Міністерство освіти і науки України Волинський національний університет імені Лесі Українки

Кваліфікаційна наукова праця на правах рукопису

СЕЛЕЗЕНЬ АНДРІЙ ОЛЕГОВИЧ

УДК 544.344(043.5)

ДИСЕРТАЦІЯ

ФАЗОВІ РІВНОВАГИ В СИСТЕМАХ Tl₂Se–CdSe–Si(Ge, Sn)Se₂ ТА СПОРІДНЕНИХ, КРИСТАЛІЧНА СТРУКТУРА І ВЛАСТИВОСТІ ПРОМІЖНИХ ФАЗ

Спеціальність 102 Хімія Галузь знань 10 Природничі науки

Подається на здобуття наукового ступеня доктора філософії з галузі знань 10 Природничі науки за спеціальністю 102 Хімія

Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело

_____/ А. О. Селезень

Науковий керівник – Піскач Людмила Василівна, кандидат хімічних наук, професор

Луцьк-2023

АНОТАЦІЯ

Селезень А. О. Фазові рівноваги в системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднених, кристалічна структура і властивості проміжних фаз. Кваліфікаційна наукова робота на правах рукопису. Дисертація на здобуття наукового ступеня доктора філософії у галузі знань 10–Природничі науки зі спеціальності 102–Хімія. Волинський національний університет імені Лесі Українки Міністерства освіти і науки України. Луцьк, 2023.

Отримання нових матеріалів з наперед заданими властивостями, що відповідають вимогам сучасної техніки, залишається актуальним завданням напівпровідникового матеріалознавства. Ускладнення досліджуваних систем і проміжних фаз, які в них утворюються, стало одним із основних напрямків такого пошуку. Серед складних систем важливе місце займають квазіпотрійні халькогенідні системи Tl_2X –CdX– $Si(Ge, Sn)X_2$. Y багатьох аналогічних системах встановлено існування тетрарних сполук з Аргентумом, Купрумом, Талієм, лужними металами різного мольного співвідношення елементів, наприклад 2:1:1:4 (Cu₂CdGeSe₄, Ag₂FeSnS₄, Tl₂HgSi(Ge)S(Se)₂, Li₂CdGe(Sn)Se₄), 2:1:2:6 (Na₂CdGe₂S(Se)₆) чи 2:1:3:8 (Cu₂CdSn₃S₈, Ag₂FeSn₃S₈, Cs₂CdGe₃Se₈). Такі речовини є анізотропними, мають високу термічну стабільність, володіють оптичними властивостями та можуть використовуватись як складові частини для виготовлення світлодіодів, лазерних та оптичних установок, накопичувачів пам'яті та в інших областях нелінійно-оптичних застосувань. Встановлення взаємозв'язку між складами сполук і їх властивостями дозволяє здійснювати цілеспрямований пошук нових матеріалів.

Побудова діаграм стану є важливою для правильного вибору методів та умов для одержання матеріалів необхідних фаз. Систематичного дослідження кадмієвмісних систем $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ не проводилося. Тому актуальним є вивчення характеру взаємодії у таких системах, яке дозволить встановити температурні та концентраційні межі існування нових тетрарних

проміжних сполук та твердих розчинів на їх основі із подальшим вивченням їх властивостей та прогнозуванням практичного застосування.

Таким чином, квазіпотрійні системи $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ та споріднені є перспективним об'єктом досліджень, що дозволить розширити базу даних про нові халькогенідні напівпровідники.

У вступі окреслено актуальність теми поданого дослідження, наведено зв'язок роботи з науковими темами, у рамках яких вона виконана. Приведено мету та завдання, визначено об'єкт та предмет дослідження. Наведено інформацію про методологічну основу експерименту та про новизну отриманих даних. Обгрунтовано практичне значення одержаних результатів та представлено дані про їх апробацію, додається список публікацій, де вказується особистий внесок здобувача. Також наведено інформацію про структуру та обсяг дисертаційного дослідження.

Перший розділ дисертації містить дані проведеного аналізу літературних джерел. Тут представлено діаграми стану бінарних халькогенідних систем Tl–X, B^{II}–X, D^{IV}–X, а також квазібінарних Tl₂X–B^{II}X, B^{II}X–D^{IV}X₂ та Tl₂X–D^{IV}X₂, на основі яких утворені квазіпотрійні системи, що представлені халькогенідами Талію, d-елементів II групи (B^{II} – Zn, Cd) та р-елементів IV (D^{IV} – Si, Ge, Sn) груп періодичної системи елементів. Наведено інформацію про деякі кристалохімічні, фізико-хімічні параметри бінарних та тернарних сполук, що утворюють відповідні квазіпотрійні системи. Також приводиться інформація про відомі тетрарні халькогеніди у подібних системах з описом деяких властивостей. На основі аналізу літературних джерел приводяться висновки про можливість утворення тернарних, тетрарних сполук та твердих розчинів на їх основі у вищевказаних системах.

Другий розділ містить характеристику вихідних речовин, підібраних режимів та методів синтезу, інформацію про установки для одержання та дослідження синтезованих зразків доступними методами фізико-хімічного аналізу.

Третій розділ містить дані по дослідженню фазових рівноваг у квазіпотрійних системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂.

У системі $Tl_2Se-CdSe-SiSe_2$ вперше встановлено утворення двох нових тетрарних сполук: $Tl_2CdSiSe_4$, що кристалізується в тетрагональній *ПГ I-42m*, та $Tl_2CdSi_3Se_8$ – в ромбічній *ПГ P*2₁2₁2₁. Також встановлено спосіб утворення тернарної сполуки $Tl_2Si_2Se_5$. Побудовано ізотермічний переріз даної системи при 570 К та окремі політермічні перерізи. Розчинність на основі компонентів цієї системи є незначна.

У системі Tl₂Se–CdSe–GeSe₂ вперше виявлено утворення двох нових тетрарних сполук Tl₂CdGeSe₄ ($\Pi\Gamma$ *I*-42*m*) та Tl₂CdGe₃Se₈ ($\Pi\Gamma$ *P*2₁2₁2₁). Побудовано ізотермічний переріз системи при 570 К та окремі політермічні перерізи. За результатами вивчення фазових рівноваг побудовано проекцію поверхні ліквідусу. Розчинність на основі компонентів цієї системи менша 5мол. %.

У системі Tl₂Se–CdSe–SnSe₂ вперше виявлено утворення однієї нової тетрарної сполуки Tl₂CdSnSe₄ (*ПГ I-42m*). Побудовано ізотермічний переріз даної системи при 570 K, окремі політермічні перерізи, проекцію поверхні ліквідусу та просторові діаграми стану трьох підсистем: Tl₂Se–CdSe–Tl₄SnSe₄, Tl₄SnSe₄–CdSe–Tl₂SnSe₃ та Tl₂SnSe₃–CdSe–SnSe₂. Розчинність на основі Tl₄SnSe₄ досягає 10 мол. % по перерізу, а на основі інших компонентів складає 2-3мол. %.

У четвертому розділі наведено результати дослідження фазових рівноваг у споріднених квазіпотрійних системах. Зокрема, у системі Tl_2S –CdS–GeS₂ вперше встановлено утворення нових тетрарних халькогенідів $Tl_2CdGe_2S_6$ (*ПГ R*3) та $Tl_2CdGe_3S_8$ (*ПГ P*2₁2₁2₁). Побудовано ізотермічний переріз системи при 570 К. Розчинність на основі Tl_2S сягає 10 мол. % CdS, на основі інших компонентів незначна.

У системі Tl_2S –CdS–SnS₂ вперше встановлено утворення двох нових тетрарних сполук $Tl_2CdSn_2S_6$ (*P6*₃/*mmc*) та $Tl_2CdSn_3S_8$. Побудовано ізотермічний

переріз системи при 570 К. Розчинність на основі вихідних компонентів є 2-3 мол. %.

У системі Tl_2Se –ZnSe–GeSe₂ вперше виявлено нову тетрарну сполуку $Tl_2ZnGe_3Se_8$. Побудовано ізотермічний переріз системи при 570 К та два політермічні перерізи. Розчинність на основі CdSe становить 10 мол. %, на основі Tl_4GeSe_4 та $Tl_2GeSe_3 - 5$ мол. %, на основі інших компонентів менше 3 мол. %.

У системі Tl₂Se–ZnSe–SnSe₂ вперше виявлено нову тетрарну сполуку Tl₂ZnSnSe₄. Побудовано ізотермічний переріз даної системи при 570 К та два політермічні перерізи. Розчинність на основі CdSe досягає 10 мол. %, на основі Tl₄SnSe₄– 5 мол. %, а на основі інших компонентів є менше 3 мол. %.

Вперше досліджено характер взаємодії в системі $Tl_2Te-SiTe_2$ та встановлено утворення чотирьох нових тернарних сполук $Tl_{18}SiTe_{11}$, Tl_4SiTe_4 , Tl_2SiTe_3 та $Tl_2Si_2Te_5$. Сполука Tl_2SiTe_3 виступає компонентом квазіподвійних систем $Tl_2SiTe_3-Cd(Hg)Te$, у яких вперше встановлено утворення тетрарних сполук $Tl_2CdSiTe_4$ та $Tl_2HgSiTe_4$, що мають при 470 К область гомогенності до 5 мол. % зі сторони тернарної сполуки.

У п'ятому розділі наведено результати розшифрування кристалічної структури знайдених десяти тетрарних сполук методами порошку та монокристалу: п'яти складу 2:1:1:4 {Tl₂CdSiSe₄, Tl₂CdGeSe₄, Tl₂CdSnSe₄, Tl₂CdSiTe₄, Tl₂HgSiTe₄ (*ПГ I-42m*)}, двох складу 2:1:2:6 {Tl₂CdGe₂S₆ (*ПГ R*3) та, Tl₂CdSn₂S₆ (*ПГ P*6₃/*mmc*)} і трьох складу 2:1:3:8 {Tl₂CdGe₃S₈ та Tl₂CdSi(Ge)₃Se₈ (*ПГ P*2₁2₁2₁)}. Наведено дані про розташування атомів сполук в елементарній комірці та їх координаційне оточення.

