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АНОТАЦІЯ

Крупко К. В. Фізико-математичне моделювання та оптимальне керування

біомеханічними рухами в сагітальній площині.

У роботі розроблено фізико-математичну модель дволанкової структури

верхньої кінцівки людини в сагітальній площині та виконано синтез

оптимального лінійно-квадратичного регулятора (LQR) у просторі станів.

Динамічні рівняння отримано в лагранжевому формалізмі; здійснено

лінеаризацію в околах характерних робочих положень і побудовано узгоджені

моделі у просторі станів для подальшого синтезу керування. Проведено серію

чисельних експериментів у середовищах OpenSim та MATLAB/Simulink для

траєкторій згинання ‒ розгинання плечового та ліктьового суглобів; оцінено

вплив вагових матриць на якість керування.

Наукова новизна полягає у: компактній, але фізично інформативній

моделі у сагітальній площині із систематичною лінеаризацією в множині

робочих точок; узгодженні кінематичних і динамічних параметрів із

біомеханічними обмеженнями та забезпеченні можливості інтеграції з OpenSim;

розробленні процедури добору вагових коефіцієнтів з урахуванням компромісу

«плавність руху ‒ енергетична вартість» і робастності до варіацій

антропометричних параметрів і зовнішніх збурень.

Практичне значення полягає в тому, що запропонована модель і LQR-

контролер можуть слугувати теоретичною основою для алгоритмів керування

біонічними протезами та активними екзоскелетами верхньої кінцівки, а також

для налаштування тренажерних і реабілітаційних комплексів, які реалізують

керовані траєкторії у плечовому та ліктьовому суглобах.

Ключові слова: сагітальна площина, лагранжевий формалізм, простір

станів, лінеаризація, LQR, робастність, OpenSim, MATLAB.



ABSTRACT

Krupko K. V. Physical-Mathematicl Modeling and Optimal Control of

Biomechanical Movements in the Sagittal Plane.

This work develops a physical–mathematical model of a two-link structure of

the human upper limb in the sagittal plane and presents the synthesis of an optimal

linear–quadratic regulator (LQR) in the state space. The equations of motion are

derived using the Lagrangian formalism; linearization is performed in the

neighborhoods of representative operating postures, and consistent state-space

models are constructed for subsequent controller design. A series of numerical

experiments is carried out in OpenSim and MATLAB/Simulink for shoulder and

elbow flexion–extension trajectories; the influence of the weighting matrices on

control performance is assessed.

Scientific novelty consists in: a compact yet physically informative sagittal-

plane model with systematic linearization over a set of operating points;

harmonization of kinematic and dynamic parameters with biomechanical constraints

and provision for integration with OpenSim; a procedure for selecting weighting

coefficients accounting for the trade-off “motion smoothness – energetic cost” and

robustness with respect to variations in anthropometric parameters and external

disturbances.

The practical significance of the work lies in the fact that the proposed model

and LQR controller may serve as a theoretical basis for control algorithms of bionic

prostheses and active upper-limb exoskeletons, as well as for tuning training and

rehabilitation systems that implement controlled trajectories in the shoulder and

elbow joints.

Keywords: sagittal plane, Lagrangian formalism, state space, linearization,

LQR, robustness, OpenSim, MATLAB.
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5

ВСТУП

Актуальність теми. Сучасний рівень розвитку медицини, робототехніки

та біонічного протезування потребує побудови адекватних фізико-

математичних моделей рухів людини, здатних відтворювати тонкі особливості

моторики та забезпечувати синтез ефективних законів керування. Кількість осіб

з порушеннями функцій опорно-рухового апарату зростає, що зумовлює

суспільний запит на високотехнологічні протези, активні екзоскелети й

інтелектуальні тренажерні системи, орієнтовані на відновлення та підтримку

рухової активності. Однією з ключових передумов їх створення є опис

кінематики та динаміки рухів верхньої кінцівки людини, зокрема у сагітальній

площині, де реалізуються базові жести «досягнення ‒ перенесення ‒ утримання

‒ відпускання» та значна частина реабілітаційних вправ.

У світовій практиці розроблення біонічних протезів, реабілітаційних

екзоскелетів і людино-машинних інтерфейсів широкого поширення набули

підходи, що поєднують багатоланкові біомеханічні моделі, методи

оптимального керування та інструменти комп’ютерного моделювання на основі

OpenSim, MATLAB, Simulink та споріднених середовищ. Разом із тим для

верхньої кінцівки залишається актуальною задача побудови компактних, але

фізично змістовних моделей у сагітальній площині, які забезпечують

можливість лінеаризації в околі робочих точок, формулювання задачі в

просторі станів, синтезу LQR-керування та подальшої інтеграції отриманих

результатів.

Тема кваліфікаційної роботи «Фізико-математичне моделювання та

оптимальне керування біомеханічними рухами в сагітальній площині» є

складовою наукової тематики кафедри теоретичної та комп’ютерної фізики

імені А. В. Свідзинського ННФТІ та відповідає пріоритетним напрямам

розвитку теоретичної фізики, біомеханіки та теорії керування. Особистий

внесок автора полягає у побудові фізико-математичної моделі дволанкової

структури верхньої кінцівки, її поданні в просторі станів, синтезі LQR-
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контролера та проведенні чисельних експериментів із використанням

інструментарію OpenSim і MATLAB/Simulink.

Метою кваліфікаційної роботи є розробка фізико-математичної моделі

рухів верхньої кінцівки людини в сагітальній площині та синтез робастного

лінійно-квадратичного контролера (LQR) за допомогою інструментів MATLAB

для забезпечення фізіологічно природної реакції суглобів, що відтворює задані

кутові положення, швидкості та прискорення.

Для досягнення поставленої мети необхідно розв’язати такі основні

завдання:

- проаналізувати біомеханічні особливості рухів верхньої кінцівки та їх

представлення в сагітальній площині;

- розглянути основи кінематики та динаміки багатоланкових біомеханічних

систем;

- систематизувати теоретичні засади оптимального керування

біомеханічними системами, уточнити критерії оптимальності та

математичний апарат їх реалізації;

- проаналізувати програмно-математичні засоби моделювання біомеханічних

систем;

- розробити фізико-математичну модель дволанкової структури руки людини

в сагітальній площині на основі лагранжевого формалізму;

- виконати лінеаризацію одержаної моделі в околі характерних робочих точок

і подати її у формі простору станів;

- синтезувати оптимальний LQR-контролер із зворотним зв’язком та

дослідити його властивості;

- провести чисельні експерименти для різних робочих точок, оцінити вплив

вибору вагових матриць на характеристики руху;

- окреслити можливі напрями практичного використання отриманих моделей.

Об’єкт дослідження: процес керування рухами верхньої кінцівки

людини в сагітальній площині на основі фізико-математичного моделювання.
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Предмет дослідження: дволанкова фізико-математична модель верхньої

кінцівки.

Практичне значення одержаних результатів. Розроблена фізико-

математична модель верхньої кінцівки в сагітальній площині та синтезований

на її основі робастний LQR-контролер можуть бути використані як теоретичне

підґрунтя для проєктування алгоритмів керування біонічними протезами й

активними екзоскелетами верхньої кінцівки, а також для налаштування

тренажерних та реабілітаційних комплексів, що реалізують керовані траєкторії

згинання ‒ розгинання у плечовому та ліктьовому суглобах. Запропонований

підхід дає змогу досліджувати вплив антропометричних параметрів, вибору

робочих положень і вагових коефіцієнтів у функціоналі якості на плавність і

енергетичну ефективність рухів.

Апробація результатів дослідження. Основні положення та результати

кваліфікаційної роботи представлені автором на VІ Міжнародній науковій

конференції «Актуальні проблеми фундаментальних наук» (АПФН-2025)

присвяченій пам’яті Джордано Бруно, у формі усної доповіді «Моделювання та

оптимальне керування біонічним протезом верхньої кінцівки в сагітальній

площині», а також публікація у фаховому журналі «Фізика та освітні

технології» (випуск 2, 2025 р.), зокрема в статті «Моделювання та оптимальне

керування біонічним протезом верхньої кінцівки в сагітальній площині» (у

співавторстві із О. Замуруєвою, В. Сахнюком, А. Івановським, В.

Левандовським). Окремі результати дослідження обговорювалися на кафедрі

теоретичної та комп’ютерної фізики імені А. В. Свідзинського ННФТІ.

Структура кваліфікаційної роботи. Робота складається зі вступу, трьох

розділів, висновків та списку використаних джерел. У першому розділі подано

теоретичні й методологічні засади моделювання та керування біомеханічними

рухами; у другому розділі уточнено концепцію синтезу керування, наведено

побудову математичної моделі верхньої кінцівки у просторі станів; у третьому

розділі виконано синтез LQR-керування, наведено експериментальні результати

моделювання та розглянуто практичні напрями застосування моделі.
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РОЗДІЛ 1

ТЕОРЕТИЧНІ ТА МЕТОДОЛОГІЧНІ ОСНОВИМОДЕЛЮВАННЯ ТА

КЕРУВАННЯ БІОМЕХАНІЧНИМИ РУХАМИ

1.1. Біомеханічні особливості рухів та їх представлення у сагітальній

площині

Рука людини є складною системою, що виконує широкий спектр рухів,

необхідних для життєдіяльності, праці та взаємодії з навколишнім середовищем.

