
RESULTS OF DEVELOPING THE RECOMMENDATION
SYSTEM FOR ELECTRONIC EDUCATIONAL RESOURCE

SELECTION

Valentina Yunchyk
Department of General Mathematics and Computer Science Teaching Methods
Lesya Ukrainka Volyn National University
Lutsk, Ukraine
uynchik@gmail.com,

Yurii Fedoniuk
Department of Computer Science and Cybersecurity
Lesya Ukrainka Volyn National University
Lutsk, Ukraine
yura.fedonyuk@gmail.com

Abstract

This paper proposes developing a recommendation system based on fuzzy logic
methods for expert evaluation of electronic educational resources (EERs) and
decision-making regarding selecting the most effective resources for educational
processes. The concepts of recommendation systems for selecting optimal EERs
are examined and analyzed. Scientific publications on expert evaluation and
recommendation system utilization are reviewed. The overall structure of the
recommendation system is presented, along with descriptions of its subsystems.
Fuzzy logic methodologies are used for the assessment of EERs, with a well-
defined procedural framework and explicit algorithmic representation. Expert
analysis results in a compilation of recommended EER alternatives that align with
specified criteria. The EER selection recommendation system is further elucidated
through the generation of UML diagrams delineating use cases, sequences, and
activities. The initial phases of user engagement with the recommendation system
are described in depth, facilitating the selection of electronic learning resources.
The recommendation system is introduced with a three-tier architecture consisting
of presentation, application, and data administration layers. EER collection, expert
criterion-based evaluation input, recommendation rating computation,
recommended resource list formation, data visualization, authorization
implementation, access provisioning, and creation of the administrator interface
are the main technological elements that are described in detail. For each of these
elements, implementation strategies and tools are explained. Programming code

https://vnu.edu.ua/en/node/1051

for the development of each of the key recommendation system stages is
provided. The most significant elements of the web application interface are
demonstrated, including the recommendation system's criterion selection page,
administrator panel, category modification and addition panel, and the
recommendation system's output.

Keywords: recommendation system; electronic educational resources; fuzzy logic;
expert evaluation; UML diagrams; recommendation system architecture

I. Introduction

Recent developments have accelerated the acceptance of electronic learning and
its growing significance, resulting in the development of electronic educational
resources (EERs) and high-quality instructional content. In the evolution of EER, the
caliber of content presentation, delivery strategies, and visual representation have
become crucial factors.
To ensure a control system for the evaluation of electronic educational resources,
it is important to form a list of requirements for them, select competent experts to
carry out a qualitative evaluation of the relevant resources and conduct an expert
quality analysis [1].
The process of evaluating electronic learning resources is complex. It includes
analysis of functionality, availability, architecture, and other criteria. It is essential to
develop a specific algorithm that contributes to the effective evaluation of
electronic educational resources. An effective variant of such an algorithm is a
recommender system.

Literature Analysis. Pioneering research in the realm of recommendation system
research, development, and enhancement is conducted by both foreign and
domestic scholars. Notable contributions include studies by A. Esteban et al. [2],
which explore the effectiveness of a hybrid multi-criteria recommendation system
for guiding students in course selection. A. Cañas et al. [3] delve into
recommendation systems for informal education, grounded in a semantic
approach. A comprehensive overview of recommendation systems is provided by
A. Choi et al. [4], presenting recommendation models, methods, and applications.
Investigations by B. Ojokoh et al. [5] focus on recommendation systems based on
fuzzy logic. V. Pasichnyk et al. [6] delve into recommendation systems within
electronic tourism. In the realm of educational services, recommendation systems
are utilized to tailor educational resources, factoring in learning styles and
knowledge levels, thus enhancing the efficacy of the educational process [7]. In
other words, the participants in the educational process can be provided with
personalized educational content [8]. J. Shu et al. [9] demonstrate the use of a

recommendation system employing neural networks to comprehend textual data
within educational resources, offering personalized learning materials aligned with
user preferences. Personalized recommendation algorithms for online educational
resources are introduced by [10], grounded in knowledge association. Furthermore,
[11] presents a recommendation system founded on Bayesian networks to present
digital educational resources. A recommendation web service aiding individualized
learning pathways in transportation systems programming is detailed by [12]. A.
Morales et al. [13] explore a graph-oriented database-based recommendation
system for an open educational resources repository. P. Dwivedi et al. [14]
showcase a recommendation system structuring user groups, reflecting their
individual preferences, and delivering tailored educational content. J. K. Tarus et al.
[15] propose a recommendation system for online learning resource selection, built
upon collaborative filtering based on knowledge models.
In our study, recommender systems are a class of intelligent systems that
generate recommendations based on fuzzy logic methods by forming a ranked list
of electronic educational resources that meet requirements and certain criteria
[16].
The purpose of the article is to present the results of modeling and development of
a recommendation system for expert evaluation of electronic educational
resources, which allows you to choose the most effective electronic resources for
use in the educational process based on the generated recommendations.

II. Research results

The purpose of a recommendation system for evaluating electronic learning
resources (EER) is to provide users with personalized recommendations for
choosing the best EER in specific educational situations. The system is aimed at
providing users with high-quality and relevant resources that meet their needs and
increase the effectiveness of learning [17].
The scope of the recommendation system is the educational process. The
recommendation system is intended for expert environments of higher education,
educational program support groups, pedagogical teams of schools or individual
departments, scientific and methodical commissions of specialties and faculties,
scientific and methodical councils of institutes and universities, in general, for all
expert communities that need to make decisions about the choice of electronic
educational resources.
The functional requirements of the recommender system are depicted in Figure 1
in the form of a UML diagram of use cases and the main actors in the process of
working with the recommender system are highlighted.