У цьому розділі також наведено інформацію про властивості отриманих нових халькогенідів: підтвердження якісного та кількісного складу, результати розшифрування електронної структури, параметри оптичних властивостей для нових тетрарних сполук та запропоновано їх можливе практичне застосування.

Ключові слова: халькогеніди, тернарні сполуки, тетрарні сполуки, фазові рівноваги, ізотермічний переріз, політермічний переріз, проекція поверхні ліквідусу, твердий розчин, генерація другої гармоніки, просторова діаграма стану, область гомогенності, кристалічна структура, електронна структура, оптичні та нелінійно-оптичні властивості.

ANNOTATION

Andrii O. Selezen. Phase equilibria in the $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ and related systems, crystal structure and properties of intermediate phases. Qualifying scientific work equated to manuscript. Ph.D. thesis, field of knowledge 10 – Natural sciences, specialty 102 – Chemistry. Lesya Ukrainka Volyn National University of the Ministry of Education and Science of Ukraine. Lutsk, 2023.

Production of new materials with pre-set properties that meet the requirements of modern technology remains a current challenge of semiconductor materials science. The complication of the investigated systems and the intermediate phases that are formed became one of the main directions of research. Quasi-ternary chalcogenide systems Tl₂X–CdX–Si(Ge, Sn)X₂ occupy an important place among such complex systems. The existence of quaternary compounds with thallium, alkali metals, and silver (copper) was established in many similar systems, with various molar ratios of elements such as 2:1:1:4 (Cu₂CdGeSe₄, Ag₂FeSnS₄, Li₂CdGe(Sn)Se₄) 2:1:2:6 (Na₂CdGe₂Se₆) and 2:1:3:8 (Cs₂CdGe₃Se₈, Cu₂CdSn₃S₈, Ag₂FeSn₃S₈). Such compounds are often anisotropic, have high thermal stability, valuable optical properties, and can be used as components for the manufacture of LEDs, laser, optical and memory devices and in other fields of nonlinear optical applications. Establishing a relationship between the composition of compounds and their properties allows for a purposeful search for new materials.

Investigation of phase diagrams is an important tool for correct selection of methods and conditions for obtaining materials of the necessary phases. No systematic research of the Tl₂Se–CdSe–Si(Ge, Sn)Se₂ systems was performed. Therefore, a study the nature of the interaction in the Tl₂Se–CdSe–Si(Ge, Sn)Se₂ and related systems is relevant, to determine the temperature and concentration ranges of the existence of new quaternary intermediate compounds and their solid solutions,

with further investigation of their properties and suggestions of possible practical applications.

Thus, the quasi-ternary $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ and related systems are a promising research object which will expand the database of new chalcogenide semiconductors.

The *Introduction* outlines the relevance of the topic of this research and its relationship with the scientific programs within which it was performed. The objective and tasks are formulated, and the object and subject of the research are defined. Information on the methodological basis of the experiment and on the novelty of obtained data is provided. Information on the structure and scope of the Ph.D. thesis is also provided.

Section One of the thesis contains data on the analysis of literature sources. Phase diagrams of the binary Tl–X, B^{II} –X, D^{IV} –X, and quasi-binary Tl₂X– B^{II} X, B^{II} X– D^{IV} X₂, and Tl₂X– D^{IV} X₂ chalcogenide systems are presented, which form the basis of the quasi-ternary systems represented by thallium, d-elements of Group II (B^{II} – Zn, Cd), and p-elements of Group IV (D^{IV} – Si, Ge, Sn) of the Periodic System of elements. Information on some crystal chemical and physico-chemical parameters of binary and ternary compounds that form the corresponding quasi-ternary systems is presented. There is also data on known quaternary chalcogenides in similar systems with a description of some properties. Based on the analysis of literature information, the conclusions about the possibility of the formation of ternary and quaternary compounds and their solid solutions in the above systems are made.

Section Two contains the characteristics of the starting substances, selected methods and techniques of synthesis, and information on the equipment for synthesis and investigation of the synthesized samples.

Section Three contains results of the study of phase equilibria in the quasiternary systems $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$.

The formation of two new quaternary compounds was established for the first time in the $Tl_2Se-CdSe-SiSe_2$ system, $Tl_2CdSiSe_4$ which crystalizes in the tetragonal

symmetry (*SG I*-42*m*) and $Tl_2CdSi_3Se_8$ which is orthorhombic (*SG P*2₁2₁2₁). The method of formation of the ternary compound $Tl_2Si_2Se_5$ was also determined. The isothermal section of this system at 570 K and several vertical sections were plotted. Solid solubility ranges of the components of this system is negligible.

The formation of two new quaternary compounds $Tl_2CdGeSe_4$ (*SG I-42m*) and $Tl_2CdGe_3Se_8$ (*SG P2*₁2₁2₁) was established for the first time in the $Tl_2Se-CdSe-GeSe_2$ system. The isothermal section of this system at 570 K and several vertical sections were investigated. Liquidus surface projection was plotted from the results of the study of phase equilibria. Solid solubility in the components of this system is under 5 mol. %.

The formation of a new quaternary compound $Tl_2CdSnSe_4$ (*SG I*-42*m*) was found in the Tl_2Se -CdSe-SnSe₂ system. The isothermal section at 570 K, several vertical sections, liquidus surface projection of the system, and the spatial phase diagrams of three subsystems Tl_2Se -CdSe- Tl_4SnSe_4 , Tl_4SnSe_4 -CdSe- Tl_2SnSe_3 and Tl_2SnSe_3 -CdSe-GeSe₂ were constructed. Solid solubility based on Tl_4SnSe_4 reaches 10 mol. % CdSe, and for other components is ~2-3 mol. %.

Section Four presents the results of the study of phase equilibria in related quasi-ternary systems. For instance, the formation of new quaternary chalcogenides $Tl_2CdGe_2S_6$ (*SG R3*) and $Tl_2CdGe_3S_8$ (*SG P2*₁2₁2₁) was established for the first time in the Tl_2S –CdS–GeS₂ system. Isothermal section of this system at 570 K was plotted. Solid solubility in Tl_2S reaches 10 mol.% CdS, and in other components is negligible.

The formation of two new quaternary compounds $Tl_2CdSn_2S_6$ (*P6₃/mmc*) and $Tl_2CdSn_3S_8$ in the Tl_2S –CdS–SnS₂ system was established for the first time. Isothermal section of the system at 570 K was constructed. Solid solubility based on the components of this system is 2-3 mol. %.

A new quaternary compound $Tl_2ZnGe_3Se_8$ was found in the $Tl_2Se-ZnSe-GeSe_2$ system for the first time. Isothermal section of the system at 570 K and two vertical sections were investigated. Solid solubility in CdSe is 10 mol.%, in Tl_4GeSe_4 and Tl_2GeSe_3 5 mol. %, and in other components is under 3 mol. %.

A new quaternary compound $Tl_2ZnSnSe_4$ was found in the $Tl_2Se-ZnSe-SnSe_2$ system. Isothermal section of the system at 570 K and two vertical sections were plotted. Solid solubility range of CdSe reaches 10 mol. %, of Tl_4GeSe_4 is 5 mol. %, and of other components is less than 3 mol. %.

The nature of the interaction in the $Tl_2Te-SiTe_2$ system was investigated for the first time, and the formation of four new ternary compounds $Tl_{18}SiTe_{11}$, Tl_4SiTe_4 , Tl_2SiTe_3 , and $Tl_2Si_2Te_5$ was established. The Tl_2SiTe_3 compound is a component of the quasi-ternary systems $Tl_2SiTe_3-Cd(Hg)Te$ where the formation of quaternary compounds $Tl_2CdSiTe_4$ and $Tl_2HgSiTe_4$ was established for the first time. Each has a homogeneity region of up to 5 mol at 470 K from the side of the ternary compound.

Section Five presents the results of the crystal structure determination for the ten found quaternary compounds by X-ray powder and single crystal methods. Five of these are the 2:1:1:4 composition ($Tl_2CdSiSe_4$, $Tl_2CdGeSe_4$, $Tl_2CdSnSe_4$, $Tl_2CdSiTe_4$, $Tl_2HgSiTe_4$ (*SG I-42m*)), two of the 2:1:2:6 composition ($Tl_2CdGe_2S_6$ (*SG R3*) and $Tl_2CdSn_2S_6$ (*SG P6*₃/*mmc*)), and three are the 2:1:3:8 composition ($Tl_2CdGe_3S_8$ and $Tl_2CdSi(Ge)_3Se_8$ (*SG P2*₁2₁2₁)). Data on the arrangement of atoms of compounds in the unit cell and their coordination surrounding are presented.

Information on some properties of obtained new quaternary chalcogenides is also provided such as confirmation of qualitative and quantitative composition, the results of electronic structure determination, the parameters of optical properties for new quaternary compounds. Their possible practical applications are suggested.

Keywords: chalcogenides, ternary compounds, quaternary compounds, phase equilibria, isothermal section, vertical section, liquidus surface projection, solid solution, second harmonic generation, spatial phase diagram, homogeneity region, crystal structure, electronic structure, optical and nonlinear-optical properties.

СПИСОК НАУКОВИХ ПУБЛІКАЦІЙ ЗДОБУВАЧА ЗА ТЕМОЮ ДИСЕРТАЦІЇ

– статті в наукових фахових виданнях:

1. Олексеюк I., Селезень А., Смітюх О., Гулай Л., Піскач Л. Тетрарні халькогеніди систем $Tl_2X-B^{II}X-D^{IV}X_2$ (B^{II} – Cd, Hg, D^{IV} – Si, Ge; X – Se, Te). *Проблеми хімії та сталого розвитку*. 2021. Вип. 2. С. 26–37 (doi: <u>https://doi.org/10.32782/pcsd-2021-2-5</u>). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного та диференційно-термічного аналізів, участь в обговоренні результатів та написанні статті.

