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𝑥2
н = −

𝑎2

2
+
𝑎2

6
cos 2(𝑡 + 𝜑).                                  (1.31) 

І в результаті можемо записати: 

𝑥2 = 𝑎1cos(𝑡 + 𝜑1) −
𝑎2

2
+
𝑎2

6
cos 2(𝑡 + 𝜑).                  (1.32) 

Варто зауважити, що отриманий нами розв’язок містить чотири 

незалежних сталих (𝑎1, 𝜑1, 𝑎, 𝜑), для визначення яких відомі лише дві 

початкові умови. Тому дві із цих сталих можна вибрати довільним чином. 

Найзручніше вважати, що 𝑎1 = 0. В подальших розрахунках для простоти у 

всіх вищих порядках мализни покладатимемо сталі, що відповідають власним 

коливання рівними нулю. 

Таким чином, остаточний  вигляд розв’язку з точністю до членів порядку 

𝜀2 матиме вигляд: 

𝑥 ≈ 𝑎cos(𝑡 + 𝜑) + 𝜀[−
𝑎2

2
+
𝑎2

6
cos 2(𝑡 + 𝜑)] + ⋯.                   (1.33) 

Як видно із виразу (1.33) в спектрі коливань з’являються вищі гармоніки, 

нульова та друга амплітуди яких мають порядок 𝜀а2 тобто, набагато менші 

амплітуди основної складової. Можна продовжити цей процес для одержання 

і більш високих порядків мализни. Після такого уточнення в розв’язку 

з’являться й інші гармоніки: третя, четверта і т.д. Проте, їх амплітуди будуть 

ще менші (порядку 𝜀𝑛−1𝑎𝑛 де n – номер гармоніки). Дійсно, оскільки 

нелінійність є слабкою, то амплітуди вищих гармонік повинні швидко 

зменшуватися із зростанням їх номера. 

Залишається тільки обчислити константи 𝑎 𝑖 𝜑. Нехай початкові умови 

мають вигляд: 

𝑥(0) = 𝑥0,                                       

𝑥̇(0) = 𝑦0.                                                             (1.34) 

Тоді використовуючи вираз (1.33) легко знайти, що: 



19 
 

{
 
 

 
 acos𝜑 − 𝜀 [

𝑎2

2
−
𝑎2

6
cos 2𝜑] = 𝑥0

asin𝜑 +
𝜀𝑎2

3
sin 2𝜑 = −𝑦0

                           (1.35) 

Отримана система (1.35) є системою трансцендентних рівнянь і отримати її 

точний розв’язок  в загальному випадку не вдається. Проте, враховуючи, що в 

(1.35) міститься малий параметр, то розв’язок можна представити у вигляді 

ряду: 

𝑎 = 𝑎0 + 𝜀𝑎1 +⋯                                        

𝜑 = 𝜑0 + 𝜀𝜑1

+⋯                                                (1.36) 

В розкладах (1.36) необхідно враховувати те ж число членів що і в (1.33). 

Намагатися знайти 𝑎 𝑖 𝜑 з більш високою точності немає сенсу. 

 Підставимо (1.36) в систему (1.35) і виділимо члени однакових порядків 

мализни. В нульовому порядку по 𝜀 отримаємо:  

𝑎0𝑐𝑜𝑠𝜑0 = 𝑥0,                  

𝑎0𝑠𝑖𝑛𝜑0 = −𝑦0.                                                 (1.37) 

Звідси легко знайти , що: 

      𝑎0 = √𝑥0
2 + 𝑦0

2 ,                                              

𝜑0 = −𝑎𝑟𝑐𝑡𝑔
𝑦0
𝑥0
 .                                               (1.38) 

Члени порядку 𝜀 в (1.35) дають: 

𝑎1𝑐𝑜𝑠𝜑0 − 𝑎0𝜑1𝑠𝑖𝑛𝜑0 −
𝑎0
2

2
+
𝑎0
2

6
cos 2𝜑0 = 0,                             

𝑎1𝑠𝑖𝑛𝜑0 − 𝑎0𝜑1𝑐𝑜𝑠𝜑0 +
𝑎0
2

3
sin 2𝜑0 = 0.                          (1.39) 

Розв’язок системи лінійних рівнянь (1.39) відносно 𝑎1 , 𝜑1, легко знаходиться. 

 

1.3.2 Розклад в ряд по параметру нелінійності 
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Такий простий підхід, як прямий розклад за ступенями малого 

параметра, не завжди є успішним. Щоб показати  це розглянемо осциллятор 

Дуффінга (осциллятор з кубічною нелінійністю): 

𝑥̈ + 𝜔0
2𝑥 + 𝛽𝑥3 = 0.                                           (1.40) 

Як і в попередньому розділі використаємо заміну змінних, що приведе до 

рівняння такого вигляду: 

𝑥̈ + 𝑥 + 𝜀𝑥3 = 0.                                                 (1.41) 

Де, 𝜀 =
𝛽

𝜔0
2. Знову розглядатимемо випадок слабкої нелінійності тобто 𝜀 ≪ 1. 

Шукаючи розвязок у вигляді (1.19 замість рівнянь (1.24 – 1.26) отримаємо: 

𝜀0:     𝑥1̈ + 𝑥1 = 0,                                                          (1.42) 

𝜀1:     𝑥̈2 + 𝑥2 + 𝑥1
3 = 0.                                                (1.43) 

В нульовому порядку по 𝜀, як і раніше отримаємо рівняння гармонійного 

осцилятора, розв’язок якого має вигляд (1.27). Спробуємо знайти 𝑥2. Після 

підстановки  виразу для 𝑥1 (1.28) рівняння (1.43) набуває вигляду: 

𝑥̈2 + 𝑥2 = −𝑥1
3 = −𝑎3𝑐𝑜𝑠3(𝑡 + 𝜑) = −

𝑎3

4
[3𝑐𝑜𝑠(𝑡 + 𝜑) + 𝑐𝑜𝑠3(𝑡 + 𝜑)].    (1.44) 

Необхідно знайти розв’язок цього рівняння, де варто врахувати 

відповідні доданки, що містять вимушені коливання в членах вищого порядку. 

Оскільки нелінійність кубічна, то в цьому випадку в спектрі зовнішнього 

впливу міститься перша і третя гармоніка. 