In the recommender system, there are two actors "Expert" and "Administrator".
"Expert" is a person who has authorization in the system and full access to all
functions and capabilities.

Fig. 1. Diagram of use cases for a recommendation system for selecting electronic
educational resources

A registered "Expert" can create their profile, which will serve as the basis for initial
recommendations. The "Expert" can generate a request for selecting electronic
educational resources by specifying the type and rating for each criterion, and
then receive a list of recommended alternatives. Additionally, the "Expert" can
modify their profile parameters, effectively managing their account.
The "Administrator," on the other hand, is a user responsible for configuring the
recommendation system, user management, and receiving analytics related to
user interactions with the system. The set of use cases includes: "Account
Management," "Selection Criteria Management," "Electronic Educational Resource
Management," and "Formation of EER Selection Analytics."
Figure 2 shows the sequence diagram of the recommender system for selecting
electronic educational resources. First, the user requests a recommendation
according to the type and is given ratings for each ENR selection criterion. The
controller checks the metadata and descriptions of the e-learning resources
database, forms a matrix of pairwise comparisons, and transforms the data into a
fuzzy matrix. Next, the system uses fuzzy logic to form a recommendation rating.
Electronic learning resources are recommended to users if they have higher

indicators according to the specified criteria, in particular, taking into account the
importance of the criteria.

Fig. 2. Sequence diagram of the recommendation system for selecting EERs

The recommendation system has been developed based on a three-tier
architecture (Figure 3). This approach allows for breaking down the system into
distinct interconnected components, distributing system functions, and separating
the user interface from the data.
The three-tier architecture encompasses:
- Presentation Tier: This tier is where users perceive information.
- Application Tier: This tier houses the tools for managing the recommendation
system, along with the following components: specifying the type of electronic
educational resource, resource search, results display, and report presentation.
- Data Management Tier: This tier is where data is physically stored. It includes
components such as the subsystem for determining the type of EER, the EER
analysis subsystem, the results generation subsystem, and the user report
generation subsystem.

Fig. 3. Structure of the recommendation system for selecting EERs

The subsystem for determining the type of ERR enables users to specify the EER
type and select the criteria by which educational resources should be evaluated.
This subsystem encompasses the processing module for handling the results of
EER type specification, a database of EER types, and a database of EER criteria.
The EER types database is designed to store a set of electronic educational
resource types, while the EER criteria database stores a set of criteria used for
evaluating educational resources. The results processing module handles the
specified types and criteria.
The EER analysis subsystem comprises an OLAP repository, databases of
electronic educational resources, a data loading module, and an EER analysis
module. The OLAP repository holds the source data for analyzing EERs. The data
structure is multidimensional and adapted for conducting OLAP analysis
procedures. The primary function of the data loading module is to ensure current
data in the repository, process queries to multidimensional data, and manage data
storage. The EER analysis module processes the results of multidimensional data
analysis concerning the functionality of electronic educational resources.
The results generation subsystem is responsible for creating the recommendation
ranking of EERs and visualizing data. This subsystem includes a module for
calculating the recommendation ranking, a module for constructing petal
diagrams, and a module for generating results. The ranking calculation module
processes data based on specified criteria using fuzzy logic methods. The petal

diagrams construction module generates charts for each selected EER based on
criterion values. The results generation module presents the recommended list of
EERs from most to least recommended.
The report generation subsystem is intended for generating reports on EER query
analytics. It consists of a database of user profiles, a database of user queries, and
a report generation module.
Figure 4 depicts the activity diagram of the recommendation system for selecting
electronic educational resources.

Fig. 4. Activity diagram of the recommendation system

The information technology of the functioning of the recommendation system for
evaluating electronic educational resources includes the use of various
technologies, algorithms, and methods for collecting, processing, and providing
personalized recommendations to users.
The main idea of the recommender system is to gather expert ratings for
educational resources based on specific criteria. Using these ratings, the system
constructs a recommendation ranking of resources and presents them in order
from the most recommended to the least recommended.
Additionally, the system provides data visualization by creating petal charts for
each resource, where each petal represents the value of a criterion, considering its

importance. This helps users evaluate which aspects each recommended resource
corresponds to and make informed choices.
The main components of the educational resources evaluation recommender
system's functioning technology include:

1. Collection of electronic educational resources
2. Input of experts' evaluations according to criteria
3. Calculation of the recommendation rating
4. Formation of a list of recommended resources
5. Data visualization
6. Implementation of authorization and organization of access provision
7. Formation of the administrator interface

I. Collecting educational resources: The search for educational resources based on
specified criteria is conducted on the Internet. The system utilizes criteria such as
interactivity, multimedia, modifiability, cross-platform compatibility, open
distribution, architecture, functionality, and more. The search results are filtered to
ensure the most accurate and relevant resources based on different types of
educational resources (e.g., resources for learning mathematics, resources for
demonstrating educational materials, etc.).
After the search and selection of educational resources, the system stores general
information about each resource. Essential attributes like title, description, link, and
other metadata associated with each resource are stored in the database. The
database accommodates an unlimited number of educational resources.
System administrators can update or remove existing resource records from the
database. This enables the system to maintain the currency and accuracy of
resource information.
For collecting educational resources from websites, web scraping is employed. The
web scraping process is automated using web scrapers.
The main steps of web scraping are shown in Figure 5:

Fig. 5. Workflow diagram of web scraping using Puppeteer

Step 1. Defining the data source involves accurately determining from which
website or source data needs to be collected. It's important to consider the legality

and ethical aspects of web scraping, as not all websites allow automated data
collection.
Algorithm for defining the data source:
1. Determine the topic or domain from which data is needed (electronic learning
resources for mathematics).
2. Choose websites that contain information about electronic learning resources
related to the chosen topic (educational platforms, university pages, publishers,
etc.).
3. Analyze data accessibility. Some websites might restrict access or require
authorization.
4. Assess the size of the data source. A large volume of data may require
additional resources.
5. Check the quality and reliability of the data.
6. Verify ethical considerations. Ensure actions do not infringe on copyright or other
ethical aspects.
Step 2. Analyzing the structure of pages and locating the data to be gathered. This
helps identify which elements of the page need to be found and how to access that
data.
Algorithm for analyzing page structure:
1. Define target data (textual data, images, and other types of content).
2. Review the data source. Open the data source in a web browser and explore the
page structure. Use the browser's inspector mode to view HTML code and CSS
styles.
3. Study the DOM structure. Examine the DOM structure of pages to find elements
containing the desired data.
4. Use selectors. Employ CSS selectors or XPath to choose specific elements on the
page containing the necessary data. Selectors help locate elements by their
attributes, classes, or other characteristics.
5. Interact with the page. Test how the page responds to interaction. Keep in mind
that some data may be dynamically loaded through JavaScript after the page is
displayed.
6. Process the data. Develop a scraper that collects and processes data from the
pages.
Step 3. Writing a Puppeteer scraper, which controls the Chrome or Chromium
browser, automatically browses web pages, and finds, and extracts the required
data.
To write a scraper using Puppeteer, you need to install Node.js and the Puppeteer
library itself.
You can write a scraper with the following code:

const puppeteer = require('puppeteer');

(async () => {
 try {
 // Open the browser
 const browser = await puppeteer.launch({ headless: true });
 const page = await browser.newPage();

 // Navigate to the data source page
 await page.goto('https://example.com');

 // Perform actions on the page (click a button, fill out a form, etc.)
 await page.click('#button-id');
 await page.type('#input-id', 'your search query');

 // Wait for data to load
 await page.waitForTimeout(3000);

 // Gather data
 const data = await page.evaluate(() => {
 // Execute JavaScript code in the page context to gather data
 // For instance, you can locate the desired elements
 const elements = document.querySelectorAll('.data-element');
 const dataArray = Array.from(elements).map(element => element.textContent);
 return dataArray;
 });

 console.log(data);

 // Close the browser
 await browser.close();
 } catch (err) {
 console.error('Error:', err);
 }
})();

In this case, Puppeteer was used to opening a browser, go to
`https://example.com`, perform some actions on the page (such as clicking a
button and filling in a search field), wait for the data to be loaded, and collect data
from a page using `page.evaluate()`.
After running the scraper, you can see the collected data results in the console.
Step 4. Launching the browser using the scraper to interact with web pages.

One of the main components of a web scraper is the browser used to interact with
web pages. Puppeteer provides control over the Chrome or Chromium browser,
allowing you to perform actions on the page and retrieve data.
The working algorithm is as follows:
1. Opening the browser. The first step is to launch the browser using Puppeteer. The
Puppeteer library provides the `puppeteer.launch()` method, which allows you to
open a new instance of the browser.

const puppeteer = require('puppeteer');

(async () => {
 const browser = await puppeteer.launch();
 // Next, you can use the browser variable to control the browser
})();

2. Creating a new page. After launching the browser, you can create a new page
instance using the `browser.newPage()` method. A new page allows you to
navigate to different URLs, perform actions on the page, and retrieve data.

const page = await browser.newPage();

3. Interacting with the page. After creating a page, you can interact with it. For
example, you can navigate to a URL, click buttons, fill in forms, scroll the page, and
perform other actions.

await page.goto('https://example.com');
await page.click('#button-id');
await page.type('#input-id', 'your search query');

4. Data collection. Puppeteer retrieves data from the page using the
`page.evaluate()` method. You can execute JavaScript code in the context of the
page to find the desired elements or data.

 const data = await page.evaluate(() => {
 const elements = document.querySelectorAll('.data-element');
 const dataArray = Array.from(elements).map(element => element.textContent);
 return dataArray;
});

5. Closing the browser. After finishing your work with the browser, it's important to
close it to free up resources. Use the `browser.close()` method to close the browser.

await browser.close();

Thus, Puppeteer allows you to control the browser, interact with web pages, and
read data, which allows you to implement web scraping and other automated
tasks.
Step 5. Interacting the scraper with web pages by performing actions that a user
can perform in the browser, including clicking buttons, filling in forms, navigating
through links, and more.
Overall, Puppeteer performs actions similar to those of a user in a browser. This
allows the scraper to read and collect data from various web pages, making it a
powerful tool for web scraping and automating actions on web pages.
Step 6. Collecting necessary data from pages.
After data collection, the scraper can output data to the console, save it to a file,
upload it to a server, or process it further.
Step 7. Saving data in the appropriate format in a MongoDB database.
MongoDB is a document-oriented NoSQL database that stores data in JSON-like
documents. This accommodates unstructured or semi-structured data, which is
often encountered in web scraping.
Below is an example of how to save collected data in MongoDB using Node.js and
Mongoose (a library for working with MongoDB):

const mongoose = require('mongoose');

// Connect to the MongoDB database
mongoose.connect('mongodb://localhost:27017/my_database', {
 useNewUrlParser: true,
 useUnifiedTopology: true,
});