З біомеханічної точки зору вона являє собою багатоланкову систему жорстких

тіл, з’єднаних суглобами, які забезпечують різні ступені вільності руху [1, 2].

Основними ланками верхньої кінцівки є плечова кістка, передпліччя і

кисть. Ці ланки з’єднані трьома суглобами, що забезпечують складну

комбінацію обертальних рухів у трьох просторових площинах: сагітальній,

фронтальній і горизонтальній [3].

Для створення повної та достовірної моделі руки людини необхідно

врахувати низку ключових біомеханічних параметрів.

Біомеханічний опис включає:

- кінеметрію (діапазони активних і пасивних рухів суглобів),

- антропометрію (маси сегментів, положення центрів мас, тензори інерції),

- м’язово-сухожильну архітектуру (моменти сили, плечі моментів,

обмеження),

- сумісність рухів (наприклад, скапуло-гумеральний ритм) [1, 3-6, 8-9].

Сагітальна площина це вертикальна площина, що поділяє тіло на ліву й

праву половини, у ній описуються рухи типу згинання–розгинання сегментів

(плечовий пояс, плече, передпліччя, кисть) [4-7].

Аналіз у сагітальній площині дає дві ключові переваги:

- зниження розмірності задачі без втрати визначальних властивостей

моторики для жестів «досягнути – перенести – відпустити»;
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- спрощення збору та обробки даних (менше маркерів, датчиків, чистіша

геометрія) при збереженні інформативності [8, 15].

Для формалізованого аналізу біомеханічну систему представляють як

багатоланкову механічну структуру з твердих ланок, з’єднаних кінематичними

парами. У сагітальній постановці кожній рухомій ланці, як правило,

приписують одну узагальнену координату, кут обертання або поступальне

зсування, залежно від типу суглоба, а розмірність вектора координат дорівнює

кількості ступенів вільності (DoF) вибраної моделі. Такий опис забезпечує

керованість у вибраному робочому просторі та є природною основою для

формування постановок оптимального керування [12].

Обмеження використання сагітальної площини включають межі

діапазонів руху (ROM), швидкостей і зміни прискорення, припустимі пікові

навантаження і контактні реакції. Коли завдання вимагають вираженої

тривимірної динаміки, обертання передпліччя (пронація, супінація), рухи плеча

вбік та до тіла (відведення, приведення), взаємодія з об’єктами або

середовищем поза основною (сагітальною) площиною, то цю спрощену модель

необхідно розширювати, додаючи виміри в інших площинах [10-12].

1.2. Основи кінематики та динаміки багатоланкових біомеханічних

систем

Кінематика та динаміка є фундаментальними розділами механіки, які

становлять основу для побудови математичних моделей рухів біомеханічних

систем.

1.2.1. Загальні поняття кінематики

Кінематика вивчає геометричний опис руху без урахування силових

причин. Нехай Q ⊂ Rⁿ це конфігураційний простір (допустимі значення

узагальнених координат), а q ∈ Q – вектор, який однозначно задає положення

багатоланкової системи. Пряма кінематика визначається
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x = f(q), (1.1)

де x ∈ Rᵐ – вектор простору задачі, операційного простору, що може

містити положення характерних точок і параметри орієнтації.

На практиці f реалізують через композицію однорідних перетворень

(матриці SE(3)), параметризацію Денавіта-Гартенберга або представлення

Product of Exponentials (експоненційні «гвинти») [3, 10].

Диференціальна кінематика описує локальний зв’язок між швидкостями

та прискореннями у конфігураційному й операційному просторах. Вводять

якобіан

J(q) =
∂f(q)

∂q
, (1.2)

для якого

x�= J(q) q� , x� = J(q) q�+ J�(q, q� ) q� ,    (1.3)

де

J�(q, q� )=
k=1

n
∂J

∂qk
q� k.� (1.4)

Матриця Якобі J(q) описує локальний диференціальний зв’язок між

швидкостями у конфігураційному просторі та просторі задач. Її ранг визначає

структуру кінематичних сингулярностей тобто втрату можливості руху в

окремих напрямках. На основі спектра J (сингулярних чисел) вводяться

метричні показники якості конфігурації маніпулятора а саме: міри
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маніпуляційної здатності (маневреності), ізотропності та умовне число матриці

J, які характеризують близькість до сингулярності та «якість» рухів у просторі

задач [6, 13]. Сингулярні конфігурації відповідають напрямкам руху або

необмеженим спільним швидкостям суглобів при заданому x, що необхідно

враховувати як під час планування, так і при синтезі законів керування.

Зворотна кінематика полягає у відновленні q за заданим x. Для невеликих

систем можливі замкнені аналітичні розв’язки; у загальному випадку

застосовують ітераційні схеми типу Гауса-Ньютона, Левенберга-Маркарта та

демпфовану псевдоінверсію (DLS):

qk+1= qk + J(qk) (xd − f(qk)), rk:=xd−f(qk), (1.5)

де xd – бажаний вектор у просторі задач,

rk – вектор помилки,

J(qk) – якобіан,

λ > 0 – параметр демпфування, що стабілізує розв’язок поблизу

сингулярностей.

Обмеження межі траєкторій руху, швидкостей враховують у зваженій

псевдоінверсії та через проєкцію на нуль- простір для реалізації вторинних

цілей, уникнення перешкод, центрування конфігурації [6, 13].

Кінематичні обмеження формалізують зв’язки між координатами або їх

похідними. Голономні обмеження задаються рівняннями

φ(q, t) = 0

і можуть бути усунуті редукцією координат
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q = Φ(z, t)

з переходом до мінімальної множини z. Неголономні обмеження мають вигляд

A(q, t) q� = 0

і не інтегруються до алгебраїчних зв’язків у конфігураційному просторі, їх

враховують через множники Лагранжа або методи проєкції. В обох випадках у

динаміці з’являються реакції зв’язків, узгоджені з кінематичною структурою

[14].

В енергетичному формалізмі жорстких тіл ключову роль відіграють

кінетична та потенціальна енергії:

T= 1
2

q� TM(q)q� ,  (1.6)

V=
i

mighi(q)� , (1.7)

Вирази (1.6) і (1.7) становлять основу лагранжевого підходу до виведення

рівнянь руху та побудови енергетично узгоджених законів керування [1, 8-9,

16].

Планування траєкторій у кінематиці спрямоване на формування

згладжених відліків x(t) або q(t), що задовольняють межі на положення,

швидкість, прискорення, ривок і кінематичні обмеження. Широко застосовують

поліноми 5- го, 7- го порядку з нульовими граничними умовами на похідні,

профілі мінімального ривка в просторі задач (модель Флеша-Хогана) та B-

сплайни з обмеженнями на кривизну й гладкість [6, 13, 21]. Для виконання

апаратних обмежень, межі швидкостей та моментів, застосовують часове



13
масштабування: фіксують геометричний шлях і підбирають параметризацію s(t)

так, щоб дотримувалися обмеження. Такий підхід дозволяє розділяти задачу на

планування шляху й планування часу та надалі інтегрувати траєкторії з

задачами оптимального керування.

Кінематичний апарат забезпечує математичний міст між конфігураційним

і операційним описами руху, задає умови допустимості і надає інструменти для

аналізу сингулярностей та планування траєкторій. Саме на цій основі в

наступному пункті формулюються рівняння динаміки та їх властивості.

1.2.2. Закони динаміки для систем з багатьма ступенями вільності

(MDOF)

Моделювання складних біомеханічних систем вимагає використання

математичного апарату. Фундаментальним кроком є застосування законів

динаміки для систем з багатьма ступенями вільності (MDOF), які дозволяють

описати взаємодію сил і рухів.

Динаміка багатоланкових систем в узагальнених координатах описується

канонічним рівнянням:

M(q)q�+ C(q, q� )q�+ g(q) + Fvq�+ Fc sgn(q� ) = τ + JcT(q) λ , (1.8)

де q ∈ Rn – вектор узагальнених координат (кутів/зсувів);

q,� q� – узагальнені швидкості та прискорення;

M(q) ∈ Rn×n – матриця інерції;

C(q, q� ) ∈ Rn×n – матрична функція, що породжує коріолісові та

відцентрові члени C(q, q� )q� ;

M(q) – похідна M(q) за часом (через залежність від q(t));

M–2C є кососиметричною властивістю і забезпечує енергетичну

узгодженість;

g(q) ∈ Rn – вектор гравітаційних узагальнених сил;
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Fv∈ Rn×n – матриця коефіцієнтів в’язкого тертя;

Fc∈ Rn×n – матриця кулонівських тертьових рівнів;

sgn(q� ) – покомпонентна сигн-функція;

τ ∈ Rn – узагальнені керувальні сил, моменти;

JcT(q) ∈ Rm×n – якобіан зв’язків, контактів;

λ ∈ Rm – множники Лагранжа.