Розв’язок будемо шукати у вигляді суперпозиції, що одержується в 

наслідок реакції на цей вплив: 

𝑥2 = 𝑥2
(1)
+ 𝑥2

(3)
.                                            (1.45) 

Де 𝑥2
(1)
 і  𝑥2

(3)
 задовільняють рівняням: 

𝑥̈2
(1) + 𝑥2

(1)
= −

3𝑎3

4
cos(𝑡 + 𝜑),                (1.46𝑎) 

𝑥̈2
(3) + 𝑥2

(3)
= −

𝑎3

4
cos 3(𝑡 + 𝜑).               (1.46𝑏) 

Розв’язок рівняння (1.46𝑏) знаходиться легко і має вигляд гармонічних 

коливань на частоті вимушуючої сили:  
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𝑥̈2
(3) = −

𝑎3

32
cos 3(𝑡 + 𝜑).                              (1.47) 

Що ж стосується рівняння (1.46𝑎), то в ньому зовнішній вплив має 

частоту рівну частоті власних коливань осцилятора. Як відомо з теорії 

лінійних коливань в такому випадку виникає резонанс, що виражається в 

зростанні амплітуди коливань за лінійним законом. Відповідний розв’язок має 

вигляд: 

𝑥2
(1)
= −

3𝑎3𝑡

8
sin(𝑡 + 𝜑).                                (1.48) 

Ми отримали так званий секулярний або віковий член (термін бере своє 

походження з небесної механіки). Остаточний вигляд розв’язку з точністю до 

членів другого порядку мализни має вигляд: 

𝑥 ≈ 𝑎 cos(𝑡 + 𝜑) + 𝜀 [−
3𝑎3𝑡

8
sin(𝑡 + 𝜑) +

𝑎3

32
cos 3(𝑡 + 𝜑)] + ⋯   (1.49) 

Зауважимо, що з плином часу другий доданок в (1.49) нескінченно 

зростає та стає більшим за перший. Таким чином справедливість розкладу 

(1.22) при великих t порушується. І це не є фізичним результатом, адже як 

відомо рівняння Дуффінга мають вигляд періодичних нелінійних коливань і 

ніякого приросту амплітуди з часом немає. Причиною такого недоцільного 

розв’язку є те, що коливання осцилятора Дуффінга є неізохронними, тобто їх 

період залежить від амплітуди. Розклад (1.22) принципово не враховує 

неізохроність: в спектрі коливань може появитися тільки власна частота 

лінійних коливань і її гармоніка.  

1.3.3. Метод Лінштедта-Пуанкаре 

У цьому випадку необхідно модифікувати схему розв’язку таким чином, 

щоб можна було врахувати неізохронність. Найбільш простий спосіб був 

запропонований А. Лінштедтом (1883) і А. Пуанкаре (1892). 

Запровадимо в (1.40) нову часову змінну 𝜏 = 𝜔𝑡. Оскільки 
𝑑

𝑑𝑡
= 𝜔

𝑑

𝑑𝜏
 то, 

отримаємо: 
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𝜔2𝑥̈ + 𝑥 + 𝜀𝑥3 = 0.                                           (1.50) 

Де штрихами позначили похідну по 𝜏. Будемо шукати розв’язок (1.50) у 

вигляді розкладу в степеневий ряд як для змінної 𝑥 так і для частоти 𝜔: 

𝑥 = 𝑥1 + 𝜀𝑥2 + 𝜀
2𝑥3 +                            

𝜔 = 1 + 𝜀𝜔1 + 𝜀
2𝜔2 +                                    (1.51) 

Перший член в розкладі для 𝜔  повинен представляти собою частоту лінійних 

коливань, яка при нормуванні дасть одиницю. А наступні поправки 𝜔1 та 𝜔2 

описуватимуть ефекти неізохронності. 

Підставимо розклад (1.51) в рівняння (1.50), отримаємо: 

[1 + 2𝜀𝜔1 + 𝜀
2(𝜔1

2 + 2𝜔2)+. . ][𝑥̈1 + 𝜀𝑥̈2+. . ] + 𝑥1 + 𝜀𝑥2+. .+𝜀𝑥1
3

+ 3𝜀2𝑥1
2𝑥2+. .

= 0.                                                                                                              (1.53) 

Виконаємо перетворення для рівняння (1.53), і запишемо його у вигляді: 

𝑥̈1 + 𝑥1 + 𝜀(𝑥̈2 + 𝑥2 + 2𝜔1𝑥̈1 + 𝑥1
3)+. . = 0.                     (1.54) 

Прирівняємо до нуля члени нульового і першого порядку мализни і 

отримаємо: 

𝑥̈1 + 𝑥1 = 0,                                                         (1.55) 

𝑥̈2 + 𝑥2 = −2𝜔1𝑥̈1 − 𝑥1
3.                                 (1.56) 

Розв’язок для рівняння (1.55) запишемо у вигляді: 

𝑥1 = 𝑎cos(𝜏 + 𝜑)

= 𝑎cos(𝜔𝑡 + 𝜑).                             (1.57) 

Підставимо співвідношення (1.57) у праву частину рівняння (1.56) і знайдемо, 

що: 

𝑥̈2 + 𝑥2 = 2𝜔1 acos(𝜏 + 𝜑)

−
𝑎3

4
[3cos(𝜏 + 𝜑) + cos 3(𝜏 + 𝜑)].         (1.58) 

Тепер завдання полягає у правильності вибору 𝜔1, таким чином щоб 

знищилися члени пропорційні cos(𝜏 + 𝜑), які призводять до секулярного 

зростання розв’язку для 𝑥2. Очевидно що для цього слід покласти:  
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 𝜔1 =
3𝑎2

8
                                                   (1.59) 

Тепер згідно (1.59) рівняння (1.58) запишеться у вигляді: 

𝑥̈2 + 𝑥2 = −
𝑎3

4
cos 3(𝜏 + 𝜑).                                     (1.60) 

Його розв’язок:  

𝑥2 =
𝑎3

32
cos3(𝜏 + 𝜑).                                                   (1.61) 

Отриманий результат (1.61) не містить секулярних складових і розклад 

залишається  правильним при всіх значеннях 𝑡. 

В кінцевому результаті вигляд знайденого нами розв’язку з точністю до 

членів порядку 𝜀2 такий: 

𝑥 ≈ acos(𝜔𝑡 + 𝜑)

+
𝜀𝑎3

32
cos 3(𝜏 + 𝜑),                               (1.62 ) 

𝜔 ≈ 1 +
3𝜀𝑎2

8
.                                                                 (1.63) 

Якщо параметр 𝜀 > 0, то частота коливань зростає із зростанням 

амплітуди, а при 𝜀 < 0 частота навпаки зменшується. 

Зауважимо, що на відміну від осцилятора з квадратичною нелінійністю 

в спектрі коливань в першу чергу з’являється не друга, а третя гармоніка. 

Якщо і надалі продовжувати розклад, то можна переконатися, що в спектрі 

міститимуться лише непарні гармоніки. Це є наслідком симетрії рівняння 

Дуффінга відносно заміни 𝑥 → −𝑥. Аналогічний результат отримується при 

розгляді коливань математичного маятника. 
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1.3.4. Метод Крилова – Боголюбова 

Покажемо застосування методу Крилова – Боголюбова на прикладі 

рівняння, що описує загальну коливальну систему близьку до лінійної 

консервативної: 

𝑥̈ + 𝜔0
2𝑥

= 𝜀𝐹(𝑥, 𝑥̇) .                                           (1.65) 

Тут, як і раніше 𝜀 – малий параметр, а 𝐹 −деяка нелінійна функція. 

Розв’язок рівняння (1.65) очевидно має бути близьким до гармонічних 

коливань тому шукатимемо його у вигляді: 

𝑥 = 𝑎 𝑐𝑜𝑠𝜑 + 𝜀𝑥1 + 𝜀
2𝑥2

+⋯,                       (1.66) 

де амплітуда 𝑎 і фаза 𝜑 задовольняють спрощеним рівняням, які варто знайти. 