// Define the document schema
const dataSchema = new mongoose.Schema({
 title: String,
 description: String,
 url: String,
 // Other fields as needed
});

// Create a model based on the schema
const DataModel = mongoose.model('Data', dataSchema);

// Assuming data is an object of collected data
const data = {
 title: 'Sample Title',

 description: 'Sample Description',
 url: 'https://example.com',
};

// Save data in the database
const newData = new DataModel(data);
newData.save((err, savedData) => {
 if (err) {
 console.error('Error while saving data:', err);
 } else {
 console.log('Data successfully saved:', savedData);
 }
});

In this case, when connecting to the MongoDB database, a schema for the
documents is defined, a model is created based on the schema, and the collected
data is stored in the database.
Tools such as Node.js and the Puppeteer library itself were used to build the
Puppeteer scraper. Below is a list of the tools that were used:
1. Node.js: A JavaScript runtime that allows executing JavaScript code on the
server. Node.js is used to leverage Puppeteer for browser control and web
scraping.
2. Puppeteer: A Node.js library that provides an interface to control the Chrome or
Chromium browser. It allows automating interactions with web pages, performing
actions on pages, and collecting data for further use.
3. MongoDB: The database used for storing collected data.
4. Mongoose: A Node.js library that simplifies working with MongoDB by allowing
the definition of document schemas and creating models for storing and retrieving
data.

II. Introduction of expert evaluation based on criteria. Experts can authenticate in
the system to access the resource evaluation functionality. Dedicated roles for
experts enable them to rate resources and save their evaluations.
Experts can also select predefined evaluation criteria for each resource and rate
each resource according to the chosen criteria. The system stores the ratings
provided by each expert for further use in calculating the recommendation rating.
The system ensures transparency and reliability in the evaluation process by
maintaining a history of ratings provided by each expert. This allows for analysis
and verification of the accuracy of the ratings and ensures high-quality
recommendations.

System administrators can manage experts' access rights and provide adequate
control over the evaluation process. Expert evaluations are a crucial stage in
building a quality recommendation rating that meets users' needs.
An interactive web form is used as a means for experts to input ratings for each
criterion of each electronic educational resource (EER).
The algorithm for the interactive web form to collect expert ratings based on
criteria for each EER includes the following steps:
1. Display Form: The user (expert) opens the web form for inputting ratings.
2. Select EER: The user selects the type of electronic educational resource.
3. Input Ratings: The user enters ratings for each criterion from 1 to 9, expressing
the degree of correspondence of that criterion to the resource.
4. Summary Step: The ability to review and confirm entered data or edit the ratings.
5. Data Saving: The data is stored in the database for further processing and
calculation of recommendations for users.
This is a general algorithm for the interactive web form. The ability to input ratings
for each criterion and for each EER helps provide personalized and accurate
recommendations for users based on their preferences and requirements for
educational resources.
The following tools were used to organize the interactive web form for expert
ratings input:
1. Express.js: A web framework that allows creating web servers and handling HTTP
requests.
2. CSS: Used for styling the web form.
3. Bootstrap: Used to create a responsive and user-friendly interface.
4. MongoDB: Used to store expert ratings based on criteria.
III. Calculation of recommendation rating. The calculation of the recommendation
rating for electronic educational resources is based on the ratings provided by
experts for criteria and their weights.
The main calculation steps are as follows:
1. Use of expert ratings: The system utilizes the collected ratings from experts
for each criterion of each EER. Expert ratings are numerical values ranging from 9
to 1, where 9 represents absolute conformity, and 1 represents no conformity.
These values are further processed using fuzzy logic methods.
2. Determination of criterion weights: The process of determining the weight of
each criterion relative to others is carried out using the pairwise comparison
method. Experts compare criteria to each other and indicate which criteria are
more important than others.
3. Normalization of ratings: Expert ratings are normalized to a single value
range. This allows equal consideration of the values of different criteria in the
rating calculation.

4. Rating calculation: The recommendation rating is calculated using fuzzy
logic methods to process expert ratings and determine the degree of
recommendation for each resource. Fuzzy logic methods enable the consideration
not only of precise numerical values but also variable degrees of conformity. This
is essential for evaluating EERs based on multiple criteria. By using fuzzy rules and
interpreting fuzzy terms, the system assigns a rating to each resource based on
aggregated expert ratings.
5. Sorting of Ratings: The obtained ratings are sorted in descending order,
from the most recommended resource to the least recommended one. This way,
users receive a list of E-learning resources (ENRs) in the order of the
recommendation rating.
This algorithm takes into account the weight of each criterion and the expert
ratings. It enables the creation of personalized recommendations for users based
on their preferences and needs. If there are changes in expert ratings or criterion
weights, the recommendation rating can also change. This allows the
recommendations to adapt to changing conditions and user requirements.
To calculate the recommendation rating, the method of fuzzy logic, the method of
pairwise comparisons, and the weighted average method were used.
The fuzzy logic method is employed for calculating the recommendation rating. It
facilitates the evaluation of E-learning resources while considering vague and
ambiguous aspects that often arise during assessment. The fuzzy logic method
employs fuzzy sets and rules to describe fuzzy relationships among data.
The algorithm for utilizing the fuzzy logic method to calculate the recommendation
rating is as follows (Figure 6):

Fig. 6. Algorithm for using the fuzzy logic method to calculate recommendation
rating

The application of fuzzy logic allows for a precise evaluation of resources while
considering the ambiguity and uncertainty in expert ratings, thus improving the
quality of recommendations.
Using the method of paired comparisons to determine the importance of criteria
involves the process of comparing each criterion with each other to determine the
relative importance of the criteria. This method helps to understand which criteria
are more important or acceptable compared to others [18].