– статті в наукових виданнях, що включені у міжнародну базу Scopus:

2. Selezen A.O., Piskach L.V., Parasyuk O.V. et al. The Tl_2SnSe_3 -CdSe System and the Crystal Structure of the $Tl_2CdSnSe_4$ Compound. J. Phase Equilib. Diffus. 2019. V. 40. P. 797–801 (doi: https://doi.org/10.1007/s11669-019-00770-8). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні статті.

3. Selezen A.O., Olekseyuk I.D., Myronchuk G.L., Smitiukh O.V., Piskach L.V. Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} -Cd, Hg; D^{IV}- Si, Ge; X-Se, Te) and isothermal sections of the Tl₂Se-CdSe-Ge(Sn)Se₂ systems at 570 K. 2020. Journal of Solid State Chemistry. V. 289. P. https://doi.org/10.1016/j.jssc.2020.121422). 121422 (doi: Особистий внесок синтезу та здобувача – проведення дослідження зразків методами ренттенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в дослідженні спектрів поглинання, обговоренні результатів та написанні статті.

4. Tuan V.Vu, Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Phamh Kh.D., Khyzhun O.Y. Crystal growth, electronic and optical properties of Tl₂CdSnSe₄, a recently discovered prospective semiconductor for application in thin film solar cells and optoelectronics. *Optical Materials*. 2021. V. 111. P. 110656. (doi: <u>https://doi.org/10.1016/j.optmat.2020.110656</u>) Особистий внесок здобувача – проведення синтезу та дослідження зразка методами рентгенофазового, рентгеноструктурного та мікроструктурного аналізів, участь в дослідженні фізичних властивостей, обговоренні результатів та написанні статті.

5. Vu T.V., Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Olekseyuk I.D., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Hieu N.N., Pham Kh.D., Khyzhun O.Y. Quaternary $Tl_2CdGeSe_4$ selenide: Electronic structure and optical properties of a novel semiconductor for potential application in optoelectronics. *Journal of Solid and State Chemistry*. 2021. V. 302. P. 122453. (doi: <u>https://doi.org/10.1016/j.jssc.2021.122453</u>) Особистий внесок здобувача – проведення синтезу та дослідження зразка методами рентгенофазового, рентгеноструктурного та мікроструктурного аналізів, участь в дослідженні фізичних властивостей, обговоренні результатів та написанні статті.

– публікації в інших наукових виданнях та збірниках матеріалів конференцій:

6. Selezen A., Kogut Y., Piskach L., Gulay L. New Quaternary Chalcogenides $Tl_2M^{II}M^{IV}_3Se_8$ and $Tl_2M^{II}M^{IV}X_4$. 2020. *MPDI: Proceedings*. V. 62. P. 3. (doi: <u>https://doi.org/10.3390/proceedings2020062003</u>) Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в дослідженні спектрів поглинання, обговоренні результатів та написанні статті.

7. Селезень А.О., Небожук М.Б., Піскач Л.В. Фізико-хімічна взаємодія в системі Tl₂SnSe₃ – CdSe при 570 К. *Молода наука Волині: пріоритети та перспективи досліджень*: тези доповідей IX Міжнародної науково-практичної конференції студентів і аспірантів (м. Луцьк, 15-16 травня 2018 р.). С. 1040-1041. Особистий внесок здобувача – проведення синтезу та дослідження зразків

методами рентгенофазового, рентгеноструктурного, диференційно-термічного аналізів, участь в обговоренні результатів та написанні тез.

8. Селезень А.О., Небожук М.Б., Олексеюк І.Д., Парасюк О.В., Піскач Л.В. Квазіпотрійна система Tl₂Se–CdSe–SnSe₂ при 570 К. *Релаксаційно, нелінійно, акустооптичні процеси і матеріали*: тези доповідей IX Міжнародної наукової конференції (м. Луцьк – Світязь, 01-05 червня 2018 р.) / м. Луцьк: Вежа, С. 96-98. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

9. Селезень А.О., Лесік Ю.В., Піскач Л.В., Олексеюк І.Д. Ізотермічний переріз квазіпотрійної системи Tl₂Se-CdSe-GeSe₂ при 570 К. Інноваційний розвиток науки нового тисячоліття: тези доповідей III міжнародної науковопрактичної конференції (м. Чернівці, 25-26 травня 2018 р.) / м. Чернівці: Молодий вчений, 2018. С. 193-197. Особистий внесок здобувача – проведення дослідження зразків синтезу методами рентгенофазового, та диференційно-термічного рентгеноструктурного, та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

10. Селезень А.О., Небожук М.Б., Піскач Л.В. Ізотермічний переріз квазіпотрійної системи Tl₂Se–CdSe–SnSe₂ при 570 К та структура сполуки Tl₂CdSnSe₄. *Актуальні задачі хімії: дослідження та перспективи*: тези доповідей III всеукраїнської наукової конференції (м. Житомир, 17 квітня 2019 р.) / м. Житомир: ЖДУ ім. І.Франка, 2019. С. 152-153. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

11. Селезень А.О., Небожук М.Б., Піскач Л.В., Олексеюк І.Д. Фазові рівноваги в системі Tl₂GeSe₃–CdSe при 570 К та структура сполуки Tl₂CdGeSe_{4.} *Хімічні Каразінські читання*: тези доповідей XI Всеукраїнської наукової конференції студентів та аспірантів (м. Харків, 22–24 квітня 2019 р.) / Харків:

ХНУ імені В. Н. Каразіна, 2019. С. 33-34. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

12. Піскач Л.В., Селезень А.О. Фазоутворення в системах Tl₂Se–CdSe– Ge(Sn)Se₂ *Львівські хімічні читання* – 2019: тези доповідей XVII наукової конференції (м. Львів, 2-5 червня 2019 р.) / м. Львів: вид. ЛНУ ім. І.Франка, С. 223-224. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційнотермічного аналізів, участь в обговоренні результатів та написанні тез.

13. Piskach L.V., Selezen A.O., Smitiukh O.V., Olekseyuk I.D., Tl₂B^{II}D^{IV}X₄ Compounds with the tetragonal structure. International Conference on Crystal Chemistry of Intermetallic Compounds (IMC-XIV): тези доповідей XIV міжнародної конференції (м. Львів, 22-25 вересня 2019 р.) / м. Львів: вид. ЛНУ ім. І.Франка, 2019. С. 114 (Р56). Особистий внесок здобувача - проведення дослідження зразків рентгенофазового, синтезу та методами диференційно-термічного рентгеноструктурного, та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

14. Селезень А.О., Піскач Л.В. Фізико-хімічна взаємодія в системах Tl₂Ge(Sn)Se₃–Zn(Cd)Se при 570 К. *Сучасні тенденції розвитку науки» (частина III)*: тези доповідей IV міжнародної науково-практичної конференції (м. Київ, 25-26 квітня 2020 р.) / м. Київ: МЦНіД, 2020. С. 28-30. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

15. Мирончук Г., Денисюк М., А Селезень., Піскач Л.В., Ріаsескі М., Богданюк М., Шаварова Г. Оптичні та фотоелектричні властивості кристалів Tl₂CdSnSe₄. *Релаксаційні, нелінійні, акустооптичні процеси і матеріали –2020*: тези доповідей X міжнародної наукової конференції РНАОПМ-2020 (м. Луцьк–Світязь, 25-29 червня 2020 р.) / м. Луцьк: Вежа – Друк, 2020. С.35-36.

Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в дослідженні спектрів поглинання, обговоренні результатів та написанні тез.

16. Selezen A.O., Olekseyuk I.D., Piskach L.V. Phase formation in the $Tl_2Se - CdSe - GeSe_2$ system. *Book of Abstracts of the XXII International Seminar on Physics and Chemistry of Solids*: тези доповідей XXII міжнародного семінару (м. Львів, 17-19 червня 2020 р.) / м. Львів: вид. ЛНУ ім. І.Франка, 2020. С. 60. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

17. Selezen A.O., Kogut Yu.M., Piskach L.V., Gulay L.D. Quaternary Chalcogenide Semiconductors $Tl_2M^{II}M^{IV}_3Se_8$ and $Tl_2M^{II}M^{IV}X_4$. *The 2^{-nd} International Online Conference on Crystals Crystals-2020*: proceedings of the 2^{-nd} International Online Conference (Basel, 10–20 November 2020). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

18. Селезень Андрій, Піскач Людмила. Фазові рівноваги по перерізу Tl₂Te–SiTe₂ при 470 К. *Актуальні проблеми розвитку природничих та суманітарних наук:* тези доповідей IV Міжнародної науково-практичної конференції (м. Луцьк, 15 грудня 2020 р.) / м. Луцьк: вид-во ВНУ, 2020. С. 137-138. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

19. Селезень Андрій, Олексеюк Іван, Піскач Людмила, Гулай Любомир. Структура Талій (І) Кадмій Сіліцій (Германій) селенідів. *Львівські хімічні читання* – 2021: збірник наукових праць: XVIII наукової конференції (м. Львів, 31 травня – 2 червня 2021 р.) / м. Львів: Видавнитво від А до Я, 2021. С. 360 (С. 214). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

20. Селезень А.О., Олексеюк І.Д., Піскач Л.В. Ліквідус системи Tl₂Se– CdSe–SnSe₂. *Актуальні задачі хімії: дослідження та перспективи*: тези доповідей Всеукраїнської наукової конференції (м. Житомир, 15 квітня 2021 року) / м. Житомир: Видавець О.О. Євенок, 2021. С. 114. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

21. Селезень А.О., Олексеюк І.Д., Піскач Л.В. Система Tl₂SiTe₃–HgTe. *Current problems of chemistry, materials science and ecology*: тези доповідей І Міжнародної наукової конференції (м. Луцьк, 12-14 травня 2021 р.) / м. Луцьк: Вежа – Друк, 2021. С. 113 *(усна доповідь)*. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

22. Селезень А.О., Олексеюк І.Д., Піскач Л.В. Система Tl₂SiTe₃–CdTe. *Актуальні проблеми фундаментальних наук*: тези доповідей IV міжнародної наукової конференції (м. Луцьк-Світязь, 01–05 червня 2021 р.) / м. Луцьк: Вежа – Друк, 2021. С. 115-116 (усна доповідь). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

23. Селезень А.О., Піскач Л.В. Фізико-хімічна взаємодія в системах Tl₂Se–Zn(Cd)Se. *Актуальні задачі хімії: дослідження та перспективи*: тези доповідей VII Всеукраїнської наукової конференції (м. Житомир, 19 квітня 2023 р.). С.137-138. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного,

диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні статті.