Їх також варто шукати у вигляді рядів за степеннями 𝜀: 

𝑎̇ = 𝜀𝑓1(𝑎) + 𝜀
2𝑓2(𝑎) + ⋯,                                         

𝜑̇ = 𝜔0 + 𝜀𝜔1(𝑎)

+ 𝜀2𝜔2(𝑎)+. . . ,                               (1.67) 

Відносно величин 𝑥𝑛, n=1, 2,…., в розкладі (1.66) зробимо наступне 

припущення: оскільки, вони повинні описувати поведінку вищих гармонік, то 

вважатимемо, що вони є періодичними функціями 𝜑, але при цьому їх спектр 

не містить основної частоти 𝜔0, тобто: 

∫ 𝑥𝑛(𝑡)

2𝜋

0

cos𝜑  𝑑𝜑 = ∫ 𝑥𝑛(𝑡)

2𝜋

0

sin𝜑  𝑑𝜑 = 0 

Відповідно їх можна представити у вигляді рядів Фур’є: 

𝑥𝑛 =∑[𝜈𝑛𝑘(𝑎) cos(𝑘𝜑) + 𝜇𝑛𝑘(𝑎) sin(𝑘𝜑)]

∞

𝑘=0

,                   (1.68) 

де 𝜈𝑛1 = 𝜇𝑛1 = 0. 

Знайдемо розв’язок з точністю до членів порядку 𝜀. Продиференціюємо 

рівняння (1.66) і обчислимо 𝑥̇: 
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𝑥̇ = 𝑎̇ cos𝜑 − 𝑎 𝜑̇ sin𝜑 + 𝜀 (𝑥̇
𝜕𝑥1

𝜕𝑎
+ 𝜑̇

𝜕𝑥1

𝜕𝜑
) +⋯. 

Підставимо сюди 𝑎̇ і 𝜑̇ із співвідношення (1.67): 

𝑥̇ = −𝜔0𝑎 sin𝜑 + 𝜀 (𝑓1 cos𝜑 − 𝜔1𝑎 𝑠𝑖𝑛𝜑 + 𝜔0
𝜕𝑥1
𝜕𝜑

) +⋯                 (1.69) 

Продиференціюємо вираз (1.69), в результаті одержимо: 

𝑥̈ = −𝜔0𝑎̇ sin𝜑 − 𝜔0𝑎𝜑̇ sin𝜑 +

+ 𝜀 [𝑎
𝜕𝑓1
𝜕𝑎

̇
cos𝜑 − 𝜑̇𝑓1 sin𝜑 − 𝑎̇ (𝜔1 + 𝑎

𝜕𝜔1
𝜕𝑎

) sin𝜑 − 𝜔1𝑎𝜑̇𝑐𝑜𝑠𝜑

+ 𝜔0𝑎̇
𝜕2𝑥1
𝜕𝑎𝜕𝜑

+ 𝜔0𝜑̇
𝜕2𝑥1
𝜕𝜑2

] + ⋯                                                        (1.70) 

Оскільки, ми шукаємо розв’язок з точністю до членів порядку 𝜀 , то в 

квадратній дужці можна покласти, що 𝑎̇ ≈ 0, 𝜑̇ ≈ 𝜔0  і ми отримаємо: 

𝑥̈

= −𝜔0
2𝑎 sin𝜑 + 𝜀 [−2𝜔0𝑓1 sin𝜑 − 𝜔1𝜔0𝑎𝑐𝑜𝑠𝜑 + 𝜔0

2
𝜕2𝑥1
𝜕𝜑2

]

+ ⋯                                                                                                             (1.71) 

Підставимо вирази (1.70) і (1.71) у вихідне рівняння ( 1.65). При цьому з 

точністю до порядку 𝜀 в правій частині можна припустити, що: 

𝐹(𝑥, 𝑥̇) ≈ 𝐹( 𝑎 cos𝜑 ,−𝜔0𝑎 sin𝜑). 

Як результат наше рівняння матиме вигляд: 

𝜔0
2 (
𝜕2𝑥1
𝜕𝜑2

+ 𝑥1)

= 2𝜔0(𝑓1 sin𝜑 + 𝜔1𝑎𝑐𝑜𝑠𝜑) + 𝐹(𝑎 cos𝜑 , −𝜔0𝑎 sin𝜑).  (1.72) 

Представимо 𝐹( 𝑎 cos𝜑 , −𝜔0𝑎 sin𝜑) у вигляді ряду Фур’є: 

𝐹( 𝑎 cos𝜑 , −𝜔0𝑎 sin𝜑) = ∑[𝛽𝑘(𝑎) cos 𝑘𝜑 + 𝛼𝑘(𝑎) sin 𝑘𝜑 ],

∞

𝑘=0

             (1.73) 

де 𝛼𝑘 і 𝛽𝑘 можна знайти задавши конкретний вигляд функції 𝐹.  

Підставимо розклад (1.69) і (1.73) в рівняння (1.72): 
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𝜔0
2(𝜈10 +∑[(1 − 𝑘2)𝜈1𝑘 cos(𝑘𝜑) + (1 − 𝑘

2)𝜇1𝑘 sin(𝑘𝜑)]

∞

𝑘=2

= 

= 2𝜔0(𝑓1 sin𝜑 + 𝜔1𝑎𝑐𝑜𝑠𝜑) + 𝛽0 + 𝛽1 cos𝜑 + 𝛼1 sin𝜑 +

+∑[𝛽𝑘(𝑎) cos 𝑘𝜑 + 𝛼𝑘(𝑎) sin 𝑘𝜑 ] .

∞

𝑘=2

 

В цьому рівнянні прирівняємо коефіцієнти при однакових: 

𝜔0
2𝜈10 = 𝛽0,         𝑓1 = −

𝛼1

2𝜔0
,           𝜔1 = −

𝛽1

2𝜔0𝑎
, 

𝜈1𝑘 =
𝛽𝑘

𝜔0
2(1−𝑘2)

,   𝜇1𝑘 =
𝛼𝑘

𝜔0
2(1−𝑘2)

,     𝑘 = 2,3,…. . 

Підстановка отриманих співвідношень в вираз (1.66) дає результат: 

𝑥 ≈ 𝑎 cos𝜑 + 𝜀 [
𝛽0(𝑎)

𝜔0
2

+∑(
𝛽𝑘(𝑎)

𝜔0
2(1 − 𝑘2)

cos 𝑘𝜑 +
𝛼𝑘(𝑎)

𝜔0
2(1 − 𝑘2)

sin 𝑘𝜑 )

∞

𝑘=2

],                   (1.74) 

де 𝑎  і 𝜑 знаходяться із спрощених рівнянь (1.67), які відповідно приймають 

вигляд: 

𝑎̇ ≈ −
𝜀𝛼1(𝑎)

2𝜔0
,        𝜑̇ ≈ 𝜔0 −

𝜀𝛽1(𝑎)

2𝑎𝜔0
.                                  (1.75) 

Очевидно, що описаний алгоритм дій  дозволяє отримати результат з точністю 

до будь-якого порядку щодо малого параметра 𝜀.  
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РОЗДІЛ 2 

ЗАСТОСУВАННЯ АСИМПТОТИЧНИХ МЕТОДІВ  

ДО ОСЦИЛЯТОРА ДУФФІНГА 

 

2.1.Модель осцилятора в фізиці: суть та практичне значення 

У сучасній теоретичній та математичній фізиці, поряд із 

фундаментальними рівняннями поля та варіаційними принципами, ключову 

роль відіграють базові динамічні моделі. Однією з таких моделей є 

гармонічний осцилятор, універсальність якого дозволяє описувати широкий 

клас фізичних процесів різної природи: від механічних вібрацій та акустичних 

явищ до електромагнітних коливань та квантово-польових ефектів. 