The algorithm for using the pairwise comparison method to determine the
importance of criteria is as follows (Figure 7):

Fig. 7. Algorithm for using the method of pairwise comparisons

1. Definition of criteria: You need to define a list of criteria by which resources are
evaluated.
2. Creation of pairwise comparison matrix: Experts compare each criterion with
every other criterion and establish which criterion they consider more important.
The result is a matrix where each element represents the relative weight of one
criterion compared to others.
3. Calculation of criterion weights: Based on the pairwise comparison matrix, the
weights of criteria are calculated. This is done using methods such as the
eigenvalue analysis method, and the Saaty method.
4. Use of weights for rating calculation: After obtaining the weights of criteria, they
are used to calculate the rating of each resource based on the evaluations
provided by experts for each criterion.
The pairwise comparison method helps to reconcile the opinions of different
experts and consider their relative importance for each criterion. This allows for the
creation of more objective and balanced recommendations for users.
The weighted average method is a simple and widely used approach for
calculating the recommendation rating based on criterion evaluations and their
weights. It enables the consideration of each criterion's importance in calculating
the rating for each electronic learning resource.
To apply the weighted average method, you need to follow these steps (Figure 8):

Fig. 8. Algorithm for using the weighted average method

1. Determining the weight of criteria: Experts determine the weight of each
criterion relative to others.
2. Normalization of ratings: Since expert ratings may have different value
ranges, they need to be normalized to a single range. This allows for equal
consideration of the values of different criteria when calculating the rating.

3. Calculation of ratings for each resource: A weighted average rating is
calculated for each electronic learning resource. For each criterion, the normalized
rating is multiplied by its corresponding weight, and then the scores for all criteria
are summed up.
4. Rating sorting: The obtained ratings are sorted in descending order, from
the most recommended to the least recommended resource.
The weighted average method allows experts to consider individual needs and the
importance of different criteria when recommending electronic learning resources.
IV. Formation of recommended resource list: The formation of the recommended
resource list is based on the calculated ratings for each resource. After processing
expert ratings and determining the importance of criteria, approaches are applied
to create the list of recommended resources.
Below is the algorithm for forming this list:
1. Calculation of ratings for each electronic learning resource.
2. Sorting of ratings.
3. Resource filtering.
4. Personalization of recommendations.
5. Displaying results.
Interactive filters are used for resource filtering in the recommendation system.
Users can choose filters on the web page to limit the list of recommended
resources.
The following libraries are used for organizing interactive filters:
1. Express.js: Express.js is used to create a web application on Node.js.
2. Formidable: Formidable is a library for handling forms in Node.js. It allows for
receiving and processing data from user-filled forms.
3. Natural Language Processing (NLP) Libraries: For processing textual content
and language analysis, libraries like Natural, NLP.js, and Tokenizer are used. These
libraries help identify keywords, exclude unnecessary words, and understand the
semantics of the text.
The functionality of the recommended resource list helps provide a convenient and
informative way for users to select the best electronic learning resources
according to their needs and interests.
V. Data Visualization: For each recommended resource, the system automatically
constructs a petal diagram that visualizes the values of each evaluation criterion.
Each spoke of the chart represents an individual criterion and its score[19]. These
petal diagrams are interactive, allowing users to hover over a spoke to view the
specific criterion value. This enables users to quickly assess the resource's strong
and weak aspects, aiding them in making informed decisions about resource
selection based on specific requirements.

Petal diagrams are an effective method for visualizing recommendation system
data, as they present multidimensional resource data and properties. Each axis of
the chart corresponds to a separate criterion, and the values on the axes show the
degree of compliance of each recommended resource with that criterion.
For constructing petal diagrams in the Node.js environment, the following tools are
used:
1. Chart.js: A library for creating various types of charts, including petal charts. It
provides a wide range of customization options and styling capabilities for charts.
2. Echarts: A library that has built-in support for petal charts, along with many
settings for customization and interactivity.
3. Plotly: A library for creating interactive plots and charts, including petal charts. It
offers a convenient way to create interactive visualizations for data.
VI. Implementation of authorization and access control: Organizing authorization
and ensuring access to the recommendation system is an important aspect of
ensuring security and control over the system. The main methods used for this
purpose are as follows:
1. User registration and authentication: Users need to register in the system and
create an account. After that, they can use their account details for authentication
and login.
2. Password protection: User passwords are protected and stored in encrypted
form using libraries like bcrypt.js in Node.js.
3. Assignment of roles and permissions: The system can have different user roles,
such as administrator, expert, etc. Each role has its permissions for accessing
resources and system functions.
Utilizing these methods helps ensure a high level of security and protection of the
recommendation system, ensuring compliance with regulatory requirements and
the protection of user personal data.
For organizing user registration and authentication, the following tools are used:
1. Passport.js: A library for user authentication in Node.js. It supports various
authentication strategies, including local authentication using username and
password, authentication through social media (Facebook, Google, Twitter, etc.),
JWT (JSON Web Tokens), and many more.
2. bcrypt.js: A library for hashing passwords in Node.js. It allows the protection of
user passwords by generating a salt and applying a hash function.
3. express-session: Middleware for storing user session information. It allows for
storing session data in a MongoDB repository.
4. jsonwebtoken: A library for creating and verifying JSON Web Tokens (JWT).
JWT is used to store information about an authenticated user, such as their
identifier or role.