Рівняння (1.8) ґрунтується на класичних властивостях системи, зокрема

симетричності та додатній визначеності матриці інерції M(q),

кососиметричності (M–2C), а також пасивності системи відносно узагальнених

швидкостей q� та сил τ [6, 14-17].

Перехід від фізичних сил і моментів до узагальнених сил виконується за

принципами Д’Аламбера та віртуальної роботи:

Qj=
i

fi
∂ri

∂qj
� +

i

μi
∂θi

∂qj
� , (1.9)

де Qj – j-та узагальнена сила;

fi, μi – результуючі сили й моменти;

ri(q), θi(q) – положення та параметри орієнтації характерних точок;
∂ri
∂qj
, ∂θi

∂qj
– «важелі» перетворення у відповідні узагальнені сили [1, 14].

Для коректного опису взаємодії системи з навколишнім середовищем та

внутрішніх процесів використовуються відповідні моделі тертя, пружності та

контактів. В’язке тертя моделюється як лінійна залежність від узагальнених

швидкостей q� , тоді як сухе тертя потребує застосування функцій зі

згладжуванням навколо нульових швидкостей для забезпечення чисельної

стійкості симуляції. Пружність зв’язок та пасивних тканин враховується через

лінійні або нелінійні джерела потенціальної енергії. Контакти та реакції зв’язків

формулюються за допомогою апарату множників Лагранжа або як
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комплементарні умови. Вибір конкретної схеми залежить від вимог до точності

моделювання та необхідної швидкодії обчислень.

Параметри моделі оцінюються у регресорній формі:

Y(q,q� ,q� )θ=τ,

це дозволяє оцінювати ключові фізичні характеристики, такі як маси сегментів,

положення центрів мас, моменти інерції та коефіцієнти тертя. Для робастності і

достовірності потрібні збуджувальні траєкторії, регуляризація, масштабування

ознак і валідація на незалежних даних.

Чисельна інтеграція виконується із контролем похибки: для жорстких

задач – неявні варіаційні інтегратори; при подіях (удари, зміна режиму

контакту) – інтегратори зі стрибками та детектуванням подій. Це критично для

коректного розв’язання задач оптимізації поверх симулятора.

1.2.3. Методи динамічного моделювання

Динамічне моделювання біомеханічних систем передбачає опис руху за

допомогою рівнянь, що пов’язують сили, моменти та прискорення елементів

системи. Для цього застосовуються класичні методи аналітичної механіки,

серед яких найбільш поширеними є метод Лагранжа, метод Ньютона-Ейлера та

метод Кейна [1, 15, 17].

Метод Лагранжа базується на принципі найменшої дії та використовує

узагальнені координати. Його головною перевагою є можливість формування

рівнянь руху без явного розгляду всіх реакцій зв’язків, що значно спрощує

моделювання складних багатоланкових систем [1]. Лагранжіан :

L(q, q,� t)=T(q, q� )- V(q, t) (1.10)
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призводить до рівнянь Ейлера-Лагранжа:

d
dt

∂L
∂qi�

-
∂L
∂qi

=Qi, i=1,...,n, (1.11)

де T – кінетична енергія,

V– потенціальна енергія,

qi – узагальнені координати,

Qi – узагальнені сили [1, 8, 35].

Метод Ньютона-Ейлера є класичним підходом, який базується на законах

динаміки Ньютона і рівняннях обертального руху Ейлера. Реалізується

рекурсивно: прямий прохід обчислення швидкостей і прискорень ланок так

зворотний прохід обчислення сил і моментів на них. У сучасній формі:

τ = RNEA(q,q� ,q� ), q� = ABA(q,q� ,τ), (1.12)

RNEA (Recursive Newton-Euler Algorithm) розв’язує обернену динаміку, а

ABA (Articulated-Body Algorithm) – пряму; обидва алгоритми мають складність

і придатні для реального часу та високої розмірності [9, 10].

Метод Кейна є узагальненням попередніх підходів і дозволяє отримувати

рівняння руху без явного визначення потенціальної енергії або реакцій зв’язків.

Його основою є формулювання динаміки через узагальнені ur та частинні

швидкості. Рівняння мають вигляд :

Qr+ Qr∗ = 0, r = 1,…,s, (1.13)

де
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Qr=
i

Fivi
(r)+Tiωi

(r)� , Qr
*=

i

(-miai)vi
(r)+(-Iiαi-ωi(Iiωi))ωi

(r)�

Тут vi(r), ωi(r) – частинні поступальні та обертальні швидкості відносно ur;

зірочки(*) позначають інерційні сили та моменти.

Метод уникає явного введення множників Лагранжа, добре працює зі

змішаними координатами й кінематичними зв’язками, дає компактні системи

рівнянь і чисельно стійкий у великих моделях [8, 10].

Вибір конкретного методу динамічного моделювання залежить від

складності системи, наявності зв’язків, кількості ступенів вільності та вимог до

точності. У дослідженні використаємо метод Лагранжа другого роду.

1.3. Теоретичні основи оптимального керування біомеханічними

системами

Побудова систем керування рухами біомеханічних об’єктів, ґрунтується

на принципах автоматичного керування, що забезпечують узгоджену взаємодію

між сенсорними, обчислювальними та виконавчими елементами системи [31].

У біомеханіці під керуванням руху розуміють процес регулювання

положення, швидкості або сили м’язових зусиль для досягнення заданої

траєкторії руху. Основна мета побудови системи керування полягає у

забезпеченні стійкості, точності та оптимальності рухів.

1.3.1. Загальна постановка задачі керування

Модель руху у загальному вигляді :

x�(t)=f(x(t), u(t), t), x(t0)= x0 (1.14)

або при наявності зв’язків і контактів:
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F(x(t), x�(t), u(t),t)=0, ϕ(x(t),t)=0, ψ(x(t),u(t), t)≤0, (1.15)

де ϕ – рівняння голономних зв’язків,

ψ – шляхові обмеження, межі суглобів, швидкостей, моментів,

контактний конус тертя тощо.

Задача керування коли задано бажану поведінку та обмеження:

xmin≤x(t)≤xmax, umin≤u(t)≤umax, u� min≤u� (t)≤u� max .

Потрібно знайти весь сигнал керування u[t0, T], який стабілізує, відстежує

систему, дотримується обмежень і оптимізує обраний критерій якості [36].

1.3.2. Критерії оптимальності в біомеханіці

Критерій якості визначає, що саме вважаємо найкращим рухом:

близькість до референсу, мінімум зусиль, гладкість траєкторії, стабільність

постави чи фізіологічну доцільність.

Критерій задається функціоналом який прямує до мінімального значення:

J=Φ(x(T))+
t0

T
L(x(t), u(t),t)dt� (1.16)

Відстеження траєкторії, позиції:

L=
1
2

(x-xref) Q(x-xref)+
1
2

(u-uref)R(u-uref), Q≥0, R>0. (1.17)

Зусилля, енергетичні витрати приводів:
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L=
1
2

uTRu+
1
2

u� TSu� , R>0, S≥0. (1.18)

Гладкість руху, мінімальний ривок, смикання у просторі задач:

L= 1
2

x(3)(t)
W
2

або L= 1
2

x�(t) W
2 . (1.19)

Стабільність постави, ходи: штрафний доданок у функціоналі за

відхилення центру мас, тиску та порушення обмежень ZMP, CoP:

L=
1
2

xCoP-xref W
2 +

1
2

ZMP-ZMPref W
2 . (1.20)

Фізіологічні критерії м’язові активації, метаболізм, втома:

L= j (aj(t))p,� (p∈[2, 3]) або L=E� met(a, l, v). (1.21)

де a, l, v – активації довжини й швидкості м’язів; ​

E� met – модель миттєвих енергетичних витрат.

Час оптимальний рух: мінімізувати T при дотриманні обмежень.

Такі критерії оптимальності реалізують через зважену суму, ієрархію,

ваги підбирають за експериментальними даними, експертно [31, 32].

1.3.3. Математичний апарат оптимального керування

Методи розв’язання поділяються на непрямі, умови оптимальності типу

Понтрягіна, Гамільтона-Якобі-Беллмана та прямі числові підходи,

мультишутінг, колокування, MPC, а також на спеціальні лінійно-квадратичні

конструкції, LQR, LQG.

Для принципу максимуму Понтрягіна, де гамільтоніан
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H=L+λ⊤ f, (1.22)

необхідні умови:

x�= ∂H
∂λ

, λ�=- ∂H
∂x

, 0= ∂H
∂u

(або умови насичення, перемикання),

з крайовими умовами для λ(T)= ∂Φ
∂x(T)

. Для зв’язків додають множники

Лагранжа та комплементарні умови.

Динамічне програмування, коли функція вартості V(x,t) задовольняє

рівняння Гамільтона-Якобі-Беллмана. Практично застосовують у малих

розмірностях або з апроксимаціями [31, 32].

При мультишутінгу, прямому колокуванні дискретизують x, u на всьому

відрізку, транскрибують у велику NLP-задачу зі змінними вузлами. Розв’язують

градієнтними методами з автоматичним диференціюванням.