Еволюція уявлень про коливальні процеси демонструє перехід від 

спрощених лінійних моделей до складніших нелінійних. На ранніх етапах 

розвитку механіки (М.В. Остроградський, Г. Гельмгольц, Дж. Релей) 

дослідження нелінійних коливань здійснювалося переважно прямими 

методами, без використання процедури лінеаризації в околі положення 

рівноваги. 

Вже у XIX столітті було сформовано математичний апарат, потенційно 

придатний для аналізу квазілінійних систем — систем, динаміка яких 

описується нелінійними диференціальними рівняннями, що містять малий 

параметр 𝜀. При 𝜀 → 0 такі системи асимптотично наближаються до лінійних 

диференціальних рівнянь зі сталими коефіцієнтами. Слід зазначити, що 

коректне застосування цього апарату вимагає виконання умови малості 

параметра 𝜀 ≪ 1. 

Основою для аналізу таких систем стала теорія збурень, спочатку 

розроблена в рамках небесної механіки для розрахунку ефемерид планет. 

Класична постановка задачі передбачала вивчення руху, що описується 

диференціальними рівняннями з малим параметром, які при його нульовому 
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значенні допускають точне інтегрування (наприклад, задача двох тіл). Однак 

при спробі застосування прямих розкладів за степенями малого параметра до 

складніших задач (зокрема, задачі трьох тіл) було виявлено принципові 

труднощі, пов'язані з розбіжністю рядів на великих часових інтервалах. 

Математичний маятник є класичним прикладом нелінійної системи, 

рівняння руху якої 𝑥̈ + 𝜔2 sin 𝑥 = 0 містить трансцендентну нелінійність. 

Дана модель є еталонною для тестування наближених методів. Аналітичний 

розв'язок цього рівняння виражається через еліптичні функції Якобі, теорія 

яких була розроблена математиками XVIII–XIX ст. (Л. Ейлер, Н. Абель, К. 

Якобі, К. Вейєрштрасс). У сучасних умовах, незважаючи на розвиток 

чисельних методів, аналітичний підхід залишається актуальним, особливо у 

поєднанні з можливостями систем комп'ютерної математики (Wolfram 

Mathematica, Maple). 

Ключовою особливістю нелінійних коливальних систем є вплив малих 

нелінійностей на довготривалу динаміку процесу. Навіть якщо на періоді 

коливань рух близький до гармонічного, на великих часових інтервалах малі 

збурення призводять до кумулятивних ефектів: зміни амплітуди (внаслідок 

дисипації або підкачки енергії) та дрейфу фази (внаслідок неізохронності 

коливань). 

Принциповою відмінністю нелінійних систем є порушення принципу 

суперпозиції. Це призводить до взаємодії нормальних мод, генерації вищих 

гармонік та комбінаційних частот, що унеможливлює незалежний аналіз 

гармонічних складових спектру. 

Дослідження сильно нелінійних систем є складною математичною 

проблемою, що часто вимагає індивідуального підходу. Натомість для 

квазілінійних систем розроблено універсальні асимптотичні алгоритми. У 

даній роботі об'єктом дослідження обрано осцилятор Дуффінга, динаміка 

якого описується рівнянням: 

𝑑2𝑥

𝑑𝑡2
+ 𝑥 + 𝜀 ∗ 𝑥3 = 0 
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Для аналізу даного рівняння будуть застосовані та порівняні такі методи: 

1. Метод прямого розкладу за параметром нелінійності. 

2. Метод Лінштедта-Пуанкаре. 

3. Метод Крилова-Боголюбова (метод усереднення). 

Метою цього етапу дослідження є верифікація асимптотичних розв'язків 

шляхом їх зіставлення з еталонним чисельним розв'язком, отриманим 

засобами СКА Maple, та оцінка області їхньої застосовності. 

 

2.2. Розв’язок рівняння осцилятора Дуффінга асимптотичним  та точним 

методом. Порівняння результатів 

Для верифікації ефективності асимптотичних методів розглянемо 

модельне рівняння осцилятора Дуффінга з кубічною нелінійністю, яке є 

класичним прикладом консервативної системи з неізохронними коливаннями: 

𝑑2𝑥

𝑑𝑡2
+ 𝑥 + 𝜀 ∗ 𝑥3 = 0,                                             (2.1) 

та побудуємо розв’язок для даного рівняння у СКА Maple, використовуючи 

початкові умови у вигляді: 

{
 𝑥(0) = 0.8
𝑥̇(0) = 0

                                                               (2.2

) 

та умову, що 𝜀 ≪ 1. 

Використовуючи аналогічні дані, знайдемо x(t) асимптотичними 

методами. За одержаними результатами побудуємо графіки одержаних 

результатів, та проаналізуємо відмінності між ними. 

 2.2.1.Розв’язок отриманий у СКА Maple 

Запишемо рівняння Дуффінга (2.1): 

>ode:=diff(x(t),t,t)+x(t)+epsilon*x(t)^3=0; 

 

Присвоємо малозмінному параметру epsilon значення 0.1: 



30 
 

> epsilon:=0.1; 

 

Задаємо початкові умови у вигляді (2.2): 

>ics := x(0)=0.8, D(x)(0)=0; 

 

Знаходимо розв’язок диференціального рівняння за його виглядом  та 

початковими умовами [17,23,28]: 

>dsolve({ode,ics}); 

 

Ототожнимо ліву і праву частину: 

>assign(%); 

За одержаними результатами побудуємо графік: 

>plot(x(t)); 

 

2.2.2. Асимптотичні методи розв’язання 

2.2.2.1. Розклад в ряд по параметру нелінійності. 

Після розкладу за малим параметром нелінійності, та розв’язання 

системи диференціальних рівнянь для осцилятора Дуффінга отримують 

наближений розв’язок у вигляді: 

 



31 
 

В одержаному результаті для наближеного розв’язку константи а та 𝜑 

визначають з початкових умов, які записують у вигляді (2.2) 

Знайдемо вигляд асимптотичного значення, та його першої похідної 

підставивши початкові умови: 

>  

 

>  
 

Знайдемо значення для 𝑎𝑠𝑥(𝑡) та 𝐷(𝑎𝑠𝑥)(𝑡) в момент часу 𝑡 = 0: 

 

 

 

Присвоємо малому параметру 𝜀 значення 0,1: 

>  

 

>  
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Використовуючи початкові умови, (2.2) отримаємо: 

>  

 

Із отриманої системи знайдемо невідомі константи: 

>  

 

>  

 

Ототожнимо ліві та праві частини рівнянь і одержимо значення для сталої а 

  

Отримуємо наближений результат у вигляді :𝑎𝑠𝑥(𝑡): 

                                   (2.3) 

Зобразимо графічно отриману залежність: 

>  
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Рис 2.1. Наближений результат отриманий методом розкладу в ряд. 

В одній системі координат побудуємо графіки для асимптотичного та 

точного розв’язку: 
 

                  

Рис 2.2. Результат отриманий в СКА Maple та асимптотичним методом  

розкладу в ряд. 

asx(t) 

t 

asx(t) 

x(t) 



34 
 

Для оцінки відмінностей між методами знайдемо різницю для 

отриманих результатів: 
 

 

Рис. 2.3. Різниця точного та асимптотичних результатів. 