5. MongoDB: Used for storing user account data. It provides fast data access and
the ability to structure user information.
6. RBAC (Role-Based Access Control) Libraries: Some specialized libraries, such as
'rbac' and 'accesscontrol', allow organizing role assignments and permissions
according to the RBAC concept. With the help of such libraries, roles are defined,
permissions are granted, and user rights are checked before performing certain
actions.
Libraries help effectively manage roles and permissions in the recommendation
system and ensure security and resource access control.
VII. Formation of Administrative Interface: Only users with special administrator
privileges have access to the administrative interface. The administrator needs to
authenticate to gain access to the control panel.
An administrator can perform the following actions:
 Add, edit, and delete evaluation criteria used by experts to assess resources.
 Manage the list of experts, add new experts, block, or delete expert accounts
as needed.
 Add new electronic learning resources to the system or remove outdated
ones that are no longer relevant, enabling the administrator to maintain the
relevance and pertinence of the recommendation system.
 Manage access rights for different users, ensuring data security and
confidentiality in the system.
The administrative interface can:
 Record administrator events and actions for debugging and tracking
actions in the system.
 Ensure the efficiency of the administrator's work by being convenient and
intuitive.
 Assist administrators in effectively managing the recommendation system,
allowing them to configure and maintain the system in an up-to-date state while
ensuring data security.
The creation of administrative interfaces in Node.js is accomplished using various
approaches and tools. The primary goal of the administrative interface is to
provide administrators with the ability to control and oversee the system.
Administration is an important part of the recommendation system, as it enables
effective management of users, system configuration, and monitoring of
operations.
The recommendation system is implemented as a multi-page web application,
offering several advantages:
 Rich interface functionality.
 Rapid interface response due to reduced server requests for each action.
 Significant reduction in server load.

 Personalization and data transfer speed.
The software implementation was carried out using the following software tools
and programming languages:
1. Node.js: An open-source platform for executing high-performance network
applications written in JavaScript. It is used for creating web application scripts.
2. Express: A widely used Node.js-based framework for web application and API
development. It provides a minimal set of functions that allows web developers to
create fast and efficient web applications with less code compared to manual
development using pure Node.js.
3. Twig Template Engine (for HTML): Twig is a template engine used for developing
HTML templates in PHP applications.
4. CSS (Cascading Style Sheets): A style language used for formatting and
presenting the appearance of web pages written using markup languages such as
HTML or XML.
5. MongoDB: A document-oriented database categorized as a NoSQL database.
6. Npm (Node Package Manager): One of the most popular package managers in
the Node.js and JavaScript environment. It allows developers to manage and use
third-party libraries and modules developed by other programmers. It also enables
publishing their packages for other users to utilize.
The web application's interface is one of the most significant elements, comprising
a set of visual elements for convenient perception and understanding of
information by users of the recommendation system.
User access to working with the recommendation system involves performing
authorization or registration procedures.
On the main page of the recommendation system (Fig. 9), users can choose the
type of learning resources and criteria by which to explore resources and assign
weights to each selected criterion.

Fig. 9. Criteria selection page of the recommendation system

The process of selecting the type of electronic resources and setting the criteria is
described by the following code:

app.post("/apply-resource", async (req, res) => {
 try {
 // Get the selected resource types from the request body
 let bulkData = req.body
 let chosenType_of_resource = bulkData.type_of_resource
 let chosenImportance = bulkData.importance
 let selectedCheck = bulkData.check

 //put numbers only into chosenImportance
 for (let i = 0; i < chosenImportance.length; i++) {
 chosenImportance[i] = parseInt(chosenImportance[i])
 }

 //put numbers only into selectedCheck
 let name_of_each_vertex = []
 for (let i = 0; i < chosenCheck.length; i++) {
 name_of_each_vertex[i] = chosenCheck[i].slice(0, -2)
 chosenCheck[i] = parseInt(chosenCheck[i].slice(-1))
 }

The query to the database is carried out by the command:

const LOST = await Category.find({type: chosenType_of_resource});

 //working names
 // LOST = list of Systems That Fit the criteria

To build matrices of pairwise comparisons, the following commands were used:
// STEP1 - COMPUTING THE PULL OF MATRIX
 // this is 3-dimensional matrix in format: matrix3d_forAGn[pick AGn from 0 to
9][pick a row for selected matrix][pick index]
 // matrix3d_forAGn[AGn][h][i]
 const matrix3d_forAGn = []
 for (let AGn = 0; AGn < 10; AGn++) {
 let matrix = []
 for (let i = 0; i < LOST.length; i++) {
 let line = []
 for (let h = 0; h < LOST.length; h++){
 let result
 let h_rating = LOST[h].params[AGn].rating
 let i_rating = LOST[i].params[AGn].rating
 if (i_rating === h_rating) {
 result = 1
 } else if (i_rating > h_rating) {
 result = i_rating - h_rating
 } else {
 result = 1/(h_rating - i_rating)
 }
 line.push(result)
 }
 matrix.push(line)
 }
 matrix3d_forAGn.push(matrix)
 }

You can get fuzzy sets using the following commands:
// STEP - FINDING AN INVERTED SUM OF COLUMNS AND PUTTING IT INTO THE ARRAY
 let Gn_matrix = []
 for (let Gn = 0; Gn < matrix3d_forAGn_filtered.length; Gn++) {
 let Gn_line = []
 for (let i = 0; i < LOST.length; i++) {
 let result = 0
 for(let h = 0; h < LOST.length; h++){
 result += matrix3d_forAGn_filtered[Gn][h][i]