24. Мирончук Галина, Селезень Андрій, Когут Юрій, Піскач Людмила. Оптичні властивості кристалів Tl₂CdGe₃Se₈. *Актуальні проблеми фундаментальних наук (АПФН-2023)*: тези доповідей V Міжнародної наукової конференції (м. Луцьк – Світязь, 01-05 червня 2023 р.) / м. Луцьк: Вежа-Друк, С. 48-49. Особистий внесок здобувача – участь в синтезі, дослідженні спектрів поглинання, обговоренні результатів та написанні тез.

25. Селезень А., Піскач Л. Взаємодія по перерізах Tl₄Si(Ge,Sn)Se₄–CdSe. *Актуальні проблеми хімії, матеріалознавства та екології*: тези доповідей III Міжнародної наукової конференції (м. Луцьк, 1-3 червня 2023 р.) / м. Луцьк: Терен, С. 105-106. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

26. Selezen A., Olekseyuk I., Kogut Y., Piskach L. Interaction in the quasiternary system Tl₂Se–CdSe–SnSe₂. *XV international conference on crystal chemistry of intermetallic compounds (IMC-XV)*: тези доповідей міжнародної конференції IMC-XV (м. Львів, 25-27 вересня 2023 р.) / м. Львів: : Вид-во ЛНУ ім. І.Франка, С. 62. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційнотермічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

27. Selezen A., Piskach L., Gulay L. The Tl₂Se–CdSe–SiSe₂ system XV *international conference on crystal chemistry of intermetallic compounds (IMC-XV)*: тези доповідей міжнародної конференції IMC-XV (м. Львів, 25-27 вересня 2023 р.) / м. Львів: : Вид-во ЛНУ ім. І.Франка, С. 69. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

3MICT

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ ТА СКОРОЧЕНЬ	21
ВСТУП	22
РОЗДІЛ 1. ОГЛЯД ЛІТЕРАТУРИ	29
1.1. Фазові рівноваги у бінарних системах Tl–X, B^{II} –X, D^{IV} –X та фізико-хімічні властивості сполук Tl ₂ X, $B^{II}X$, $D^{IV}X_2$	29
1.1.1. Системи П– X (X – S, Se, Te)	29
1.1.2. Системи $B^{-}-X$ (X – S, Se, Te)	31
1.1.3. Системи D ¹ – X, (X – S, Se, Te)	34
1.2. Фазові рівноваги у квазібінарних системах $Tl_2X-B^{II}X$, $Tl_2X-D^{IV}X_2$, $D^{IV}X_2-B^{II}X$ та фізико-хімічні властивості сполук $Tl_2D^{IV}X_3$, $X - S$, Se 1.2.1. Системи $Tl_2X-B^{II}X$, $X - Se$	36 37
1.2.2. Системи $Tl_2X-D^{IV}X_2$, $D^{IV}-Si$, Ge, Sn, X-S, Se	38
1.2.3. Системи $B^{II}X-D^{IV}X_2$ та властивості сполук	42
1.3. Тетрарні халькогенідні системи Tl ₂ X–B ^{II} X–D ^{IV} X ₂	46
1.4. Висновки з літературного огляду	47
РОЗДІЛ 2. МЕТОДИКА ЕКСПЕРИМЕНТУ	50
2.1. Характеристика вихідних речовин та методів синтезу	50
2.2. Методи отримання монокристалів	51
2.3. Методи фізико-хімічного аналізу	52
2.3.1. Рентгенівські методи дослідження	52
2.3.2. Дослідження структури методом монокристалу	53
2.3.3. Метод мікроструктурного аналізу	54
2.3.4. Диференційно-термічний аналіз	54
2.4. Методи якісного та кількісного аналізу	54
2.5. Методи дослідження елекронної структури	55
2.6. Методи фізичних досліджень	56
РОЗДІЛ З. ФАЗОВІ РІВНОВАГИ В СИСТЕМАХ	
Tl ₂ Se–CdSe–(Si,Ge, Sn)Se ₂	. 58
3.1. Система Tl ₂ Se–CdSe–SiSe ₂	58

	3.1.1. Переріз Tl ₂ Se–CdSe	58
	3.1.2. Переріз Tl ₂ Se–SiSe ₂	59
	3.1.3. Переріз Tl ₄ SiSe ₄ –CdSe	60
	3.1.4. Переріз Tl ₂ SiSe ₃ –CdSe	61
	3.1.5. Переріз Tl ₂ SiSe ₃ –Tl ₂ CdSi ₃ Se ₈	62
	3.1.6. Переріз Tl ₂ CdSi ₃ Se ₈ –CdSe	64
	3.1.7. Ізотермічний переріз системи Tl ₂ Se–CdSe–SiSe ₂ при 570 К	65
3.2	. Система Tl ₂ Se–CdSe–GeSe ₂	67
	3.2.1. Переріз Tl ₄ GeSe ₄ –CdSe	67
	3.2.2. Переріз Tl ₂ GeSe ₃ –CdSe	68
	3.2.3. Переріз "Tl ₂ CdSe ₂ "–GeSe ₂	70
	3.2.4. Переріз Tl_2GeSe_3 - $Tl_2CdGe_3Se_8$	73
	3.2.5. Переріз Tl ₂ CdGe ₃ Se ₈ –CdSe	73
	3.2.6. Переріз Tl ₄ GeSe ₄ –Tl ₂ CdGeSe ₄	74
	3.2.7. Ізотермічний переріз системи $Tl_2Se-CdSe-GeSe_2$ при 570 К	75
	3.2.8. Проекція поверхні ліквідусу Tl ₂ Se–CdSe–GeSe ₂	76
3.3	. Система Tl ₂ Se–CdSe–SnSe ₂	79
	3.3.1. Переріз Tl ₄ SnSe ₄ –CdSe	79
	3.3.2. Переріз Tl ₂ SnSe ₃ –CdSe	79
	3.3.3. Переріз "Tl _{1.9} Cd _{0.05} Se _{1.00} "–"Cd _{0.5} Sn _{0.95} Se _{1.95} "	81
	3.3.4. Переріз "Tl ₂ CdSe ₂ "–SnSe ₂	83
	3.3.5. Переріз $Tl_2Sn_2Se_5$ —CdSe	84
	3.3.6. Переріз Tl ₄ SnSe ₄ –Tl ₂ CdSnSe ₄	85
	3.3.7. Переріз Tl ₂ Se–Tl ₂ CdSnSe ₄	86
	3.3.8. Переріз $Tl_2Sn_2Se_5$ - $Tl_2CdSnSe_4$	87
	3.3.9. Ізотермічний переріз системи Tl ₂ Se–CdSe–SnSe ₂ при 570 К	88
	3.3.10. Проекція поверхні ліквідусу Tl ₂ Se–CdSe–SnSe ₂	89
	3.3.11. Просторова діаграма стану підсистеми Tl ₂ Se–CdSe–Tl ₄ SnSe ₄	91
	3.3.12. Просторова діаграма стану підсистеми	
	Tl_4SnSe_4 -CdSe-Tl ₂ SnSe ₃	92

3.3.13. Просторова діаграма стану підсистеми Tl ₂ SnSe ₃ -CdSe-SnSe	₂ 93
3.4. Висновки до розділу 3	94
РОЗДІЛ 4. ФАЗОВІ РІВНОВАГИ В СПОРІДНЕНИХ СИСТЕМАХ	96
4.1. Система Tl ₂ S-CdS-GeS ₂	96
4.1.1. Ізотермічний переріз системи Tl ₂ S-CdS-GeS ₂ при 570 К	97
4.2. Система Tl ₂ S-CdS-SnS ₂	98
4.2.1. Ізотермічний переріз системи Tl ₂ S-CdS-SnS ₂ при 570 К	99
4.3. Система Tl ₂ Se–ZnSe–GeSe ₂	100
4.3.1. Переріз Tl ₂ Se–ZnSe	100
4.3.2. Переріз Tl ₄ GeSe ₄ –ZnSe	101
4.3.3. Переріз Tl ₂ GeSe ₃ –ZnSe	101
4.3.4. Ізотермічний переріз системи Tl ₂ Se–ZnSe–GeSe ₂ при 570 К	102
4.4. Система Tl ₂ Se–ZnSe–SnSe ₂	103
4.4.1. Переріз Tl ₄ SnSe ₄ –ZnSe \dots	103
4.4.2. Переріз Tl ₂ SnSe ₃ –ZnSe	104
4.4.3. Ізотермічний переріз системи Tl ₂ Se–ZnSe–SnSe ₂ при 570 К	105
4.5. Система Tl ₂ Te-CdTe-SiTe ₂	106
4.5.1. Переріз Tl ₂ Te–SiTe ₂	106
4.5.2. Переріз Tl ₂ SiTe ₃ CdTe	109
4.6. Система Tl ₂ Te-HgTe-SiTe ₂	111
4.6.1. Переріз Tl ₂ SiTe ₃ –HgTe	111
4.7. Висновки до розділу 4	. 113
РОЗДІЛ 5. КРИСТАЛІЧНА СТРУКТУРА ТА ВЛАСТИВОСТІ	
ТЕТРАРНИХ СПОЛУК	115
5.1. Вирощування монокристалів $Tl_2CdGe(Sn)Se_4$ та $Tl_2CdSi(Ge)_3Se_8$	115
5.2. Кристалічна структура сполук $Tl_2CdSi(Ge, Sn)Se_4$	
та $Tl_2CdHg(Cd)Te_4$	117
5.3. Кристалічна структура сполуки TlCd _{0,5} GeS ₃	122
5.4. Кристалічна структура сполуки Tl ₂ CdSn ₂ S ₆	126
5.5. Кристалічна структура сполук $Tl_2CdGe_3S_8$ та $Tl_2CdSi(Ge)_3Se_8$	128