Із Рис 2.2 бачимо, що для результату отриманого асимптотичним 

методом розкладу в ряд за малим параметром нелінійності  спостерігаємо 

зростання  амплітуди, порівняно із точним результатом. А з Рис. 2.3 видно, що 

перші 5с відмінності немає, проте за проміжок часу t=0..50 с різниця амплітуд 

зростає і для t=50с рівна 0.5, що становить більше половини значення 

амплітуди. 

Отож, метод малого параметра можна використовувати, проте на досить 

короткому проміжку часу, оскільки з плином часу різниця амплітуд зростає, а 

це призведе до недостовірності результату. 

 

t 
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2.2.2.2. Метод Ланштедта – Пуанкаре 

Для використання методу Ланштедта – Пуанкаре необхідно 

модифікувати розв’язок отриманий за допомогою розкладу в ряд по 

параметру, таким чином щоб враховувати неізохроність.  

Побудуємо відомий розв’язок в СКА Maple. 

Для виконнання задамо значення 𝜔 та отримане значення для 𝑎𝑠𝑥: 

> restart; 

> epsilon:=0.1; 

 

За відомими результатами маємо наступні асимптотичні оцінки для omega та 

x для осцилятора Дуффінга: 

omega:=1+ 3*epsilon*a^2/8; 

asx:=t->a*cos(omega*t+φ)+(epsilon*a^3)/32*cos(3*(omega*t+φ)); 

 

 

Константи, що присутні у наближеному розв’язку, знаходяться з умов: 

a:=a0+epsilon*a1; 

φ:=φ0+epsilon*φ1; 

 

 

Тоді, використовуючи ці умови, одержимо: 

 

Похідна від цього виразу: 

D(asx)(t); 
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> asx(0); 

 

> series(asx(0),epsilon,2); 

 

> x0:=0.8;y0:=0; 

 

 

> sys0:=coeff(series(asx(0),epsilon,2),epsilon,0)=x0, 

coeff(series(D(asx)(0),epsilon,2),epsilon,0)=y0; 

 

> solve({sys0,a0>0}); 

 

> assign(%); 

> sys1:=coeff(series(asx(0),epsilon,2),epsilon,1), 

coeff(series(D(asx)(0),epsilon,2),epsilon,1); 

 

> solve({sys1}); 

 

> assign(%); 
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> epsilon:=0.1; 

 

> a:=a0+epsilon*a1; 

φ:=φ0+epsilon*φ1; 

 

 

> ics := asx(0)=0.8, D(asx)(0)=0; 

 

> solve({ics,φ}); 

 

> %[1]; 

 

> assign(%); 

> a; 

omega; 

 

 

Одержимо результат: 

>asx:=.7984000000*cos(1.023904096*t)+ 

+0.1590419187e-2*cos(3.071712288*t);     (2.4) 

> plot({x(t),asx},t=500..510); 

plot(x(t)-asx,t=0..50); 
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Використовуючи одержані результати зображаємо на одній системі 

координат два графіки: точний за допомогою СКА Maple та наближений, 

отриманий асимптотичним методом Ланштедта – Пуанкаре. 

 

 

Рис 2.4. Точний результат. 

 

 

Рис 2.5. Асимптотичний та точний результат. 

x(t) 

аsx(t) 
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Рис. 2.6. Різниця точного результату та результату отриманого методом 

Ланштедта-Пуанкаре 

На Рис. 2.4 зображено два графіки: результат отриманий точно, та 

наближений, для інтервалу часу t= 0..50с, проте за цей час відмінності 

одержаних результатів настільки малі, що побачити їх графічно майже 

неможливо, тому зобразимо ці ж графіки уже для часу t= 500..510с (Рис. 2.5), 

бачимо, що для цього часу асимптотичний результат, має незначне зміщення 

порівняно із точним. 

 Аналогічно до попереднього випадку попудуємо різницю одержаних 

результатів (Рис. 2.6). З отриманої залежності бачимо, що різниця амплітуд 

становить тисячні частини від одиниці і, наприклад, на 50с руху ця різниця 

рівна 0.008, тобто відмінність одержаних результатів для амплітуди становить 

0.001, що свідчить про високу точність одержаного результату. Це дозволяє 

використовувати метод Ланштедта – Пуанкаре, і одержувати набагато точніші 

результати порівняно їз методом розкладу в ряд за малим параметром. 

 

x(t)-аsx(t) 
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2.2.2.3.Метод Боголюбова – Крилова 

Метод Боголюбова – Крилова є одним із методів побудови 

вдосконаленої теорії збурень, що базується на усередненні, використаємо цей 

метод для аналізу коливань осцилятора Дуффінга. 

Запишемо рівняння для осцилятора Дуффінга (2.1): 

>  

 

>Наближений розв’язокдля цього рівняння шукатимемо у вигляді: 

 

Як відомо для розв’язання рівняння методом Боголюбова-Крилова 

необхідно його представити у вигляді 
𝑑2

𝑑𝑡2
𝑎𝑠𝑥(𝑡) + 𝑎𝑠𝑥(𝑡) = 𝜀𝑓 (𝑎𝑠𝑥,

𝑑(𝑎𝑠𝑥)

𝑑𝑡
).    

Для рівняння (2.1) функція 𝑓 запишеться у вигляді: 

 

Похідна  

 

  Для знаходження розв’язку розглянемо сиситему: 

{

𝑑𝑎

𝑑𝑡
= −

𝜀

𝜔0
𝑓𝑠𝑖𝑛𝜓

𝑑𝜃

𝑑𝑡
= −

𝜀

𝑎𝜔0
𝑓𝑐𝑜𝑠𝜓,

                                                (2.5) 
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де 𝑓𝑠𝑖𝑛𝜓 = К, а 𝑓𝑐𝑜𝑠𝜓 = М. Невідомі коефіцієнти К та М знаходимо 

обчислюючи відповідні інтеграли в межах (0;2𝜋) по 𝜓. В результаті їх 

обчислення знаходимо: 

 

 

 

Підставимо отримані значення для коефіцієнтів в систему (2.5).  

 

 

Отримуємо два диференціальних рівняння першого порядку, що 

розв’язуються методом розділення змінних: 

           (2.6) 

         (2.7) 

Із рівнянь (2.6) і (2.7) знаходимо невідомі сталі а  та 𝜃: 

 

 

 



42 
 

Вираз для ψ, що знаходиться під косинусом у виразі для пошуку 

розв’язку запишемо у вигляді: 

 

Після підстановки одержаних результатів отримаємо асимптотичний 

розв’язок у вигляді: 

>  

    (2.8) 

У (2.8) невідомі константи покладемо рівними: 

>  

 

 

 

Побудуємо графік для (2.8): 

>  
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аsx(t) 

 

Рис 2.7. Асимптотичний результат отриманий методом Боголюбова – Крилова. 

Порівняємо одержані результати точним та асимптотичним методом, 

зобразивши їх в одній системі координат (Рис 2.8) та знайдемо різницю 

одержаних результатів за час 50с. 
 

А 
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Рис. 2.8. Точний та асимптотичні результати. 