MPC, предиктивне керування, коли на кожному кроці розв’язується

скінченно-горизонтна оптимізація:

min{xk, k}
k=0

N-1

xk-xk
ref

Q

2
+ uk R

2� + xN-xN
ref

P

2
, (1.23)

за моделлю xk+1= fd (xk, uk) та обмеженнями [37].

Лінійно-квадратичний контролер без шуму розглядається для системи:

x�=Ax+Bu, (1.24)

з функціоналом якості
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J=
0

∞
(xTQx+uTRu)dt� , (1.25)

Оптимальне керування має вигляд:

u*=-Kx, (1.26)

K=R-1BTP, (1.27)

де P – розв’язок алгебраїчного рівняння Ріккаті

ATP+PA-PBR-1BTP+Q=0, (1.28)

за умов стабілізовності A, B і детектовності R, Q.

LQG це LQR + фільтр Калмана (шум у процесі вимірювання) що реалізує

принцип розділення, окремий синтез регулятора і спостерігача [38, 39].

1.4. Програмно-математичні засоби для моделювання

1.4.1. Спеціалізовані програмні засоби (OpenSim, Biomech)

Практичне застосування теоретичних підходів у біомеханіці спирається

на відкриті спеціалізовані програмні засоби (ПЗ), які реалізують багатотільну

кінематику і динаміку, оцінювання м’язових зусиль та інтеграцію з даними

датчиків MoCap, EMG, забезпечуючи відтворюваність та обмін між

лабораторіями.

Стандартом для м’язово-скелетного моделювання є OpenSim. OpenSim це

відкрите програмне середовище, розроблене Стенфордським університетом,
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призначене спеціально для моделювання опорно-рухового апарату людини. У

ньому реалізовано велику бібліотеку анатомічно достовірних моделей,

масштабування під індивідуальну антропометрію, оцінювання м’язових сил та

активностей, що дозволяє досліджувати біомеханіку рухів. OpenSim має

можливості для експорту моделей у MATLAB для подальшого аналізу чи

синтезу керування.

Підготовку та аналіз експериментальних потоків даних підтримує широка

Biomech-екосистема, зокрема Biomechanical ToolKit, BiomechZoo.

Biomechanical ToolKit (BTK) це кросплатформна бібліотека й API (C++ з

обгортками для MATLAB, Python) для роботи з біомеханічними файлами.

Підтримує імпорт та експорт C3D та пов’язаних форматів TRC, MOT, ANС,

доступ до маркерів, аналогових каналів, подій, метаданих і платформи сили.

Має зв’язок з візуалізатором Mokka і зручні конвеєри для підготовки даних до

OpenSim та MATLAB [30, 33].

BiomechZoo це MATLAB-інструментарій для пакетної обробки й аналізу

біомеханічних експериментів. Реалізує: автоматизоване виявлення подій,

нормування у відсотках циклу, формування узагальнених параметрів ходи,

жестів, порівняльну візуалізацію і контроль якості. Підтримує робочі процеси:

читання через BTK, фільтрацію, виведення метрик, експорт у CSV, MAT,

формування графіків; легко інтегрується з OpenSim та MATLAB- скриптами

для подальшої кінематики та динаміки [30, 33].

Типовий план «від даних до моделі»:

1) імпорт C3D, IMU;

2) фільтрація та синхронізація;

3) масштабування моделі;

4) інверсна кінематика;

5) інверсна динаміка;

6) ідентифікація параметрів θ;

7) перевірка на незалежних траєкторіях;

8) формування референсів для синтезу керування.
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1.4.2. Інструменти для розв’язання задач керування та оптимізації

(MATLAB, Simulink)

Сучасний цикл: модель → синтез → перевірка → впровадження у

біомеханічних системах з опорою на математичні моделі найчастіше

реалізують у зв’язці MATLAB/Simulink. Цей дуальний підхід поєднує

аналітичні засоби лінійної алгебри, оптимізацію, ідентифікацію, розв’язування

ОДР з блочно-схемним моделюванням, лінеаризацію нелінійних схем,

автоматичний синтез регуляторів і подальшу перевірку в нелінійній динаміці,

включно з насиченнями, наслідками дискретизації та шумами.

MATLAB це чисельно-аналітичне середовище для побудови та аналізу

моделей керованих систем у просторі станів і частотній області. Для задач

керування доступні класичні та робастні методи: синтез LQR, LQG (рівняння

Ріккаті, lqr, dlqr, lqe), робастні підходи H∞, μ-синтез (hinfsyn, musyn),

оптимізаційні постановки відстеження й енергомінімізації через Optimization

Toolbox (fmincon, quadprog) та траєкторну оптимізацію з обмеженнями.

Інструментальні засоби аналізу включають побудову Bode, Nyquist, Root Locus,

оцінювання запасів стійкості, норм і чутливостей; у часі – моделювання зі

стандартним розв’язуванням диференціально-алгебраїчних рівнянь, (ode45,

ode15s), лінеаризацію нелінійних рівнянь (аналітично або чисельно через

Якобіани). Для задач спостереження станів доступні калманівські та розширені

калманівські фільтри; для підгонки параметрів – засоби ідентифікації (System

Identification Toolbox) та глобальної оптимізації (Global Optimization Toolbox).

MATLAB зручний для офлайн-синтезу регуляторів, налаштування ваг і тестів

робастності, а також для автоматизації всього пайплайна скриптами.

Simulink – середовище блочно-схемного моделювання й симуляції, у

якому нелінійні моделі, приводи, сенсори та регулятори інтегруються в єдину

систему з дискретним або безперервним часом. Simulink надає механізми

лінеаризації моделей, підтримує синтез і реалізацію MPC (Model Predictive

Control) із жорсткими обмеженнями, анти-windup схемами та warm-start, а
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також засоби Robust Control для перевірки невизначеностей. Через Simscape,

Simscape Multibody зручно під’єднати багатотільні моделі, в тому числі

імпортовані з зовнішніх інструментів, що дає змогу тестувати контролери на

більш фізично насичених моделях із тертям, пружністю й контактами.

MATLAB доцільно використовувати для аналітики, синтезу та

оптимізації, а Simulink для інтегрованої перевірки в нелінійній моделі з

реалістичними обмеженнями, дискретизацією, шумами та подальшою

кодогенерацією. Такий поділ ролей забезпечує безшовний перехід від теорії до

експериментів і прототипування реального контролера для біомеханічних

застосувань [6, 34].
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РОЗДІЛ 2

МОДЕЛЮВАННЯ ТА СИНТЕЗ ОПТИМАЛЬНОГО КЕРУВАННЯ

ВЕРХНЬОЮКІНЦІВКОЮЛЮДИНИ

2.1. Розробка моделі у просторі станів

Модель у просторі станів має чотири стани: узагальнені координати (кути

суглобів) та їх кутові швидкості, відповідно вектори x, x� . Вони описують

основну динаміку та найважливіші властивості системи. Ці стани об’єднані у

вектор стану x(t).

Моменти сил у суглобах, що створюються м’язами, а також зовнішні

моменти/сили T, зумовлені збуреннями, є вхідними сигналами керування u1, u2,

які впливають на рух людської руки і описуються компонентами вектора стану .

Оскільки ці кінематичні характеристики x, x� , а за потреби і x� та моменти

сили T можуть бути виміряні або оцінені, вони є вхідними даними для моделі

керування ЦНС. Для ідентифікації системи керування в просторі станів ми

використовуємо експериментальні дані, отримані з відкритої моделі людської

руки OpenSim, розробленої в [40, 41]. Для динамічної моделі в сагітальній

площині ми оцінюємо прискорення, яке можна досягти за заданого нейронного

зусилля, щоб охарактеризувати кутові прискорення суглобів, а також необхідні

моменти сил у суглобах і м’язові зусилля, потрібні для створення цих моментів.

За цих припущень нейронне зусилля можна інтерпретувати як еквівалентний

рівень м’язової сили, оціненій на основі динаміки та кінематики руху за

допомогою рівнянь Лагранжа.

2.2. Концепція синтезу керування

У розробленій моделі керування, яка моделює функціональність ЦНС,

використовується інформація з датчиків верхньої частини тіла для оцінки руху

центру мас людської руки. Поточна інформація про стани доступна для

використання під час вибору стратегії керування. Отже, припускаємо, що всі

механічні стани людської руки оцінюються датчиками або доступні (наприклад,
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з відповідних довідкових таблиць) для формування керуючого сигналу. Також

припускаємо, що ЦНС, представлена численними нелінійними нейронними

елементами, поводиться лінійно в околі обраних робочих точок, які

відповідають цільовим положенням.

Синтез керування, розроблений у цьому досліджені, буде базуватися на

динамічних рівняннях людської руки, отриманих як у формі диференціальних

рівнянь другого порядку, так і у формі простору станів для моделювання

природних рухів. Він дозволяє моделювати фізіологічні реакції людської руки,

зокрема її позиціонування в замкненому контурі у 3D-просторі. Таким чином,

ми розробляємо LQR-контролер зворотного зв’язку за станами за допомогою

MATLAB для отримання фізіологічно природної реакції на задане положення

ліктя.

Для запуску симуляцій прямої динаміки використовувалися MATLAB та

OpenSim, як показано на рис.2.1. Об’єктом керування, що використовується для

вибору робочих точок, є модель OpenSim, яка підходить для такого аналізу.