5.6. Електронна структура	136
5.6.1. Електронна структура монокристалу $Tl_2CdSnSe_4$	136
5.6.2. Електронна структура сполуки Tl ₂ CdGeSe ₄	139
5.6.3. Електронна структура сполук $Tl_2CdSi_3Se_8$ та $Tl_2CdGe_3Se_8$	143
5.7. Спектри оптичного поглинання сполук $Tl_2CdGe(Sn)Se_4$ та	
$Tl_2CdSi(Ge)_3Se_8$	147
5.8. Висновки до розділу 5	150
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	152
ДОДАТКИ	168

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ ТА СКОРОЧЕНЬ

мол. %	– молярні відсотки;			
ат. %	– атомні відсотки;			
<i>x</i> , <i>y</i> , <i>z</i>	– координати атомів;			
a, b, c, α, β, γ	 –параметри елементарної комірки; 			
ПСТ	– правильна система точок;			
V	– об'єм комірки;			
r _a	– радіус атома;			
ΠΓ	– просторова група;			
СТ	– структурний тип;			
B _{i30}	– ізотропний параметр теплових коливань атомів;			
U _(xx, yy, zz)	– анізотропний параметр теплових коливань атомів;			
HT	– низькотемпературна модифікація;			
BT	– високотемпературна модифікація;			
E_{g}	– ширина забороненої зони;			
MEC	– метод мікроскопії електростатичних сил;			
РФА	– рентгенофазовий аналіз;			
PCA	– ренттеноструктурний аналіз;			
ДТА	– диференційно-термічний аналіз;			
CEM (SEM)	 – скануюча електронна мікроскопія; 			
ЕДС (EDS)	– енерго-дисперсійна спектроскопія;			
PΦC (XPS)	– рентгенівська фотоелектронна спектроскопія;			
ΤΦΓ (DFT)	– теорія функціоналу густини			

ВСТУП

Актуальність теми дослідження. Одним з напрямків розвитку сучасного напівпровідникового матеріалознавства є пошук нових матеріалів і вивчення їх властивостей, використовуючи ускладнення досліджуваних систем і проміжних фаз, які в них утворюються. Серед складних систем важливе місце займають квазіпотрійні халькогенідні системи $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ та споріднені. У багатьох аналогічних системах встановлено існування тетрарних сполук, з Талієм, лужними металами, Аргентумом (Kynpymom) різних мольних складів, як наприклад, 2:1:1:4 (Cu₂CdGeSe₄, Ag₂FeSnS₄, Li₂CdGe(Sn)Se₄) 2:1:2:6 (Na₂CdGe₂Se₆) та 2:1:3:8 (Cs₂CdGe₃Se₈, Cu₂CdSn₃S₈, Ag₂FeSn₃S₈) які є анізотропні, мають високу термічну стабільність, володіють оптичними властивостями та можуть використовуватись у якості деталей, складових частин для виготовлення світлодіодів, лазерних та оптичних установок, накопичувачів пам'яті та в інших областях нелінійно-оптичних застосувань.

Побудова діаграм стану є важливою для правильного вибору методів та умов вирощування монокристалів, для одержання склоподібних матеріалів необхідних фаз. Тому актуальним є вивчення характеру взаємодії у системах $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ та споріднених, яке дозволить встановити температурні та концентраційні межі існування сполук як нових перспективних матеріалів.

Слід зазначити також, що дослідження фазових рівноваг у квазіпотрійних системах належать до фундаментальних у галузі матеріалознавства. Ці дослідження дозволять розвинути і удосконалити методику технологічних робіт, що пов'язана із синтезом, вирощуванням кристалів, одержанням скла, тонких плівок, композитних матеріалів та ін.

Систематичного дослідження у системах $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ не проводилося. Тому актуальним є вивчення даних квазіпотрійних систем, виявлення в них нових тетрарних проміжних сполук та твердих розчинів на їх основі із подальшим вивченням їх властивостей та прогнозуванням можливого практичного застосування.

Таким чином, квазіпотрійні системи Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднені є перспективним об'єктом досліджень, що дозволить розширити групу халькогенідних напівпровідників.

Зв'язок роботи з науковими програмами, планами, темами. Дана робота виконана в межах наукової тематики кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки відповідно до планів держбюджетних тем: «Нові складні халькогеніди та галогеніди для нелінійної оптики, термо- та оптоелектроніки: синтез, структура і властивості» (№ ДР 0117U002303, 2017–2019 рр.) та «Синтез, структура та властивості нових тетрарних халькогенідів для термо- та оптоелектроніки» (№ ДР 0119U001192, 2019–2021 рр.). В межах вказаних тем здобувач проводив експериментальні дослідження.

Мета та завдання дослідження. Метою досліджень є визначення характеру фізико-хімічної взаємодії в системах $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$ та споріднених, пошук нових сполук, дослідження їх кристалічної, електронної структури та інших властивостей, а також рекомендація для можливого теоретичного та практичного застосування.

Для досягнення поставленої мети виконувалися наступні завдання:

– синтез кристалічних сплавів в системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднених, дослідження їх фазового складу методами ФХА;

- побудова ізотермічних та окремих політермічних перерізів систем;

побудова проекції поверхні ліквідусу досліджуваних систем;

– розшифрування кристалічної (електронної) структур одержаних сполук;

- підбір технології синтезу та одержання монокристалів нових сполук;

- вивчення фізичних властивостей одержаних тетрарних сполук;

- систематизація результатів дослідження.

 $Oб' \epsilon \kappa m$ дослідження. Системи Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднені.

Предмет дослідження. Фазові рівноваги, кристалічна структура тетрарних сполук і твердих розчинів на їх основі та властивості цих фаз у системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднених.

При дослідженні використовували наступні Методи дослідження. методи: прямий високо-температурний метод синтезу зразків; метод Бріджмена-Стокбаргера для проведення росту монокристалів; рентгенофазовий аналіз РФА, метод порошку та монокристалу, для встановлення числа фаз у досліджуваних сплавах; рентгеноструктурний аналіз РСА, метод порошку та кристалічної монокристалу, встановлення структури зразків; ДЛЯ аналіз (MCA) мікроструктурний для встановлення мікроструктури досліджуваних зразків; диференційно-термічний аналіз (ДTA) для підтвердження фазових рівноваг, побудови діаграм стану ізо- та політермічних перерізів, проекції поверхні ліквідусу досліджуваних систем; скануюча електронна мікроскопія (СЕМ) для встановлення кількісного складу елементів у досліджуваних зразках; енергодисперсійна рентгенівська спектроскопія (ЕДС) для встановлення якісного складу (проведення елементного аналізу) досліджуваних зразків; теорія функціональної густини (ТФГ) для теоретичної оцінки електронної структури та її порівняння з експериментальними даними; ренттенівська фотоелектронна спектроскопія $(P\Phi C)$ для визначення електронної структури досліджуваних зразків; метод Таука для встановлення енергії забороненої зони досліджуваних зразків та її залежності віл температури.

Наукова новизна отриманих результатів. У результаті проведення даної роботи вперше:

– вивчено фазову взаємодію в квазіпотрійних Tl_2Se –CdSe– $Si(Ge, Sn)Se_2$ та споріднених Tl_2S –CdS– $Ge(Sn)S_2$, Tl_2Se –ZnSe– $Ge(Sn)Se_2$ системах і по перерізах Tl_2SiTe_3 –Cd(Hg)Te;

– побудовано 28 політермічних перерізів: двадцять у системах $Tl_2Se-CdSe-Si(Ge, Sn)Se_2$, два з яких $Tl_2Se-SiSe_2$ та $Tl_2Se-CdSe$ уточнено, та ще вісім у споріднених $Tl_2Se-ZnSe-Ge(Sn)Se_2$ системах та по двох квазібінарних телуридних $Tl_2SiTe_3-Cd(Hg)Te$;

– побудовано проекції поверхні ліквідусу для систем $Tl_2Se-CdSe-Ge(Sn)Se_2$ та просторові діаграми стану трьох підсистем $Tl_2Se-CdSe-Tl_4SnSe_4$, $Tl_2Se-CdSe-Tl_2SnSe_3$ та $Tl_2Se-CdSe-SnSe_2$;

– встановлено існування 17 нових сполук: п'яти тернарних $Tl_2Si_2Se_5$, $Tl_{18}SiTe_{11}$, Tl_4SiTe_4 , Tl_2SiTe_3 , $Tl_2Si_2Te_5$ та дванадцяти тетрарних $Tl_2ZnSnSe_4$, $Tl_2CdSiSe_4$, $Tl_2CdGeSe_4$, $Tl_2CdSnSe_4$, $Tl_2HgSiTe_4$, $Tl_2CdSiTe_4$, $Tl_2CdGe_2S_6$, $Tl_2CdSn_2S_6$, $Tl_2CdGe_3S_8$ $Tl_2ZnGe_3Se_8$, $Tl_2CdSi_3Se_8$, $Tl_2CdGe_3Se_8$; сполуки $Tl_2CdSiTe_4$ ($Tl_2HgSiTe_4$) мають при 470 К область гомогенності до 5 мол. % зі сторони тернарної сполуки;