Графічна залежність різниці точного та асимптотичного результатів 

матиме вигляд: 

 

 

Рис. 2.9. Різниця одержаних результатів 

Із Рис. 2.8 бачимо, що відмінності між одержаними результатами є 

суттєвими уже протягом перших 50с руху, для їх числової характеристики 

проаналізуємо Рис. 2.9, на якому зображена різниця одержаних результатів за 

цей же проміжок часу. Видно, що незначна різниця фаз уже присутня в перші 

аsx(t) 

x(t) 

x(t)-аsx(t) 
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секунди руху, а для 50с вона уже становить 0.8, тобто відміність рівна 

амплідуді коливань, а отже не узгоджується із точним результатом. 

 Отож, із аналізу отриманих результатів можна зробити висновок, що 

застосування асимптотичних методів не лише суттєво спрощує пошук 

розв’язку задачі, а й дає непогану точність отриманого результату в порівнянні 

із точним. 

Зокрема для осциляторра Дуффінга найточнішим є результат отриманий 

методом Ланштедта – Пуанкаре. 
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РОЗДІЛ 3  

АНАЛІЗ ТОЧНОСТІ ВИКОРИСТАННЯ АСИМПТОТИЧНИХ 

МЕТОДІВ ОБРАХУНКУ ДЛЯ МАТЕМАТИЧНОГО МАЯТНИКА 

Математичний маятник відомий нам перш за все, як модель, що 

демонструє ізохронні коливання, що описуються гармонічною функцією часу. 

Проте, при великих кутах відхилення від вертикалі період коливань залежить 

від амплітуди. Під математичним маятником ми розуміємо матеріальну точку, 

яка підвішена на довгій і нерозтяжній нитці та здійснює коливання у 

вертикальні площині під дією сили тяжіння.  

Диференціальне рівняння руху маятника має вигляд: 

𝑥̈ + 𝜔2 sin 𝑥 = 0.                                                   (3.1) 

Часто при 𝑥 ≪ 1 записують, що sin 𝑥 ≈ 𝑥, і одержують рівняння руху у 

спрощеній формі 

𝑥̈ + 𝜔2𝑥 = 0, 

розв’язок якого легко знаходиться. Проте цей розвязок є наближеним, для 

уточнення розглянемо це рівняння розклавши  sin 𝑥 в ряд Тейлора [13]. Якщо 

врахувати два перші члени, тобто вважати, що 

sin 𝑥 ≈ 𝑥 −
𝑥3

3!
, 

то розв’язок суттєво ускладниться, але дасть кращу оцінку отриманому 

результату. Перевіримо справедливість цього в СКМ Maple. 

Для аналізу доцільності використання асимптотичних методів до 

розв’язання диференціального рівняння математичного маятника порівняємо 

точний та наближений розв’язок знайдений асимптотичними методaми: 

малого параметра та Боголюбова – Крилова. 
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3.1. Знаходження розв’язків рівняння математичного маятника за 

допомогою СКА Maple 

Для математичного маятника знайдемо:  

1) точний розв’язок;  

2) результат, що виникає при врахуванні в розкладі синуса лише 𝑥;  

3) з урахуванням кубічного доданка, за допомогою СКА Maple.  

При цьому вважатимемо що довжина маятника 1 м, а кут відхилення 60 

градусів. 

3.1.1 Точний розв’язок 

Запишемо рівняння руху математичного маятника (3.1) у вигляді: 

>ode:=diff(x(t),t,t)+omega^2*sin(x(t))=0; 

 

>Задамо початкові умови:  

g:=9.8; 

l:=1; 

omega:=sqrt(g/l); 

 

 

 

> ics := x(0)=Pi/3, D(x)(0)=0; 

 

Отримаємо розв’язок рівняння у вигляді: 

> ds:=dsolve({ode,ics},numeric); 

 

>Побудуємо графік цього розв’язку:  

> pl1:=plots[odeplot](ds,t=200..205): 
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3.1.2. Результат отриманий, при 𝐬𝐢𝐧𝒙 ≈ 𝒙 

Використаємо відомий результат у вигляді: 

> x:=(t)->a*sin(omega*t+alpha)      (3.2); 

 

>Задамо початкові умови: 

  solve({x(0)=Pi/3,D(x)(0)=0,a>0}); 

 

> assign(%); 

> pl2:=plot(x(t),t=200..205): 

> with(plots): 

Побудуємо на одній системі координат точний та результат отриманий 

для sin 𝑥 ≈ 𝑥: 

> display({pl1,pl2}); 

 

Рис 3.1. Точний та результат отриманий для sin 𝑥 ≈ 𝑥. 

 

 

А 

t 

pl2 

pl1 
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3.1.3. Результат одержаний для 𝐬𝐢𝐧𝒙 ≈ 𝒙 −
𝒙𝟑

𝟑!
 

Розкладемо синус в ряд Тейлора і, обмежившись кубічним доданком, 

одержимо: 

>  

 

>  

 

>  

 

>  

 

Розв’яжемо рівняння 

>  

І побудуємо графік для отриманого результату: 

> pl3:=plot(asx(t),t=200..205): 

> with(plots): 

Побудуємо отриману залежність графічно із двома отриманими вище 

результатами: 

> display({pl1,pl3}); 
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Рис 3.2. Результат одержаний для sin 𝑥 ≈ 𝑥 −
𝑥3

3!
 та точний результат.

  

Рис 3.3. Результат одержаний для sin 𝑥 ≈ 𝑥 −
𝑥3

3!
 та   для  sin 𝑥 ≈ 𝑥. 

Зробивши аналіз (Рис.3.1-3.3) бачимо, що врахування кубічного доданка 

суттєво наближує результат до точного, щоб побачити різницю одержаних 

результатів зобразимо їх на одній системі координат: 

> display({pl1,pl2,pl3}); 

А А 

t t 

pl1,pl3 

pl3 

pl2 



51 
 

 

Рис 3.4. Одержанні результати для рівняння руху математичного маятника для 

кута 
π

6
:точний, sin 𝑥 ≈ 𝑥 −

𝑥3

3!
, sin 𝑥 ≈ 𝑥. 

 

Рис 3.5. Одержанні результати для рівняння руху математичного маятника для 

кута 
π

3
:точний, sin 𝑥 ≈ 𝑥 −

𝑥3

3!
, sin 𝑥 ≈ 𝑥. 

А 

t 

А 

t 

pl1,pl3 

pl2 

pl1 

pl2 

pl3 
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На Рис.3.4 в одній системі координат зображено три одержані 

результати для кута 
π

6
. Порівняємо їх в момент t=205с. маємо x(t)=0.499, 

 x =0.6779, asx =0,521.Знайдемо різницю цих результатів: x(t) − x = −0.17, 

x(t) − asx = 0,022, asx − x = −0.1489. Видно, що при врахуванні в розкладі 

лише x, відмінність одержаних – 0,17, а при врахуванні x +
x3

6
 – різниця рівна 

0,022. Тобто врахування наступного у розкладі доданка дає змогу отримати ≈

 у 8 раз точніший результат.  

Для порівняння подивимось, що отримуємо, якщо удвічі збільшуємо кут 

початкового відхилення, тобто для випадку 
π

3
 (Рис.3.4). Порівняня проведемо 

в цей же момент часу, маємо x(t)=0.404, x =0,3389, asx =-0,289. Відповідно 

різниця: x(t) − x = −0.743, x(t) − asx = −0,115. Бачимо, що точність 

отриманих результатів зменшилася, порівняно із попереднім випадком. 