Рис. 2.1. Модель людської руки та схема LQR-керування

Активацію м’язів та ідентифіковану динаміку тіла було отримано за

допомогою розробленої загальної нелінійної моделі з подальшою лінеаризацією

в околі робочих точок. Для вибору адекватної реакції, центр вибору керування

використовує механічні стани, щоб визначити необхідний обсяг реакції для

компенсації збурень. Цей центр оцінює різницю між оціненим і бажаним
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станами, обираючи відповідну траєкторію та коефіцієнти зворотного зв’язку.

Центр вибору керування ефективно обирає відповідну матрицю підсилення.

Передбачається, що двигун системи керування (рис.2.1) отримує цільовий

вектор стану x = xref від ЦНС, порівнює його з даними з довідкової таблиці або

поточним виміряним станом, а потім генерує команду керування u у просторі

станів u1 та u2.

Метою керування є регулювання вектора станів x(t) до їхніх цільових

заданих значень x(t) отриманих за результатами біомеханічних випробувань в

OpenSim.

Відповідна довідкова таблиця з цільовими еталонними значеннями,

згенерована на основі природних рухів ліктя, та змодельована в OpenSim

модель (рис. 2.2) надають експериментальні дані вимірювань активації м’язів,

згинання ліктя, кута та швидкості.

Рис. 2.2. Модель руки з відкритим кодом OpenSim [40, 42]

2.3. Математична модель руки людини.

Рука людини складається з трьох основних частин: плече, передпліччя,

кисть. Ми розглядатимемо найпростішу модель, в якій вважається, що кисть є

нерухомою відносно передпліччя і рука може рухатись лише в сагітальній

площині. Фізичною моделлю такої руки можна вважати механічну систему, що

складається з двох стрижів, як це зображено на рис. 2.3.
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Рис. 2.3. Фізична модель руки

Довжина стрижнів та їх маса відповідно: m1, l1, m2, l2 . Верхній стрижень

під’єднаний одним кінцем до точки підвісу та може відносно неї обертатися. До

другого кінця верхнього стрижня під’єднаний один із кінців нижнього стрижня.

Нижній стрижень може обертатися відносно верхнього. Однак кут, який він

утворює з вертикаллю повинен бути не меншим за кут між вертикаллю і

верхнім стрижнем.

Зображену на рис. 2.3. фізичну модель можна розглядати як подвійний

фізичний маятник, що може здійснювати рух у вертикальній площині.

Перейдемо до побудови математичної моделі такого маятника. Для

задання його положення в просторі використовуємо дві узагальнені координати:

q1 t – кут відхилення верхнього стрижня від вертикалі;

q2 t – кут відхилення нижнього стрижня від вертикалі.

Для аналізу динаміки руки людини одержимо рівняння руху механічної

системи зображеної на рис. 2.3. В основі використовуватимемо лагранжевий

формалізм у класичній механіці. Як відомо в лагранжевому формалізмі

необхідно виразити кінетичну Ek та потенціальну U енергії через узагальнені

координати, тоді записати функцію Лагранжа
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L=Ek-U. (2.1)

Маючи функцію Лагранжа можемо отримати рівняння руху

розглядуваної системи, використовуючи загальний вигляд Лагранжа:

d
dt

∂L
∂qi�

-
∂L
∂qᵢ

=Uᵢ, i=1,2. (2.2)

Кінетична енергія системи складається з кінетичних енергій центрів мас

стрижнів та кінетичних енергій їх обертального руху навколо центрів мас.

Виразимо декартові координати центрів мас через узагальнені

координати:

x1 = lc1cosq1,
y1 = lc1sinq1,

x2 = l1cosq1 + lc2cosq2,
y2 = l1sinq1 + lc2sinq2.

(2.3)

Тоді кінетична енергія центрів мас знаходиться за формулою:

Eкін=
m1

2
x�1

2+y�1
2 +

m2

2
x�2

2+y�2
2 . (2.4)

Кінетична енергія обертального руху:

Eкін.об.=
I1

2
q� 1

2+
I2

2
q� 2

2, (2.5)

де І₁ та І₂ моменти інерції стрижнів відносно їх центрів мас.

Підставляючи (2.3) в (2.4) та враховуючи (2.5) для кінетичної енергії

одержимо:
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Потенціальна енергія складається з потенціальних енергій центрів мас.

За нульовий рівень потенціальної енергії оберемо x = 0, тоді :

U1=-m1gx1=-m1glc1cosq1,

U2=-m2gx2=-m2g l1cosq1+lc2cosq2 , (2.7)

U=U1+U2=-g m1lc1+m2l1 cosq1-m2glc2cosq2.

Тепер можемо виписати функцію Лагранжа використовуючи (2.1) :

L=
c1q� 1

2

2
+

c3q� 2
2

2
+c2cos q1-q2 q� 1q� 2+c4cosq1+c5cosq2 (2.8)

У (2.8) запроваджені наступні позначення:

c1=m1lc1
2 +m2l12+I1;

(2.9)

c3=m2lc2+I2;

c2=m2l1lc2;

c4= m1lc1+m2l1 g;

c5=m2lc2g.

Підставляючи (2.8) у рівняння Лагранжа (2.2) одержимо рівняння руху

фізичної моделі руки людини:

c1q� 1+c2cos q1-q2 q� 2+c2sin q1-q2 q� 2+c4sinq1=U1
c3q� 2+c2cos q1-q2 q� 1-c2sin q1-q2 q� 1+c5sinq2=U2

(2.10)

Ek=
m1lc1

2 q� 1
2

2
+

I1q� 1
2

2
+

m2

2
l12q� 1

2+lc2
2 q� 2

2+2l1lc2q� 1q� 2cos q1-q2 +
I2q� 2

2

2
. (2.6)
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Перепишемо цю систему в матричній формі:

c1 c2cos q1 − q2
c2cos q1 − q2 c3

q� 1
q� 2

+

+ 0 c2sin q1 − q2 q� 2
− c2sin q1 − q2 q� 1 0

q� 1
q� 2

+

+ c4sinq1
c5sinq2

= U1
U2

(2.11)

Запроваджуючи матриці :

M = c1 c2cos q1 − q2
c2cos q1 − q2 c3

;

C = 0 c2sin q1 − q2 q� 2
− c2sin q1 − q2 q� 1 0 ;

g�� = c4sinq1
c5sinq2

, U�� = U1
U2

, q��� = q� 1
q� 2

,

рівняння (2.11) можна записати в більш зручнішій формі:

M q�� q��� + C q�� , q��� q��� + g�� q�� = U�� . (2.12)

Поділимо перше рівняння системи (2.10) на c1 і позначимо:

d1 =
c2

c1
, d2 =

c4

c1
.

Тоді запроваджені вище матриці матимуть дещо інший вигляд:

M�= 1 d1cos q1-q2
c2cos q1-q2 c3

,

C�= 0 d1sin q1-q2 q� 2
-c2sin q1-q2 q� 1 0 ,
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g��� = d2sinq1
c5sinq2

, U��� =
U1

c1
U2

і відповідно рівняння руху в матричній формі:

M� q�� q���+c� q�� , q��� q���+g� q�� =U��
�
, (2.13)

Рівняння (2.13) є диференціальним рівнянням другого порядку, воно є

нелінійною математичною моделлю, що описує динамічні властивості руки

людини.

Як відомо стан механічної системи однозначно задається узагальненим

координатами та узагальненими швидкостями. Тоді математична модель (2.13)

в термінах вектора стану
q��
q�� � транспортується у рівняння стану першого

порядку:

d
dt

q�� =q�� �

d
dt

q�� �=M� q�� -1 U��� -c� q�� , q�� � -g�� q�� .

(2.14)

(2.15)

Права частина рівняння (2.15) є нелінійною функцією:

f� = f� q�� , q���� , U���

і саме через цю функцію маємо, що наша математична модель є нелінійною.

Однак, якщо розглядати рух в околі певної точки q�� 0, q��� 0, U�� 0 , то рівняння (2.15)

можна лінеаризувати.

Оберемо деяку операційну точку
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q�� 0, q��� 0, q��� 0, U�� 0,

яка задає стан системи, прискорення в цьому стані та значення керуючих

зусиль. Перепишемо рівняння (2.15) у вигляді

F�� q�� , q��� , q��� , U�� =f� q�� , q��� , U�� -q���=0. (2.16)

Виконаємо розклад функції F в ряд в околі операційної точки, зберігаючи

доданки не вище лінійних

F�� q�� 0,q��� 0,q��� 0,U�� 0 +
∂F��

∂q�� q�� 0

∆q�� +
∂F��

∂q��� q��� 0

∆q���+
∂F��

∂q��� q��� 0

∆q���+
∂F��

∂U�� U�� 0

∆U�� =0 (2.17)

В операційній точці перший доданок дорівнює нулеві, тоді враховуючи

(16) можемо (17) переписати у вигляді

q���=
∂f
∂q�� q�� 0

∆q�� +
∂f
∂q��� q��� 0

∆q���+
∂f
∂U�� U�� 0

∆U�� (2.18)

Представлена рівнянням (2.18) лінійна модель є апроксимацією

нелінійної системи в околі операційної точки. Такий підхід широко

використовується в теорії управління оскільки лінійні моделі набагато простіше

аналізувати та контролювати, ніж нелінійні. Однак варто зауважити, що

лінеаризована модель є лише апроксимацією оригінальної системи, а її точність

залежить від вибору операційної точки та величини відхилень від цієї точки.