– розшифровано кристалічну структуру десяти нових халькогенідів: методом монокристалу для Tl₂CdGe₃S₈ ($\Pi\Gamma P2_12_12_1$) та методом порошку ще для 9 нових халькогенідів, з яких п'ять складу 2:1:1:4 (Tl₂CdSiSe₄, Tl₂CdGeSe₄, Tl₂CdSnSe₄, Tl₂CdSiTe₄, Tl₂HgSiTe₄) належать до тетрагональної сингонії, $\Pi\Gamma I$ -42*m*; два складу 2:1:2:6 належать до тригональної Tl₂CdGe₂S₆ ($\Pi\Gamma R3$) та гексагональної Tl₂CdSn₂S₆ ($\Pi\Gamma P6_3/mmc$) сингоній, ще два складу 2:1:3:8 Tl₂CdSi(Ge)₃Se₈ кристалізуються в ромбічній сингонії, $\Pi\Gamma P2_12_12_1$;

– на основі тетрарних сполук Tl₂Hg(Cd)SiTe₄ по перерізах Tl₂SiTe₃–Hg(Cd)Te встановлено існування областей гомогенності до 5 мол. % зі сторони тернарної сполуки та встановлено механізм їх утворення, а саме – заміщення;

– одержано розчин-розплавним методом монокристал сполуки $Tl_2CdSnSe_4$ та полікристали сполук $Tl_2CdGeSe_4$, $Tl_2CdSi(Ge)_3Se_8$; досліджено їх оптичні та фотоелектричні властивості;

– для сполук Tl₂CdGe(Sn)Se₄, Tl₂CdSi(Ge)₃Se₈ вперше проведено вимірювання електронної структури та встановлено, що домінуючим в них є ковалентний полярний зв'язок.

Отримані результати досліджень доповнять базу даних про нові тернарні та тетрарні халькогенідні напівпровідники.

Практичнезначенняодержанихрезультатів.Знаннякристалоструктурнихданих нових сполук типу $Tl_2B^{II}D^{IV}Se(Te)_4$ $Tl_2CdSi(Ge)_2S_6$,

та Tl₂CdSi(Ge)₃Se₈, B^{II}- Cd, Hg; D^{IV}-Si, Ge, Sn зокрема кристалізація їх у нецентросиметричній структурі дозволяє прогнозувати їх в якості потенційних матеріалів для галузі нелінійної оптики. Результати дослідження фазових рівноваг систем та перерізів, на яких утворюються знайдені нами нові сполуки та тверді розчини на їх основі можна застосовувати для росту та коригування технології росту монокристалів, для прогнозування складу, структури та властивостей нових сполук, що утворюються в близьких за складом та властивостями системах при їх ідентифікації, для керування фізичними створенні матеріалів 3 параметрами при нових наперед заданими властивостями, що можуть бути деталями для детекторів ІЧ-випромінювання, датчиків, фото-перетворювачів, оптичних аналізаторів та інших промислових виробів. Дані експериментального вивчення систем Tl₂Se-CdSe-Si(Ge, Sn)Se₂ та споріднених, особливостей взаємодії компонентів даних систем є фундаментальними в області неорганічного матеріалознавства. Одержані результати можуть бути використані в якості навчального та довідкового хімії матеріалу кристалохімії, та фізики напівпровідників, для матеріалознавства та інших споріднених дисциплін для студентів хімічного факультету Волинського національного університету імені Лесі Українки та інших вищих навчальних закладів та наукових установ зі спорідненим профілем навчання.

Особистий внесок здобувача. Основою даного дисертаційного дослідження є результати виконані в період з 2017 по 2023 роки особисто автором або при його безпосередній участі під наглядом наукових керівників проф. Олексеюка І.Д. та проф. Піскач Л.В. на кафедрі неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки.

Основний обсяг експериментальних робіт, їх подальша обробка та інтерпретація виконані особисто автором.

Мета і завдання, об'єкт, предмет та методика дослідження підібрані спільно з науковими керівниками проф. Олексеюком І.Д. та проф. Піскач Л.В.

Пошук та аналіз літературних даних по досліджуваних системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднених, підготовка та проведення синтезу, рентгено-фазового, рентгеноструктурного, мікроструктурного, диференційнотермічного аналізів досліджуваних взірців, участь у написанні публікацій проведені особисто автором після отриманих рекомендацій наукових керівників проф. Олексеюка І.Д. та проф. Піскач Л.В.; кристало-структурні розрахунки тернарних, тетрарних сполук та складів твердих розчинів на їх основі – зроблені спільно з д.х.н. Гулаєм Л.Д., к.х.н. Смітюхом О.В., а також проф. М. Дашкевичем з Інституту низьких температур і структурних досліджень імені В. Тшебятовського (ПАН, м. Вроцлав, Польща).

Вирощування монокристалів сполук виконано спільно з к.ф.-м.н. Панкевичем В.З. та науковим керівником к.х.н., проф. Піскач Л.В. на кафедрі неорганічної та фізичної хімії ВНУ імені Лесі Українки.

Дослідження оптичних та фотоелектричних властивостей одержаних монокристалів та полікристалічних зразків проведено спільно з д.ф.-м.н. Мирончук Г.Л. на базі навчально-наукового фізико-технологічного інституту при ВНУ імені Лесі Українки.

Розрахунок електронної структури монокристалів та полікристалічних зразків проведено спільно з д.х.н., проф. Хижуном О.Ю. з Інституту проблем матеріалознавства ім. І.М. Францевича НАНУ, а також к.ф.-м.н. Клиськом Ю.В. в Національному університеті "Львівська політехніка".

Проведення спектрально-емісійного та енерго-дисперсійного аналізу виконано спільно з к.х.н. Корданом В.М. та к.х.н. Мацелко О.В. у Центрі колективного користування науковим обладнанням інтерметалічних сполук при ЛНУ імені Івана Франка (м. Львів).

Обговорення одержаних результатів здійснено спільно з д.х.н., проф. Олексеюком І.Д. і к.х.н., проф. Піскач Л.В., під науковим керівництвом яких виконано дане дисертаційне дослідження.

Апробація результатів дисертації. Основні результати роботи представлені на національних та міжнародних наукових конференціях, у тому числі на: ІХ, Міжнародній науковій конференції «Релаксаційно, нелінійно, акустооптичні процеси і матеріали» РНАОПМ (м. Луцьк, 2018); XII

Міжнародній науково-практичній конференції аспірантів і студентів «Молода наука Волині: пріоритети та перспективи досліджень» (м. Луцьк, 2018); ІІІ Міжнародній науково-практичній конференції «Інноваційний розвиток науки нового тисячоліття (м. Чернівці, 2018); III, V, VII Всеукраїнській науковій конференції «Актуальні задачі хімії: дослідження та перспективи» (м. Житомир, 2019, 2021, 2023); XVII, XIX науковій конференції «Львівські хімічні читання» (м. Львів, 2019, 2021); XI Всеукраїнській науковій конференції студентів та аспірантів «Хімічні Каразінські читання – 2019» (м. Харків, 2019); XIV, XV Міжнародній науковій конференції «International Conference on Crystal Chemistry of Intermetallic Compounds» (м. Львів, 2019, 2023); IV Міжнародній науково-практичній конференції «Сучасні тенденції розвитку науки» (м. Київ, 2020); XXII Міжнародній науковій конференції «XXII International Seminar on Physics and Chemistry of Solids» (Lviv, 2020); II, III Міжнародній науковій конференції «The 2nd, 3rd International Online Conference Crystals» (Basel, 2020, 2022); IV Міжнародній науково-практичній on конференції молодих учених, студентів та аспірантів «Актуальні проблеми розвитку природничих та гуманітарних наук» (м. Луцьк, 2020); І, ІІІ Міжнародній науковій конференції «Актуальні проблеми ximiï, матеріалознавства та екології» (м. Луцьк, 2021, 2023); IV Міжнародній науковій конференції «Актуальні проблеми фундаментальних наук» (м. Луцьк, 2021); V Міжнародній науковій конференції «Актуальні проблеми фундаментальних наук» (АПФН-2023) (м. Луцьк-Світязь, 2023).

Публікації. Результати досліджень, представлені в дисертації, опубліковано в 27 наукових працях, з них в 5 рецензованих статтях, що входять до журналів ВАК та відображених в Scopus та Web of Science, та у 22 тезах доповідей національних та міжнародних наукових конференцій.

Структура та обсяг дисертації. Дисертація складається зі вступу, п'яти розділів, висновків до них, списку використаних джерел та додатків. Робота викладена на 176 сторінках (з них 9 – додатки), містить 115 рисунків, 29 таблиць. Список використаних джерел нараховує 167 назв.

1.1. Фазові рівноваги у бінарних системах Tl–X, В^{II}–X, D^{IV}–X та фізико-хімічні властивості сполук В^{II}₂X, Tl₂X, D^{IV}X₂

У даному підрозділі розглянуто бінарні халькогенідні системи, представлені d-елементами II групи, p-елементами III, IV груп періодичної системи елементів Д. І. Менделєєва, а саме Tl–S(Se, Te), Zn(Cd, Hg)–S(Se, Te), Si(Ge, Sn)–S(Se, Te), у яких утворюються бінарні сполуки складів Tl₂X, B^{II}X та $D^{IV}X_2$ (X – S, Se, Te; B^{II} – Zn, Cd, Hg; D^{IV} – Si, Ge, Sn).