Можемо зробити наступні висновки: 

врахування кубічного доданку в розкладі синуса дозволяє отримати 

точніший результат ніж класичне припущення, що sinx ≈ x; 

зі збільшенням початкового кута відхилення відмінність одержаних 

результатів збільшується. 

 

3.2. Метод малого параметра 

Розглянемо рівняння математичного маятника у вигляді: 

𝑥̈ + 𝜔0
2 sin 𝑥 = 0,                                                             (3.3) 

та розкладемо sin 𝑥 в степеневий ряд і збережемо в ряді два перших члени 

sin 𝑥 = 𝑥 −
𝑥3

3!
.                                                                  (3.4) 

Тоді рівняння (3.3) матиме вигляд: 

𝑥̈ + 𝜔0
2𝑥 −

𝜔0
2𝑥3

3!
= 0,                                                       (3.5) 

або  

𝑥̈ + 𝜔0
2𝑥 − 𝜇𝑥3 = 0,                                                         (3.6) 
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де малий параметр: 

𝜇 =
𝜔0

2

3!
 .                                                                 (3.7) 

Для визначення закону коливань маятника використаємо метод малого 

параметра. Виконаємо розрахунки з точністю до членів, що містять 𝜇 в 

першому степені включно. Тоді шукане 𝑥 і квадрат невідомої частоти 𝑝2 

запишемо у вигляді: 

x = x0 +  μx1,                                                           (3.8) 

𝑝2 = 𝜔0
2 + μα1,                                                        (3.9) 

де     x0,  x1, α1  визначаються наступним чином.  

Підставляючи (3.8) і (3.9) в рівняння (3.6), одержимо: 

𝑥0̈ +  μx1̈ + (𝑝
2 − μα1)(x0 +  μx1) −  μ(x0 +  μx1)

3 = 0.          

З точністю до членів, що містять малий параметр μ в першому степені 

включно, це рівняння матиме вигляд: 

𝑥0̈ + 𝑝
2x0 +  μ(x1̈ + 𝑝

2x1 − α1x0 − x0
3) = 0.          

Прирівняємо до нуля члени вільні від μ, а також коефіцієнт що стоїть в дужці 

при μ, одержимо: 

𝑥0̈ + 𝑝
2x0 = 0,                                                       (3.10) 

x1̈ + 𝑝
2x1 = α1x0 + x0

3.                                     (3.11) 

Використовуючи дані початкові умови: 𝑥(0) = 𝑎0, 𝑥̇(0) = 0 в рівнянях: 

x(t) = x0(𝑡) +  μx1(𝑡),     

ẋ(t) = x0̇(t) +  μx1̇(𝑡),     

маємо 

𝑎0 = x0(0) +  μx1(0),     

0 = x0̇(0) +  μx1̇(0).  

Прирівнявши в кожному з цих рівнянь зліва і справа члени, що не 

містять μ, а також складові що містять μ, отримаємо початкові умови для 

функцій x0(𝑡), x1(𝑡)    при 𝑡 = 0: 

𝑎0 = x0(0),  x1(0) = 0, ẋ0̇(0) = 0, ẋ1̇(0) = 0.                        (3.12) 

Як відомо загальний розв’язок рівняння (3.10) має вигляд: 
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x0(𝑡) = 𝐶1𝑐𝑜𝑠 𝑝𝑡 + 𝐶2𝑠𝑖𝑛 𝑝𝑡. 

А похідна по часу ẋ0̇(t) = −𝐶1𝑝𝑠𝑖𝑛 𝑝𝑡 + 𝐶2𝑝𝑐𝑜𝑠 𝑝𝑡. Тоді використовуючи 

початкові умови, знайдемо що 𝐶1 = 𝑎0, 𝐶2 = 0.  

Відповідно 

x0(𝑡) = 𝑎0𝑐𝑜𝑠 𝑝𝑡.                                               (3.13) 

Це перше наближення , в якому циклічна частота 𝑝 ще невизначена.  

Для інтегрування диференціального рівняння (3.11) підставимо в його 

праву частину (3.13) і використаємо формулу 𝑐𝑜𝑠3𝑝𝑡 =
3

4
cos 𝑝𝑡 +

1

4
cos 3𝑝𝑡.   

В результаті одержимо: 

x1̈ + 𝑝
2x1 = 𝑎0 (𝛼1 +

3

4
𝑎0

3) cos 𝑝𝑡 +
1

4
𝑎0

3 cos 3𝑝𝑡. 

Частинний розв’язок цього рівняння 

x1 =
𝑎0

3

32𝑝2
(cos 𝑝𝑡 − cos 3𝑝𝑡). 

Підставимо знайдені результати в (3.8) і (3.9): 

𝑥 = 𝑎0 cos 𝑝𝑡 + 𝜇
𝑎0

3

32𝑝2
(cos𝑝𝑡 − cos 3𝑝𝑡), 

𝑝2 = 𝜔0
2 −

3

4
μ 𝑎0

2.         

Використовуючи вираз (3.7) для малого параметра 𝜇, знайдемо друге 

наближення: 

𝑥 = 𝑎0 cos 𝑝𝑡 +
1

192

𝜔0
2

𝑝2
𝑎0

3(cos 𝑝𝑡 − cos3𝑝𝑡), 

𝑝2 = 𝜔0
2 (1 −

1

8
 𝑎0

2). [Помилка! Джерело посилання не знайдено.] 

Побудуємо цей розв’язок у СКА Maple та порівняємо його із точним: 

>  
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>  

 

 

>  

 

>  

> g:=9.8; 

l:=1; 

omega:=sqrt(g/l); 

 

 

 

>  

 

>  

> with(plots): 

Побудуємо на одній системі координат розв’язки отриманий точним 

методом та методом розкладу в ряд за малим параметром. 

> display({pl3,pl1}); 
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Рис 3.6. Одержанні результати для рівняння руху математичного маятника 

для кута 
π

6
: точний та метод розкладу в ряд. 

 

 

Рис 3.7. Ці ж результати для кута 
π

3
. 

А А 

t t 

аsx(t), x(t) 

x(t) 

аsx(t) 
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З Рис 3.6 бачимо, що точний та асимптотичний результати майже не 

відрізняються для кута рівного 
𝜋

6
, проте для кута  

𝜋

3
 відмінність навіть візуально 

є суттєва (графік зображено на Рис 3.7).  

Для порівняння одержаних результатів знайдемо значення в момент часу 

t=201, для кожного із кутів: 

1. Початкове відхилення 
𝜋

3
, тоді для точного результату отримуємо 

значення 𝑥(𝑡) = −0.427, а для асимптотичного 𝑎𝑠𝑥(𝑡) = −0.208. Відмінність 

одержаних результатів становить 0,2. 

 2. Аналогічно для 
𝜋

6
, маємо 𝑥(𝑡) = −0.476, а 𝑎𝑠𝑥(𝑡) = −0.472 , 

відмінність 0,04. 

Проте в першому випадку максимальна амплітуда 0.5, а в другому 1, 

тобто зі збільшенням кута відхилення зростає амплітуда, та зменшується 

точність одержаних результатів. 