Для великих відхилень від операційної точки лінеаризована модель може

давати неточні результати, а в деяких випадках може привести і до втрати

важливої інформації про динаміку нелінійної системи.

Розпишемо рівняння (2.18) більш детальніше.
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Враховуючи, що вектор q�� =
q1
q2

складається з двох компонент маємо:

Аналогічно можемо написати для q� 2 :

Рівняння (2.14), (2.19), (2.20) можна представити у вигляді одного

матричного

x�� �=Ax�� +BU�� , (2.21)

Тут запроваджені матриці:

x�� =

q1
q2
q� 1
q� 2

, A=

0 0 1 0
0 0 0 1
∂f1
∂q1

∂f2
∂q1

∂f1
∂q2

∂f2
∂q2

∂f1
∂q� 1

∂f1
∂q� 2

∂f2
∂q� 1

∂f2
∂q� 2

, B =

0 0
0 0
∂f1
∂U1

∂f2
∂U1

∂f1
∂U2

∂f2
∂U2

, U�� = U1
U2

. (2.22)

Для вектора y�� = q� 1
q� 2

на основі (19) і (20) одержимо:

q� 1 =
∂f1
∂q�� q�� 0

q�� +
∂f1
∂q��� 1 q���0

q��� +
∂f1
∂U�� U�� 0

U�� =

=
∂f1
∂q1 q�� 0

q1 +
∂f1
∂q2 q�� 0

q2 +
∂f1
∂q� 1 q���0

q� 1 +
∂f1
∂q� 2 q���0

q� 2 +
∂f1
∂U1 U�� 0

U1

+
∂f1
∂U2 U�� 0

U2 ==
∂f1
∂q1

∂f1
∂q2

∂f1
∂q� 1

∂f1
∂q� 2

q1
q2
q� 1
q� 2

+
∂f1
∂U1

∂f1
∂U2

U1
U2

.

(2.19)

q� 2 =
∂f2
∂q1

∂f2
∂q2

∂f2
∂q� 1

∂f2
∂q� 2

q1
q2
q� 1
q� 2

+
∂f2
∂U1

∂f2
∂U2

U1
U2

. (2.20)
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q� 1
q� 2

=

∂f1
∂q1

∂f1
∂q2

∂f1
∂q� 1

∂f1
∂q� 2

∂f2
∂q1

∂f2
∂q2

∂f2
∂q� 1

∂f2
∂q� 2

q1
q2
q� 1
q� 2

+

∂f1
∂U1

∂f1
∂U2

∂f2
∂U1

∂f2
∂U2

U1
U2

. (2.23)

Якщо запровадити матриці

C=

∂f1
∂q1

∂f1
∂q2

∂f1
∂q� 1

∂f1
∂q� 2

∂f2
∂q1

∂f2
∂q2

∂f2
∂q� 1

∂f2
∂q� 2

, D=

∂f1
∂U1

∂f1
∂U2

∂f2
∂U1

∂f2
∂U2

то (26) виглядатиме так:

y�� =Cx�� +DU�� . (2.24)

Співвідношення (2.21) і (2.24) є лінійною моделлю, якою апроксимується

нелінійна математична модель руки в околі операційної точки.

Для знаходження числових значень елементів матриць А, В, С, D

необхідно знайти явні вирази для функцій f₁, f₂, та обчислити відповідні похідні

в операційній точці. В матричній формі для маємо:

f� q�� , q��� , U�� =M�-1 U��� -C� q�� , q���� , q���� q��� -g�� q�� . (2.25)

Тут M�−1 – обернена до M� матриця, її елементи легко обчислюються , в

результаті

M�-1=
1

c3-c2d1cos2 q1-q2

c3 -d1cos q1-q2
-c2cos q1-q2 1 .

(2.26)
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Підставляючи в (2.25), (2.13) та (2.26) одержимо вирази для f1та f2:

Обчислимо похідні від f1 в операційній точці (q1,q2, q� 1, q� 2, U1, U2)

∂f1
∂q1

=

=
1

(c3 − d1 cos (q1 − q2)2 c2)2 ((
U1c3

c1
− c3d1q� 22 sin (q1 − q2)

− sin (q1)c3d2 + d1 cos (q1 − q2)(−U2 − c2 sin (q1 − q2 )q� 12
+ c5 sin (q2) ))d1c2 sin (2 ∙ (q1−q2)) ) +

+
−c3d1q� 22 cos (q1 − q2) − cos (q1)c3d2 − d1 sin (q1 − q2)(−U2 + c5 sin (q2)) − d1 cos (2 ∙ (q1 − q2)) c2q� 12

c3 − d1 cos (q1 − q2)2c2
;

∂f1
∂q2

==
1

(c3 − d1 cos (q1 − q2)2 c2)2 ((
U1c3

c1
− c3d1q� 22 sin (q1 − q2) −

− sin (q1)c3d2 + d1 cos (q1 − q2)(−U2 − c2 sin (q1 − q2 )q� 1
2 +

+ c5 sin (q2) ))d1c2 sin (2 ∙ (q1−q2)) ) +

+
c3d1q� 22 cos (q1 − q2) − U2d1 sin (q1 − q2) + d1c2q� 1

2 cos (2 ∙ (q1 − q2)) + d1c5 cos (q1 − 2 ∙ q2)
c3 − d1 cos (q1 − q2)2c2

;

∂f1
∂q� 1

=−
d1c2 sin (2 ∙ (q1 − q2))q� 1
c3 − d1 cos (q1 − q2)2 c2

;

∂f1
∂q� 2

=−
2c3d1q� 2 sin (q1 − q2)

c3 − d1 cos (q1 − q2)2 c2
;

f1 ==
1

c3-c2d1cos2 q1-q2
[
c3U1

c1
− c3d1q� 2

2sin q1-q2 − c3d2sinq1

+ d1cos q1-q2 c5sinq2-U2-c2q� 1
2sin q1-q2 ],

(2.27)

f2 ==
1

c3-c2d1cos2 q1-q2
[U2 + c2q� 1

2sin q1-q2 − c5sinq2

+ cos q1-q2 c2d2sinq1-d1U1+c2d1q� 2
2sin q1-q2 ].

(2.28)



37
∂f1
∂U1

=−
c3

(c3 − d1 cos (q1 − q2)2 c2 )c1
;

∂f1
∂U2

=−
d1 cos (q1 − q2)

c3 − d1 cos (q1 − q2)2 c2
.

Аналогічно f2 в операційній точці (q1,q2, q� 1, q� 2, U1, U2)

∂f2
∂q1

==
1

(c3 − d1 cos (q1 − q2)2 c2)2 ((U2 + c2 sin (q1 − q2) q� 12 − c5 sin (q2)

+ cos (q1 − q2)(c2d2 sin (q1) ) − d1U1 + d1c2 sin (q1 − q2)q� 22))d1c2 sin (2 ∙ ( q1 − q2)))

+
c2 cos (q1 − q2) q� 12 + d1U1 sin (q1 − q2) + d1c2 cos (2 ∙ (q1 − q2))q� 22 + c2d2 cos (2 ∙ (q1 − q2))

c3 − d1 cos (q1 − q2)2c2
;

∂f2
∂q2

=

=
1

(c3 − d1 cos (q1 − q2)2 c2)2 ((U2 + c2 sin (q1 − q2) q� 12 − c5 sin (q2)

+ cos (q1 − q2)(c2d2 sin (q1) ) − d1U1 + d1c2 sin (q1 − q2)q� 22))d1c2 sin (2 ∙ ( q1 − q2)))

+
− c2 cos (q1 − q2) q� 12 − cos (q2) c5 + sin (q1 − q2)(c2d2 sin (q1) − d1U1 ) − cos (2 ∙ (q1 − q2)d1c2q� 22

c3 − d1 cos (q1 − q2)2c2
;

∂f2
∂q� 1

=
2c2 sin (q1 − q2)q� 1

c3 − d1 cos (q1 − q2)2 c2
;

∂f2
∂q� 2

=
d1c2 sin (2 ∙ (q1 − q2)q� 2
c3 − d1 cos (q1 − q2)2 c2

;

∂f2
∂U1

=−
d1 cos (q1 − q2)

c3 − d1 cos (q1 − q2)2 c2
;

∂f2
∂U2

=
1

c3 − d1 cos (q1 − q2)2 c2
.
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РОЗДІЛ 3

LQR-КЕРУВАННЯ ТА НАПРЯМИ ЗАСТОСУВАННЯМОДЕЛІ У

САГІТАЛЬНІЙ ПЛОЩИНІ

3.1. Розробка LQR-керування

Ґрунтуючись на відомій теорії [43, 44] розробки LQR-керування, у цьому

досліджені ми розробляємо та проектуємо LQR-контролер, за якого траєкторії

станів мінімізують цільову функцію з відповідними матрицями, що зважують

відхилення станів від номінальних значень.