1.1.1. Системи TI-X (X – S, Se, Te)

Система TI–S (рис. 1.1) досліджена в роботах [1, 2], де наведено дані про утворення п'яти сполук Tl₂S, Tl₄S₃, TIS, Tl₂S₃ та Tl₂S₅. Сполука Tl₂S характеризується конгруентним типом плавлення при 728 К та кристалізується в ПГ *R*3 (табл. 1.1 [3, 4]).

Одні з останніх оглядів по системах Tl–Se(Te) були проведені у роботі [5], в якій підтверджено попередні відомості про утворення сполук: Tl₂Se(Te), TlSe(Te), Tl₂Se(Te)₃ [6–12] та додано власні результати, де стверджується про дослідження цих

Рис. 1.1. Діаграма стану системи TI–S [1]

систем методом мікроскопії електростатичних сил (МЕС). Сполука Tl₂Se характеризуються конгруентним типом плавлення [5–9] (згідно [7] при 663 К) та незначною розчинністю (рис. 1.2, табл. 1.1), автори роботи [10]

повідомляють, що вона плавиться інконгруентно при 520 К, утворюючи незначну двофазну область з γ -фазою стехіометричного складу Tl₅Se₃ (рис. 1.3, табл. 1.1). Tl₂Te характеризується конгруентним типом плавлення (при 698 К згідно [10]), хоча у деяких раніших дослідженнях цю сполуку вважали нестабільною, тому рентгенівські ефекти Tl₂Te приписували саме для Tl₅Te₃ [12]. Однак в роботах [13, 14] підтверджено термодинамічну стабільність Tl₂Te та Tl₅Te₃ з температурами конгруентного плавлення 687 К та 708 К відповідно, що добре узгоджується з даними [5], з часом їх склад суттєво не змінюється.

Структура Tl₂Se тетрагональна, шарувата. Для неї властиво укладання шарами атомів Tl та Se, між якими можуть заселятися атоми Se, що впливає на властивості даної сполуки. Зв'язок Tl–Se, сильніший іонного та має ковалентну складову, оскільки сума іонних радіусів Tl⁺ та Se^{2–} дещо вища від такої, що спостерігається експериментально [15]. Tl₂Te кристалізується в моноклінній структурі [16] (табл. 1.1.).

Таблиця 1.1

Споти	ПГ	Параметри комірки, нм			E_g , eB
Сполука		а	b	С	
Tl_2S	<i>R</i> 3 [3]	1,2150	—	1,8190	1,2 [4]
Tl ₂ Se	P4/ncc [15]	0,852	—	1,268	1,01 [17]
T1.Te	$C_{2/c}$ [16]	1,5662(1)	0,8987(3)	3,119(6)	0.64 [18]
11210		$\beta = 100,761(7)^{\circ}$			0,04 [10]

Основні фізико-хімічні дані сполук Tl₂X

Сполуки типу Tl₂X проявляють напівпровідникові властивості [17, 18].

1.1.2. Системи B^{II} -X (B^{II} – Zn, Cd; X – S, Se,Te)

У системах B^{II} –Х, де X–Se, Te, утворюються сполуки лише стехіометричного складу (1:1) з конгруентним типом плавлення [7] при температурах значно вищих від температур плавлення вихідних компонентів (CdS – 1748 K [19], ZnSe – 1793 K [20], CdSe – 1512 K [21], CdTe – 1385 K [7], HgTe – 943 K [7]) та з невеликою розчинністю (рис. 1.4–1.8, табл. 1.2), які взаємодіють з вихідними компонентами, утворюючи вироджені евтектики.

Квазібінарну систему Cd-S через пружність парів високу сірки не побудувати вдалося повному V інтервалі концентрацій, а лише до 50 ат.% S, як представлено на рис. 1.4 [19]. Сполука CdS, при 1253 К починає сублімувати [20], тому для встановлення 11 температури плавлення було використано атмосферу високого тиску [21, 22, 23]. Кристалохімічні та деякі фізичні дані для сполуки CdS наведено в табл. 1.2.

Сполуки даного типу кристалізуються переважно у структурі сфалериту або вюрциту (табл. 1.2). Для бінарних халькогенідів кадмію та цинку характерним є утворення політипів [7]. Загалом у рядах Zn→Cd→Hg та S→Se→Te закономірно змінюються фізико-хімічні властивості. Так, спостерігається зміна температури плавлення для сполук даного ряду в сторону її пониження (1793 К для ZnSe, 1512 К для CdSe та 1072 К для HgSe) або зменшення енергії активації від 2,7 для ZnSe до 0,02 еВ для HgTe відповідно (табл. 1.2).

Таблиця 1.2.

Сполука	ΠΓ	Параметри к	E _g , eB	
Chonynu		а	С	
CdS	$F \overline{43}m$	5,830	-	2,4
	P6 ₃ mc	4,1348	6,7490-	-
ZnSe	$F \overline{43}m$	0,5666(8)	-	2,7
	P6 ₃ mc	0,401	0,654	-
CdSe	$F \overline{43}m$	0,6084	-	1,8
	<i>P6₃mc</i>	0,4309	0,7021	-
CdTe	$F \overline{43}m$	0,6481	-	1,5
	P6 ₃ mc	0,457	0,747	-
HgTe	$F \overline{43}m$	0,6460	-	0,02

Основні фізико-хімічні дані для сполук В^{II}–Х [7]

ZnSe використовують при виготовленні інфрачервоних лазерів [24], нанопорошків, для створення оптично прозорої кераміки з підвищеною міцністю, механічною пропускати електромагнітне яка здатна [25–27]. випромінювання CdSe використовують для виготовлення фотоелектрохімічних елементів, сенсорів, фотопровідників, газових тонкоплівкових транзисторів, гамма-випромінювання, детекторів великоекранних рідкокристалічних дисплеїв тощо [28], також широко застосовують як барвник при фарбуванні скла, оскільки надає йому жовточервоного забарвлення [29]. Нд в поєднанні з Сd є с основним матеріалом, що використовується для інфрачервоних детекторів [30, 31]. Крім того, сполуки В^{II}Х знайшли своє використання як елементи установок сонячних батарей, як оптичні та лазерні матеріали [32-38].

1.1.3. Системи D^{IV} – X, (D^{IV} – Si, Ge, Sn; X – S, Se, Te)

Сполуки складу $D^{IV}X_2$ утворюються у системах $D^{IV}-X$. У системі Ge–S (рис. 1.9) відомо про утворення сполук GeS та GeS₂ [7]. Сполука GeS₂ характеризується конгруентним типом плавлення при 1123 К. Дані кристалічної структури сполуки GeS₂ наведено в табл. 1.3.

У системі Sn–S (рис. 1.10), дослідженій в роботі [39], наведено дані про утворення халькогенідів SnS та SnS_2 . Сполука SnS_2 характеризується конгруентним типом плавлення при 1143 К та кристалізується у тригональній сингонії (табл. 1.3 [40–41]).

Сполуки Si(Ge, Sn)Se₂, що утворюються у відповідних системах (рис. 1.11–1.13) володіють незначною гомогенністю, мають конгруентний тип плавлення при 1245, 1013 та 948 К для SiSe₂, GeSe₂ та SnSe₂ відповідно [42–44]. Зразки системи Ge–Se, зі сторони Селену демонструють сильну тенденцію до формування скла [45]. Силіцій телурид (SiTe₂) утворюється інконгруентно при 705 К (рис. 1.14) та кристалізується в тригональній просторовій групі $P-\overline{3m}1$

(СТ CdI₂) [46]. В роботі [47] наведено дані утворення лише однієї сполуки, що відповідає складу Si₂Te₃ та утворюється інконгруентно у системі Si–Te при 1158 К (60 мол. % Te) або при 1165 К згідно [48].

Основні фізико-хімічні дані сполук D^{IV}X₂ наведено у табл. 1.3.

Таблиця 1.3

Сполука	ПΓ	Парам	E_g , eB		
		а	b	С	
GeSa	Pc [7]	0,6875	2,255	0,6809	3 6 [39]
SnS ₂	$P\bar{3}m1$ [7]	0,3646	_	0,588	2,2 [49]
SiSe ₂	Ibam [7]	0,9669	0,599	0,585	1,73 [50-52]
SiTe ₂	<i>P</i> 3 <i>m</i> 1 [53]	0.7016	-	0.6728(6)	1.85 [54]
GeSe ₂	<i>P</i> 2 ₁ / <i>c</i> [7]	0,7016	1,6796	1,183	2,3 [55]
		β=90,65°			
SnSe ₂	<i>P</i> 3 <i>m</i> 1 [7]	0,3811	_	0,6137	1.0 [56]

Основні фізико-хімічні дані для сполук D^{IV}S (Se, Te)₂

Загалом сполуки складу $D^{IV}X_2$ підпорядковуються принципам зміни фізико-хімічних властивостей при зміні хімічного складу. Так, наприклад, закономірно зменшуються температури плавлення у ряду Si \rightarrow Ge \rightarrow Sn в сторону її пониження (1243 К для SiSe₂ [42], 1013 К для GeSe₂ [7] та 948 К для SnSe₂ [44]).

1.2. Фазові рівноваги у квазібінарних системах $Tl_2X-B^{II}X$, $Tl_2X-D^{IV}X_2$, $D^{IV}X_2-B^{II}X$ та фізико-хімічні властивості сполук $Tl_2D^{IV}X_3$, X - S, Se

У даному підрозділі розглянуто квазібінарні системи $Tl_2X-B^{II}X$, $Tl_2X-D^{IV}X_2$, $B^{II}X-D^{IV}X_2$ (B^{II} – Zn, Cd; D^{IV} – Si, Ge, Sn, X – S, Se), що є обмежуючими досліджуваних квазіпотрійних систем. В системах $Tl_2X-B^{II}X$ та більшості $B^{II}X-D^{IV}X_2$ сполуки не утворюються (за вийнятком систем CdSe-SiSe₂, CdS(Se)–GeS(Se)₂) і тріангулюючими в досліджуваних системах є перерізи, що виходять із обмежуючих систем $Tl_2X-D^{IV}X_2$, в кожній з яких утворюється по три сполуки.
1.2.1. Системи $Tl_2X-B^{II}X$ ($B^{II} - Zn$, Cd; X - S, Se)

З літературних даних відомо про побудовану діаграму стану системи Tl_2S – CdS [57], яка є квазібінарною евтектичного типу з координатами евтектичної точки 5 мол. % CdS, 710 К. Розчинність на основі Tl_2S та CdS не перевищує 1 мол. % (рис. 1.15).