 

3.3. Метод Боголюбова - Крилова 

Для побудови вдосконаленої теорії збурень, розглянемо результат 

одержаний асимптотично, виконавши необхідні розрахунки в CKA Maple. 

Запишемо рівняння руху математичного маятника (3.1) у вигляді:  

 

Тоді розв’язок:  

 

Функція 𝑓(𝑎𝑠𝑥) має вигляд: 
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Невідомі коефіцієнти К та М: 
  

 

  

 

Кут ψ шукатимемо у вигляді 𝜓 = 𝜔𝑡 + 𝜃(𝑡) 

. 

Необхідний кут 𝜃(𝑡) знайдемо із дифференціального рівняння: 
 

 

>  

 

В результаті отримуємо, що ψ: 

 

Асимптотичне значення відповідно рівне: 𝑎𝑠𝑥(𝑡) 

 

Невідомі константи визначимо у вигляді :𝑎(𝑡) =
𝜋

3
 

 

 Тоді 𝑎𝑠𝑥(𝑡): 
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>  

> with(plots): 

> display({pl3,pl1}); 

 

 

Рис. 3.8. Точний та асимптотичний результат 

Із Рис. 3.8. знайдемо також різницю результатів в точці t=201:  

𝑥(𝑡) = 0,42, а 𝑎𝑠𝑥(𝑡) = 0,20082 різниця 0,22. 

Ми порівняли точний розв’язок рівняння (1), знайдений в СКА Maple та 

асимптотичний розв’язок цього рівняння, виконавши розклад sin 𝑥 в ряд із 

збереженням доданків не вище кубічних. 

Побудуємо також в цій же системі координат закон руху маятника, коли 

ми апроксимуємо sin 𝑥 = х та проаналізуємо відмінність між цими трьома 

результатами. 

А 

А 

t 

аsx(t) 

x(t) 
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Рис. 3.9. Точний та два наближені розв’язки. 

З Рис. 3.9 бачимо, що якщо не враховувати кубічний доданок, то відмінність 

одержаних результатів навіть візуально значна.  

  

Збереження кубічних доданків 

Точний результат 

sin 𝑥 ≈ х 
t 
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ВИСНОВКИ 

У сучасній нелінійній динаміці основними аналітичними інструментами 

дослідження залишаються асимптотичні методи, метод усереднення, метод 

малого параметра та їх модифікації. При застосуванні цих наближених 

методів, як правило, припускається, що шуканий розв'язок за своєю 

структурою близький до гармонічного, а його параметри (амплітуда та фаза) 

повільно змінюються у часі. Після знаходження параметрів основного 

наближення результат може бути уточнений шляхом врахування вищих 

гармонік, хоча, як показує практика, ці уточнення здебільшого носять 

кількісний характер і рідко приводять до виявлення нових якісних ефектів. 

Основною метою магістерської роботи було встановлення ступеня 

відмінності між наближеними розв'язками, отриманими аналітично за 

допомогою класичних асимптотичних методів, та точними чисельними 

розв'язками, одержаними з використанням системи Maple. Це дозволило 

оцінити межі доцільності та достовірності використання аналітичних підходів 

для інженерних та наукових розрахунків. 

У ході виконання роботи було проаналізовано фундаментальні джерела 

з теми дослідження, що стосуються точності асимптотичних методів та аналізу 

механічних коливань. Дослідження проводилося на прикладі двох базових 

моделей: осцилятора Дуффінга та математичного. 

За результатами виконаного теоретичного та чисельного дослідження 

зроблено наступні висновки: 

1. Теоретичні основи та методологія. 

У першому розділі роботи детально розглянуто особливості нелінійних 

коливань на прикладі одновимірного руху в потенціальному полі. 

Проаналізовано роль та значення асимптотичних методів у теорії нелінійних 

коливань. Показано загальну теоретичну схему побудови наближених 

розв'язків, яка дозволяє звести складну нелінійну задачу до послідовності 

лінійних диференціальних рівнянь. 
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2. Дослідження осцилятора Дуффінга. 

У другому розділі охарактеризовано фізичну суть та практичне значення 

моделі осцилятора Дуффінга. Проведено детальне порівняння результатів, 

одержаних асимптотичними методами, з еталонним розв'язком у середовищі 

СКМ Maple. Графічна побудова та чисельний аналіз дозволили оцінити 

точність кожного методу: 

 Метод розкладу в ряд за малим параметром нелінійності (прямий метод). 

Встановлено, що даний метод має суттєві обмеження. Зокрема, виявлено 

розходження амплітудних значень, яке зростає з часом: на 50-й секунді 

руху різниця амплітуд склала 0.5, що є неприпустимо великою 

похибкою. Це підтверджує, що прямий розклад призводить до появи 

секулярних членів і не підходить для тривалих прогнозів динаміки 

системи. 

 Метод Лінштедта–Пуанкаре. Результати показали високу ефективність 

цього методу. Графіки наближеного та точного розв'язків не мають 

помітного фазового зміщення, а відмінність амплітуд становить близько 

0.001. Це свідчить про високу точність методу та доцільність його 

використання для слабонелінійних коливальних систем, де важливим є 

врахування залежності частоти від амплітуди. 

 Метод Крилова–Боголюбова. Побудована теорія збурень на основі 

усереднення дозволяє отримати компактний аналітичний результат, 

який легко аналізувати теоретично. Проте для осцилятора Дуффінга цей 

метод у першому наближенні не забезпечив належної точності фазових 

характеристик порівняно з методом Лінштедта–Пуанкаре. 

Загалом, результати другого розділу дозволяють стверджувати, що 

застосування адекватних асимптотичних методів (зокрема Лінштедта–

Пуанкаре) не лише значно спрощує процес пошуку розв'язку порівняно з 

чисельним інтегруванням, а й дозволяє отримати аналітичний результат, 

надзвичайно близький до точного. 

3. Аналіз моделі математичного маятника. 
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У третьому розділі проведено дослідження рівняння коливань математичного 

маятника з урахуванням вищих членів розкладу відновлювальної сили. 

Отримано наступні результати: 

 Врахування кубічного доданка в розкладі синуса дозволяє отримати у 5–

8 разів точніший результат порівняно з класичним лінійним 

наближенням sinx ≈ x. 

 Встановлено залежність точності наближених обчислень від початкових 

умов: зі збільшенням початкового кута відхилення маятника точність 

асимптотичних розв'язків закономірно зменшується через зростання 

впливу нелінійності. 

 Використання асимптотичних методів (малого параметра та 

усереднення) дозволило отримати розв'язки, що не мають критичних 

відмінностей із точним інтегруванням. 

 Таким чином, для системи математичного маятника використання 

запропонованих асимптотичних методів дає результати, що добре 

узгоджуються з точними. Однак при їх застосуванні слід критично 

оцінювати величину початкового відхилення (амплітуду), оскільки від 

неї безпосередньо залежить зміна циклічної частоти і, відповідно, 

накопичення фазової похибки з часом. 

Перспективи подальших досліджень. Подальший розвиток даної теми 

вбачається у необхідності адаптації та дослідження розглянутих методів для 

аналізу суттєво нелінійних коливань (де малий параметр відсутній), оцінці 

їхньої збіжності та визначенні меж достовірності результатів. Також 

актуальним є пошук універсальних методів, що дозволять проводити 

глобальний якісний та кількісний аналіз складних нелінійних коливальних 

систем. 
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