Розроблене LQR-керування забезпечує коефіцієнти зворотного зв’язку,

які гарантують стабільну та плавну траєкторію зміни стану системи.

Щоб перевести систему до цільових значень стану x(t)= x , введемо нові

змінні y та виконаємо заміну x(t)= x +y, u= u +v. Тут керуючий вплив u

обирається з умови Ax+Bu = 0.

Отримуємо u =-B-1Ax, і нова система набуває вигляду:

y� = Ay+Bv,

має нульове положення рівноваги.

Наша мета полягає в тому, щоб знайти матрицю підсилення керування K,

щоб керована система

u = u-K( x-x ) (3.1)

досягала асимптотичної стабільності, а також оптимізувала функціонал

вартості

J= 0
∞ (x-x )TQ(x-x )+(u-u)TR(u-u) dt� . (3.2)
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Тут Q і R – матриці вагових коефіцієнтів для відхилень станів x і

керувань u від їхніх номінальних значень, відповідно.

Закон керування u(x) асимптотично приводить систему до цільового

значення x.

Розв’яжемо алгебраїчне рівняння Ріккаті,

PA+ATP-PBR-1BTP=0, (3.3)

отримуючи матрицю підсилення

K=R-1BTP.

Цей контролер створює стабільність системи та її перехід до цільових

значень, що підтверджує оптимальність і асимптотичну стабільність системи

похибок, яка описується рівнянням Гамільтона-Якобі-Беллмана.

Нелінійну динаміку дволанкової структури було лінеаризовано навколо

робочих точок. Тоді ми можемо записати апроксимовані лінійні моделі системи.

У результаті, стратегію LQR-керування можна визначити як рух суглобів, що

ініціюється нейронним зусиллям, пов’язаним з природними рухами.

Отримаємо лінеаризовану систему

x�=Ax+Bu

де системні матриці A, B, C, D мають наступний вигляд:

1) Для стаціонарного положення (робоча точка 1) рис. 3.1 :

x0
1, u0

1= ([0; 0; 0; 0], [0; 0]) .
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Рис. 3.1. Положення верхньої кінцівки в операційна точці q1=0°, q2=0°

A1=
0 0 1 0
0 0 0 1

-54.09
76.33

23.49
-67.78

0 0
0 0

, B1=
0 0
0

1.061
0

-1.497
-1.497 4.32

,

C1 =
-54.09 23.49 0 0
76.33 -67.78 0 0

, D1 =
1.061 -1.497
-1.497 4.32 .

2) Робоча точка 2: q1=180°, q2=180° рис. 3.2.
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Рис. 3.2. Положення верхньої кінцівки в операційна точці 2

A1=
0 0 1 0
0 0 0 1

54.09
-76.33

-23.49
67.78

0 0
0 0

, B1=
0 0
0

1.061
0

-1.497
-1.497 4.32

.

3) Робоча точка 3: q1=90°, q2=90° рис. 3.3.

Рис. 3.3. Положення верхньої кінцівки в операційна точці 3

A1=
0 0 1 0
0 0 0 1

-54.09
76.33

23.49
-67.78

0 0
0 0

, B1=
0 0
0

1.061
0

-1.497
-1.497 4.32

.
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4) Робоча точка 4: q1=0°, q2=90° рис. 3.4.

Рис. 3.4. Положення верхньої кінцівки в операційна точці 4

A1=
0 0 1 0
0 0 0 1

-15.62
-0.001041

-12.00
0.000152

0 0
0 0

, B1=
0 0
0

0.5416
0

0.0001558
-0.0001558 2.206

.

5) Робоча точка 5: q1=0°, q2=170° рис. 3.5.

Рис. 3.5. Положення верхньої кінцівки в операційна точці 5

A1=

0 0 1 0
0 0 0 1

-50.65
-69.41

20.21
61.22

0 0
0 0

, B1=
0 0
0

1.031
0

1.433
1.433 4.198

.

6) Робоча точка 6: q1=30°, q2=30° рис. 3.6.
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Рис. 3.6. Положення верхньої кінцівки в операційна точці 6

A1=
0 0 1 0
0 0 0 1

-46.83
66.10

20.34
-58.71

0 0
0 0

, B1=
0 0
0
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0

-1.497
-1.497 4.32

.

7) Робоча точка 7: q1=30°, q2=120° рис. 3.7.

Рис. 3.7. Положення верхньої кінцівки в операційна точці 7

A1=
0 0 1 0
0 0 0 1

-13.53
19.5

-2.181
-2.181

0 0
0 0

, B1=
0 0
0

0.5416
0

0.0001558
0.0001558 2.206

.

ЦНС поводиться лінійно в околі обраних робочих точок, що відповідають

бажаному руху. Обчислені дані були зібрані у відповідну базу даних, доступну

для вибору стратегії контролера.
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3.2. Експериментальні результати

Використовуючи відповідні набори інструментів MATLAB та моделі

плеча OpenSim, ми визначаємо робочу точку як еталонні значення кутів,

прискорень і швидкостей, отримані з проведених експериментів.

В результаті ми отримуємо довідкову таблицю для оцінювання

контролера. Було проведено серію експериментів.

Контролер використовує дані робочих точок, беручи початкові та

еталонні значення з довідкової таблиці.

Експерименти проводилися для моделі тіла з наступними параметрами:

маса тіла 75 кг, зріст 182 см.

Таблиця 3.1

Типові параметри руки, отримані з моделі OpenSim

Позначення Величина Значення
Одиниці

вимірювання

m1 Маса ланки 1 1.4 кг

m2 Маса ланки 2 1.1 кг

r1 Довжина ланки 1 0.3 м

r2 Довжина ланки 2 0.33 м

I1 Момент інерції ланки 1 0.025 кг∙м2

I2 Момент інерції ланки 2 0.045 кг∙м2

Експериментальні дані моделі отримано з віртуальної установки OpenSim.

Необхідні експериментальні дослідження були проведені в реальному часі для

забезпечення подальшого аналізу в середовищі MATLAB.

З метою проведення аналізу та отримання реальних даних, які

використовуються як еталонні значення для моделювання закону керування,

було виконано експериментальне тестування та аналіз даних. Отримані

еталонні значення було зібрано, перетворено, проаналізовано, конвертовано у
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відповідні одиниці вимірювання, а потім використано для моделювання

контролера. Використовуючи інструменти аналізу даних CFTool, доступні в

MATLAB, ми обчислюємо еталонні значення станів системи відповідно до

проведених експериментів.

Для створення відповідної довідкової таблиці з метою оцінювання

контролера було проведено серію експериментів. Контролер отримує початкові

та еталонні значення з попередніх експериментальних даних, зібраних у

відповідній довідковій таблиці, з якої і вибираються еталонні значення.

Для оцінювання розробленого закону керування ми використовуємо

Control System Toolbox MATLAB для розв’язання рівняння Ріккаті та функцію

ode45 для моделювання динамічної системи. За допомогою функції MATLAB

care ми обчислюємо X – розв’язок рівняння Ріккаті. Ми обираємо матриці

вагових коефіцієнтів Q і R та приводимо стани і керування до їхньої цільової

заданої точки.

Експеримент 1.

Для робочої точки 2 з цільовою позицією q1=180°, q2=180°, ми обираємо

матриці вагових коефіцієнтів:

Q =
0.9 0 0 0
0 2.1 0 1
0
0

0
0

2.2 0
0 3

, R = 1.3 0
0 1 ,

отримуємо матрицю робастного керування

K = 93.43 7.63 17.62 4.7
−32.16 28.81 −2. . 30 3.58

.

Коефіцієнт підсилення керування становить
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u =
0
0

256.4
−493.74

.

Результуючу керовану траєкторію для станів q1 , q2 можна побачити на

рис. 3.8.

Рис. 3.8. Керована траєкторія

Експеримент 2.

Для робочої точки 3 з цільовою позицією q1=90°, q2=90°, ми обираємо ті

самі матриці вагових коефіцієнтів Q, R. Отримуємо коефіцієнт підсилення

керування, що дорівнює

u =
0
0

128.4
−246.87

.

Отриману траєкторію керованого руху можна побачити на рис. 3.9. для

станів q1, q2.
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Рис. 3.9. Керовані стани, що відстежують еталонні значення

Експеримент 3.

Для робочої точки 4 з цільовою позицією q1 = 0°, q2 = 90°, оберемо

матриці вагових коефіцієнтів:

Q =
0.3 0 0 0
0 2.2 0 1
0
0

0
0

1.2 0
0 2

, R = 1.1 0
0 1 ,

отримуємо матрицю робастного керування

K = 18.8 −13.08 4.8 −1.60
−28.36 21.25 −7.18 4.29 .

Коефіцієнт підсилення керування становить

u =
0
0

15.43
147.21

.