 }
 let inverted_result = 1/result
 Gn_line.push(inverted_result)
 }
 Gn_matrix.push(Gn_line)
 }

The construction of the matrix used to calculate the weight of the criteria is carried
out as follows:
// STEP - PICK ONLY CHOSEN PARAMS FOR WEIGHTS TO BUILD A-MATRIX
 let chosenImportance_filtered = []
 for (let i = 0; i < chosenCheck.length; i++) {
 let element = chosenImportance[chosenCheck[i]]
 chosenImportance_filtered.push(element)
 }

 // STEP - EVALUATE THE WEIGHT OF EACH PARAMETER
 let weight_matrix = []
 for (let i = 0; i < chosenCheck.length; i++) {
 let line = []
 for (let h = 0; h < chosenCheck.length; h++){
 let result
 if (chosenImportance_filtered[i] === chosenImportance_filtered[h]) {
 result = 1
 } else if (chosenImportance_filtered[i] > chosenImportance_filtered[h]) {
 result = chosenImportance_filtered[i] - chosenImportance_filtered[h]
 } else {
 result = 1/(chosenImportance_filtered[h] - chosenImportance_filtered[i])
 }
 line.push(result)
 }
 weight_matrix.push(line)
 }

Each expert can track the categories that were recently evaluated, the categories
that have been evaluated by the expert overall, and the categories that have been
evaluated by other experts (Fig. 10).

Fig. 10. Expert Panel

The administrator panel, where you can manage resources, their types, and
criteria, looks as follows (Fig. 11)

Fig. 11. Administrator panel

The result of the recommendation system's work appears as follows (Fig. 12):
resources are arranged in order of the most relevant to the specified criteria, and
radar charts are constructed for them, allowing tracking of criteria compliance [19].

Fig. 12. Result of the recommendation system's work.

V. Conclusion

As a result of the research, a recommendation system has been developed. It
generates recommendations based on fuzzy logic methods for expert evaluation
of electronic educational resources. This system serves to select alternatives in the
process of choosing the most effective EERs for use in the educational process.
The process of EER selection is based on fuzzy logic theory using the Analytic
Hierarchy Process (AHP) method. A methodology has been created for working
with qualitative and quantitative criteria under conditions of uncertainty. The
applicability of these methods is illustrated using the example of the problem of
selecting electronic educational resources. An analysis of recommendation system
concepts has led to the introduction of the concept of a recommendation system
that generates recommendations for selecting the most effective electronic
educational resources. UML diagrams of use cases, sequences, and activities have
been provided for the recommendation system for choosing electronic educational
resources. A three-tier architecture of the recommendation system has been
presented, including the presentation layer, the application layer (components:
specifying the type of electronic educational resource, resource search, displaying
results, displaying reports), and the data management layer (subsystem for
defining the type of EER, subsystem for analyzing EER, subsystem for generating
results, subsystem for generating user reports). The main components of the
functionality of the recommendation system for evaluating electronic educational
resources are described in detail, including collecting electronic educational
resources, inputting expert ratings by criteria, calculating recommendation ratings,

generating a list of recommended resources, data visualization, implementing
authorization and access control, and forming the administrative interface.
Methods and tools of implementation are described for each of these components.
The program code for development has been provided for each of the key stages
of the recommendation system. The most significant elements of the web
application interface are shown, including the criteria selection page of the
recommendation system, the administrator panel, the panel for changing and
adding categories, and the output of the recommendation system's results. The
recommendation system for evaluating and selecting electronic educational
resources, which provides users with recommendations according to their
requirements and selected criteria, represents an important and relevant tool in the
field of education. This system allows users to be provided with a selection of the
most suitable electronic educational resources that contribute to enhancing the
quality of learning. The use of fuzzy logic and the expert pairwise comparison
method in the calculation of recommendation ratings reflects a scientific approach
and practical value of the system. These methods enable reconciling individual
user differences and considering objective criteria in the evaluation of the quality
of educational resources. The implementation of an interactive web form and
content filter enables a convenient and efficient process of inputting expert ratings
and eliminates unnecessary resources in the recommendation process. The use of
visualizations, such as petal diagrams, adds clarity and understanding to the
selection process. The organization of the administrative interface, password
protection, and access control demonstrate a high level of security and
manageability of the system. The use of databases for storing and organizing
resources ensures convenient and efficient access to necessary data. Using these
components, a comprehensive and balanced recommendation system has been
created that meets the needs of users and contributes to enhancing the quality of
learning through proper selection and recommendation of electronic educational
resources.

References

[1] Pasichnyk, V. et al. Using fuzzy logic in the process of expert evaluation of
learning resources. Scientific Bulletin of UNFU, vol. 32(4), 2022, pp. 66-76.
https://doi.org/10.36930/40320411

[2] Esteban, A. et al. Helping university students choose elective courses by using
a hybrid multi-criteria recommendation system with genetic optimization.
Knowl.-Based Syst., vol. 194, p. 105385, Apr. 2020, doi:
10.1016/j.knosys.2019.105385

https://doi.org/10.36930/40320411

[3] Cañas, A. et al. A Recommender System for Non-traditional Educational
Resources: A Semantic Approach. J. Univers. Comput. Sci., vol. 21, no. 2, pp.
306–325, 2015

[4] Ko, H. et al. A Survey of Recommendation Systems: Recommendation Models,
Techniques, and Application Fields. Electronics, vol. 11, no. 1, p. 141, Jan. 2022,
doi: 10.3390/electronics11010141