Отриману траєкторію керованого руху можна побачити на рис. 3.10. для

станів q1, q2.
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Рис. 3.10. Керовані стани

Розроблений LQR-контролер демонструє стабільну траєкторію станів,

робастність, малу похибку у усталеному режимі, швидку реакцію та є

адекватною моделлю біологічних контролерів. Отримані траєкторії керованого

руху наближаються до заданого значення, у порівнянні з іншими

експериментальними даними.

Коефіцієнти керування добре апроксимують поведінку системи,

забезпечують швидке досягнення цільових значень, як показано на рис. 3.8-3.10.

Керування забезпечує робастність, плавну зміну траєкторії, стабілізацію,

збіжність похибки оцінювання до нуля та мінімізацію енергії та зусиль

керування.

3.3. Напрями застосування моделі та LQR-керування у сагітальній

площині

Узагальнена дволанкова модель верхньої кінцівки, задана у просторі

станів і лінеаризована в околі робочих точок, слугує універсальною основою

для прикладних рішень у медицині, спорті, інженерії, освіті та ергономіці.

Практичне застосування у реабілітації полягає у побудові керованих

траєкторій згинання – розгинання у плечовому та ліктьовому суглобах, які

лежать в основі тренувальних і асистивних екзоскелетів.

Кінематичний опис у сагітальній площині в поєднанні з динамічними

балансами сил і моментів дозволяє визначати допустимі діапазони кутів і
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швидкостей, а лінеаризація в околі типових поз забезпечує коректну

постановку задачі регулювання у просторі станів. У такій постановці LQR

використовується як зовнішній закон, що формує бажані суглобові моменти або

швидкості, а апаратні насичення гарантують безпечність взаємодії, «людина –

пристрій». Перевагою підходу – можливість плавної підтримки руху та

індивідуалізації матриць вагових коефіцієнтів Q та R під клінічні цілі;

обмеження – чутливість до люфтів механіки, до параметричних

невизначеностей антропометрії та до затримок сенсорного тракту, що потребує

ретельної ідентифікації та фільтрації сигналів. Узагальнений огляд стратегій

керування роботизованою терапією (асистивні, викликово-адаптивні та

хаптичні режими) підтверджує ефективність таких підходів за умови правильно

підібраної взаємодії, «користувач – робот» [1, 6, 44].

Для нероботизованих засобів реабілітації (фізична терапія та

кінезіотерапія) результати моделювання застосовуються як цифрові еталони

вправ у сагітальній площині. Вектор стану x=[q1, q2, q� 1 ,q� 2 ]Т, сформований за

даними IMU, дозволяє відстежувати відхилення від цільових траєкторій та

адаптивно змінювати опір або допомогу тренажера. Обробка біосигналів (EMG)

слугує джерелом команд або індикатором втоми; при цьому необхідні коректні

процедури фільтрації, детекції та нормалізації. Переваги – формалізація планів

занять, повторюваність рухів і можливість телеметрії; недоліки – нижча

точність оцінювання швидкостей і моментів у спрощених системах

вимірювання та необхідність урахування людського фактора, зокрема больові

відчуття [4, 45].

Динамічна модель у матричній формі з параметрами, ідентифікованими

за антропометричними даними, є основою для кількісної інтерпретації

клінічних тестів верхньої кінцівки: розподілу суглобових моментів, виявлення

дефіцитів керування та оцінювання наслідків ортезування в діагностиці

порушень руху та ортопедичному плануванні. Лінеаризація в околі клінічно

типових поз дає змогу обчислювати локальні характеристики керованості та

запасів стійкості, що корисно при плануванні обмежень рухів. Перевага підходу
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– об’єктивність ухвалення рішень і можливість віртуального випробування

обмежувальних параметрів; недолік – чутливість до похибок параметрів та

позаплощинних компенсаторних рухів. Використання відкритої біомеханічної

платформи OpenSim є загальноприйнятою практикою для валідації траєкторій

та оцінювання навантажень у клінічних сценаріях [11, 33, 22].

У спортивній біомеханіці розгортка рухів у сагітальній площині (жими,

поштовхи, елементи метання з фазами майже площинної кінематики) дозволяє

будувати індивідуалізовані профілі, «кут – швидкість – момент», і порівнювати

їх з еталонними. На рівні керування LQR забезпечує згладжені опорні дії у

програмно-керованих тренажерах, що сприяє повторюваності та зниженню

пікових навантажень. Методологічне підґрунтя – класичні підручники з

біомеханіки та роботодинаміки, де формалізовано зв’язок між кінематикою,

динамікою і законами керування. Переваги – персоніфікація техніки й контроль

перевантажень; недоліки – висока варіативність індивідуальної стратегії руху

та необхідність тривалої калібровки [11, 29, 46].

У навчальних курсах з теорії керування, біомеханіки та робототехніки

дволанкова модель верхньої кінцівки з рівняннями Лагранжа, лінеаризацією та

синтезом LQR є зручною канонічною системою для лабораторних робіт. Вона

поєднує фізику руху, методи простору станів та оптимальне керування,

демонструючи перехід від безперервної до дискретної реалізації й ефекти

насичень. Для реплікації експериментів доцільно застосовувати відкриті

інструменти біомеханічного моделювання OpenSim та класичні підручники з

роботодинаміки, оптимального керування. Перевага – міждисциплінарна

інтеграція знань і прозорість математичних процедур; обмеження – спрощення

реальної біомеханіки та зведення руху до сагітальної площини [11, 33, 22, 46].

Модель верхньої кінцівки в сагітальній постановці також виконує роль

динамічного фільтра в людино-машинних інтерфейсах: перетворює жести на

стабільні команди для маніпуляторів або мобільних платформ. Відомі підходи

імпедансного керування формулюють взаємодію, «оператор – середовище»

через узгодження механічного імпедансу системи, це дозволяє пригнічувати
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тремор, згладжувати рух і зменшувати втому оператора. При дискретній

реалізації важливими є умови пасивності та стійкості інтерфейсу, які

визначають діапазон стабільно відтворюваних віртуальних імпедансів.

Переваги – інтуїтивність і повторюваність команд; недоліки – чутливість до

затримок та необхідність первинного калібрування під користувача [47-49].

У задачах ергономіки та безпеки праці модель допомагає оцінювати

постуральні навантаження, налаштовувати екзосьюти та визначати безпечні

діапазони кутів і швидкостей при підйомі чи переміщенні вантажів.

Міжнародний стандарт ISO 11226 надає критерії оцінювання статичних

робочих поз за кутами сегментів і тривалістю утримання, тоді як переглянуте

рівняння NIOSH задає нормативи для ручного підіймання вантажів із

урахуванням частоти та асиметрії. У комплексі з екзоскелетами (пасивними або

активними) це дозволяє знижувати м’язове навантаження та ризики опорно-

рухових розладів; разом із тим огляди підкреслюють необхідність ретельного

підбору пристрою під конкретне робоче місце і стратегію руху працівника [48-

51].

https://www.iso.org/standard/25573.html?utm_source=chatgpt.com
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ВИСНОВКИ

У роботі досягнуто поставленої мети: розроблено фізико-математичну

модель рухів верхньої кінцівки в сагітальній площині та синтезовано робастний

LQR-контролер. Основні завдання виконано.

Проаналізовано біомеханічні особливості рухів верхньої кінцівки та їх

представлення в сагітальній площині; виокремлено робочі пози, діапазони кутів

і швидкостей. Розглянуто основи кінематики та динаміки MDOF-систем;

уточнено припущення, необхідні для подальшого синтезу керування.

Систематизовано теорію оптимального керування: критерії якості, постановку

задачі у просторі станів, вибір матриць вагових коефіцієнтів Q, R.

Проаналізовано інструментарій OpenSim, Biomech, MATLAB, Simulink: їх роль

у параметризації, валідації та чисельних експериментах. Побудовано

лагранжеву модель дволанкової системи, виконано лінеаризацію в околі

робочих точок і подано модель в просторі станів. Синтезовано LQR-контролер

зі зворотним зв’язком; враховано апаратні насичення та обмеження

кутів/швидкостей. Проведено чисельні експерименти для різних робочих точок;

показано вплив вибору Q, R на точність відстежування, плавність руху та

рівень керувальних моментів. Окреслено напрями застосувань: реабілітаційні

екзоскелети, фізична терапія, клінічна діагностика та ортопедичне планування,

інженерія, спорт, освіта та ергономіка.

Ключові результати: дволанкова модель у сагітальній площині достатньо

компактна для аналітичних досліджень і водночас адекватна для задач

відстежування типових траєкторій згинання ‒ розгинання. LQR забезпечує

стійке, плавне та енергоекономне відстежування за коректного добору матриць

Q, R та дотриманні обмежень приводу. Використання OpenSim як «референтної

моделі» дає змогу перевіряти правдоподібність навантажень і траєкторій,

зменшуючи ризик нереалістичних режимів у реабілітаційних сценаріях.

Виявлені похибки та проблеми: планарність (сагітальна площина),

відсутність променево-зап’ясткового суглоба, спрощене тертя; можливі
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похибки при позаплощинних компенсаторних рухах; похибки антропометрії та

масо-інерційних характеристик; шум IMU/EMG; затримки вимірювання й

обробки. Результати чисельних експериментів потребують апаратної та

клінічної валідації на різних групах користувачів.
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