[5] Ojokoh, B. et al. A fuzzy logic-based personalized recommender system. Int. J.
Comput. Sci. Inf. Technol. Secure., vol. 2, no. 5, pp. 1008–1015, 2012

[6] Artemenko, O. et al. E-tourism recommender systems: a survey and
development perspectives. Econtechmod, vol. 6, no. 2, pp. 91–95, 2017

[7] Wang, F. Personalized Recommendation System of College Students’
Employment Education Resources Based on Cloud Platform. in e-Learning, e-
Education, and Online Training, W. Fu and G. Sun, Eds., in Lecture Notes of the
Institute for Computer Sciences, Social Informatics, and Telecommunications
Engineering, vol. 454. Cham: Springer Nature Switzerland, 2022, pp. 318–333.
doi: 10.1007/978-3-031-21164-5_25

[8] Lin, J. et al. Intelligent Recommendation System for Course Selection in Smart
Education. Procedia Comput. Sci., vol. 129, pp. 449–453, 2018, doi:
10.1016/j.procs.2018.03.023

[9] Shu, J. et al. A content-based recommendation algorithm for learning
resources. Multimedia. Syst., vol. 24, no. 2, pp. 163–173, Mar. 2018, doi:
10.1007/s00530-017-0539-8

[10] Xu Z. et al. Study on Personalized Recommendation Algorithm of Online
Educational Resources Based on Knowledge Association. Comput. Intell.
Neurosci., vol. 2022, pp. 1–9, Sep. 2022, doi: 10.1155/2022/2192459

[11] Slimani, H. et al. Semantic recommendation system of digital educational
resources. in Proceedings of the 12th International Conference on Intelligent
Systems: Theories and Applications, Rabat Morocco: ACM, Oct. 2018, pp. 1–6.
doi: 10.1145/3289402.3289513.

[12] Kotsyuba, I. et al. Recommendation web service for choosing an individual
educational path in the field of transportation systems. programming Transp.
Res. Procedia, vol. 63, pp. 591–599, 2022, doi: 10.1016/j.trpro.2022.06.052

[13] Morales, A. et al. Recommendation system with graph-oriented databases for
a repository of open educational resources. IOP Conf. Ser. Mater. Sci. Eng., vol.
1154, no. 1, p. 012021, Jun. 2021, doi: 10.1088/1757-899X/1154/1/012021

[14] Dwivedi, P. et al. e-Learning recommender system for a group of learners
based on the unified learner profile approach. Expert Syst., vol. 32, no. 2, pp.
264–276, Apr. 2015, doi: 10.1111/exsy.12061

[15] Tarus, J. K. et al. Knowledge-based recommendation: a review of ontology-
based recommender systems for e-learning. Artif. Intell. Rev., vol. 50, no. 1, pp.
21–48, Jun. 2018, doi: 10.1007/s10462-017-9539-5

[16] Pasichnyk, V. et al. Selection of electronic educational resources using a
recommendation system. in Theses of the reports of the 12th International
Scientific and Practical Conference 'Mathematics. Information Technologies.
Education in Information Technologies, vol. XII. Lutsk-Svitiaz: Lesya Ukrainka
Volyn National University, Jun. 2023, pp. 129–131

[17] Pasichnyk, V. et al. Model of the Recommender System for the Selection of
Electronic Learning Resources. CEUR Workshop Proc. 5 Rd Int. Workshop
Mod. Mach. Learn. Technol. Data Sci., no. 3426, pp. 344–355, 2023

[18] Yunchyk, V. et al. Application of the hierarchy analysis method for the choice
of the computer mathematics system for the IT-sphere specialist's
preparation. J. Phys. Conf. Ser., vol. 1840, no. 1, p. 012065, Mar. 2021, doi:
10.1088/1742-6596/1840/1/012065

[19] Pasichnyk, V. et al. Comparative characteristics of the functionality of the
system of computer mathematics in the process of task solving. Journal of
Lviv Polytechnic National University "Information Systems and Networks", no.
11, pp. 87–102, Jun. 2022, doi: 10.23939/sisn2022.11.087

[20] Liu, Y. Personalized Recommendation Service of Educational Media
Resources Based on Multi-dimensional Feature Fusion, Int. J. Emerg. Technol.
Learn., vol. 18, no. 07, pp. 131–146, Apr. 2023, doi: 10.3991/ijet.v18i07.39233.

[21] Thongchotchat, V. et al. Educational Recommendation System Utilizing
Learning Styles: A Systematic Literature Review. IEEE Access, vol. 11, pp. 8988–
8999, 2023, doi: 10.1109/ACCESS.2023.3238417.

[22] Felfernig, A. et al. Constraint-Based Recommender Systems. in Recommender
Systems Handbook, F. Ricci, L. Rokach, and B. Shapira, Eds., Boston, MA:
Springer US, 2015, pp. 161–190. doi: 10.1007/978-1-4899-7637-6_5.

[23] Jain, R. A true multimedia client. IEEE MultiMedia, vol. 12, no. 2, p. 104, Apr. 2005,
doi: 10.1109/MMUL.2005.20.

[24] Hazar, M. J. et al. A Recommendation System Involving a Hybrid Approach of
Student Review and Rating for an Educational Video. In Review, preprint, Feb.
2023. doi: 10.21203/rs.3.rs-2375194/v1.

https://doi.org/10.3991/ijet.v18i07.39233
https://doi.org/10.1109/ACCESS.2023.3238417
https://doi.org/10.1007/978-1-4899-7637-6_5
https://doi.org/10.1109/MMUL.2005.20
https://doi.org/10.21203/rs.3.rs-2375194/v1