Відомості про фазові рівноваги в системі Tl₂Se–ZnSe відсутні.

У літературних джерелах вказано про декілька варіантів побудованих діаграм стану системи Tl₂Se–CdSe [58, 59], що відрізняються між собою

Рис. 1.15. Діаграма стану системи Tl₂S–CdS [57]

характером фазових рівноваг та методами дослідження (рис. 1.16–1.17).

Відповідно до результатів роботи [58], система Tl₂Se–CdSe належить до евтектичного типу з координатами евтектичної точки 10 мол. %, 626 К. У роботі [59] вказано на існування тернарної сполуки при 27.3 мол. % CdSe, що відповідає складу Tl₁₆Cd₃Se₁₁ та утворюється конгруентно при 581 К.

1.2.2. Системи $Tl_2X-D^{IV}X_2$ ($D^{IV}-Si$, Ge, Sn; X - S, Se)

При дослідженні системи Tl_2S –SiS₂ (рис. 1.18) встановлено існування трьох сполук: Tl_4SiS_4 , Tl_2SiS_3 та $Tl_2Si_2S_5$. Сполука Tl_2SiS_3 утворюється конгруентно при 853 К [60]. Діаграму стану системи Tl_2Se –SiSe₂ (рис. 1.19) побудовано в межах концентрацій 0–52,5 мол. % SiSe₂ через гідроліз зразків системи в інтервалі концентрацій більше 50 мол. % SiSe₂. Встановлено існування двох сполук Tl_4SiSe_4 та Tl_2SiSe_3 з конгруентним типом плавлення. Сполука Tl_2SiSe_3 утворюється при 833 К [60]. Параметри кристалічної структури тернарних сполук систем Tl_2X –SiX₂ (X – S, Se) наведено в табл. 1.4.

Таблиця 1.4

Сполиса	ПΓ	Пер	Про			
Сполука		а	b	С	л-ра	
TLSIS.	ת 1	0,6699	0,6645	0,8380	[61]	
1125153	1 -1	α=90,32°;	β=112,00°;	γ=112,32°		
	Сс	1,2518	1,1241	0,7567	[67]	
143134		β=112,80°			[02]	
Tl ₂ SiSe ₃	<i>P</i> -1	0,6875	0,6866	0,8731	[(1]]	
		<i>α</i> =90,50°; <i>β</i> =111,69°; <i>γ</i> =113,70°			[01]	
	C2/c	1,1664	0,7277	2,4903	[67]	
11451564	C2/C		β=99,93°		[02]	

Кристалічні параметри сполук систем систем Tl_2X –SIX₂ (X – S, Se)

У системі Tl_2S –GeS₂ згідно з даними [63] утворюються три сполуки Tl_4GeS_4 , Tl_2GeS_3 та $Tl_2Ge_2S_5$, які плавляться конгруентно. Сполука Tl_2GeS_3 плавиться при 763 К (рис. 1.21). У системі Tl_2Se –GeSe₂ [64] утворюються три тернарні сполуки аналогічного складу. Автори роботи [64] стверджують, що сполука Tl_4GeSe_4 утворюється конгруентно при 661 К, а сполуки Tl_2GeSe_3 та $Tl_2Ge_2Se_5$ – інконгуентно при 706 К та 778 К відповідно (рис. 1.21).

Параметри кристалічної структури тернарних сполук наведено в табл. 1.5.

За іншими результатами [65] та [66] одна тернарна сполука Tl_4GeSe_4 утворюється конгруентно при 655 чи 661 К, ще дві – Tl_2GeSe_3 та $Tl_2Ge_2Se_5$ – інконгуентно при 714 чи 721 К та 775 чи 773 К відповідно. Згідно з даними авторів [67] усі три сполуки Tl_4GeSe_4 , Tl_2GeSe_3 та $Tl_2Ge_2Se_5$ плавляться з відкритим максимумом при 650 К, 710 К та 770 К відповідно. Параметри кристалічної структури тернарних сполук систем Tl_2X – GeX_2 (X – S, Se) наведено в табл. 1.5 [68-73].

У системі Tl_2S-SnS_2 згідно з [74] та [75] дві тернарні сполуки Tl_4SnS_4 та Tl_2SnS_3 утворюються конгруентно при 738 чи 723 К та 698 чи 693 К, а третя сполука $Tl_2Sn_2S_5$ – інконгуентно при 733 чи 732 К (рис. 1.22) відповідно.

Таблиця 1.5.

Сполиса	ПГ	Пер	Π no		
Сполука	111	а	b	С	JI-pa
$Tl_2Ge_2S_5$	C2/c	1,4967	1,4980	0,8812	[68]
			β=106,98°		
Tl ₂ GeS ₃	<i>P</i> -1	0,6702	0,6748	0,8446	[69]
		α=90,38°;	β=111,63°;	γ=113,29°	
Tl ₄ GeS ₄	Сс	1,2501	1,1248	0,7608	[70]
		β=112,21°			
$Tl_2Ge_2Se_5$	C2/c	1,5602	1,5549	0,9052	[71]
Tl ₂ GeSe ₃	<i>P</i> -1	0,6925	0,6934	0,8771	[72]
		<i>α</i> =90,55°;			
		1,16700	0,73170	2,56030	
Tl ₄ GeSe ₄	C2/c				[73]
			β=106,54°		

Кристалічні та деякі фізичні параметри сполук системи Tl₂X-GeX₂

У роботі [66] показано, що сполуки Tl_4SnS_4 та Tl_2SnS_3 мають області гомогенності, які при температурі 423 К становлять 1,4 мол. % та 0,5 мол. % відповідно.

У системі Tl₂Se–SnSe₂ встановлено існування трьох сполук. В роботі [74]

вказується, що сполуки Tl₄SnSe₄ та Tl₂SnSe₃ плавляться конгруентно при 718 К та 735 К відповідно, а сполука Tl₂Sn₂Se₅ – інконгруентно при 732 К та є ендотермічною в інтервалі 655 К–732 К (рис. 1.23). За результатами [76] сполука Tl₂SnSe₃ утворюються конгруентно при 745 К, дві інші сполуки Tl₄SnSe₄ та Tl₂Sn₂Se₅ – інконгуентно при 693 К та 733 К. Згідно з результатами [77] сполука Tl₄SnSe₄ утворюється конгруентно при 699 К, а сполуки Tl₂SnSe₃ та Tl₂Sn₂Se₅ – інконгруентно при 714 К та в інтервалі 636-745 К відповідно.

У даній роботі згадано також про конгруентне утворення в даній системі сполук складів $Tl_{30}SnSe_{17}$ та $Tl_4Sn_3Se_8$ при 663 К та 749 К відповідно.

Для сполук $Tl_2D^{IV}X_3$ характерна низька симетрія (табл. 1.4–1.6 [78-82]). Вони кристалізуються здебільшого в триклінній сингонії, деякі – в моноклінній і ромбічній. Сполуки типу $Tl_4D^{IV}X_4$ та декотрі з типу $Tl_2D^{IV}_2X_5$ кристалізуються в моноклінній сингонії. Нецентросиметрична природа кристалічної структури сполук $Tl_2D^{IV}X_3$ дозволяє застосовувати їх у якості матеріалів, що проявляють нелінійно-оптичні ефекти у галузях, де такі властивості необхідні [83].

Ī	аблиця	1.6	j.
	,		

1	, , 1	1	1 .)	2 2
Сполиса	ПГ	Пер	Про		
Сполука	111	а	b	С	л-ра
$Tl_2Sn_2S_5$	C2/c	1,1115	0,7723	1,1492	[78]
			β=108,60°		
Tl_2SnS_3	C2/m	2,303	0,3834	0,7379	[79]
		β=94,07°			
Tl_4SnS_4	$P2_{1}/c$	0,8395	0,8280	1,5398	[80]
Tl ₂ SnSe ₃	Pnam	0,8051	0,8169	2,124	[81]
Tl ₄ SnSe ₄	$P2_{1}/c$	0,8481	0,8411	1,5800	[82]
		β=102,39°			

Кристалічні та деякі фізичні параметри сполук систем Tl₂X-SnX₂

1.2.3. Системи $B^{II}X-D^{IV}X_2$ та властивості сполук

У роботах [84-86] повідомляється про утворення сполук з Цинком, Кадмієм, Меркурієм при різних мольних співвідношеннях елементів, а саме 2-1-4, 2-1-3 та 1-1-3. При дослідженнях системи ZnSe–GeSe₂ (рис. 1.24), що були проведені у роботах [84–86, 87], повідомляється про існування в даній системі сполук ZnGeSe₃ [84] та Zn₂GeSe₄ [85] зі структурою сфалериту.

 $ZnSe-SnSe_2$ [88]

ZnSe-GeSe₂ [87]

Не вдалося отримати дані сполуки авторам робіт [86, 87]. Згідно [87] ця система є евтектичного типу з координатами евтектичної точки 16 мол. % ZnSe та 933 К.

Дослідження квазіподвійної системи ZnSe–SnSe₂, що проведені у роботах [88, 89], вказують на евтектичний тип взаємодії (рис. 1.25) з координатами евтектичної точки 12 мол. % ZnSe [89] або 16 мол.% ZnSe [88] та температурою евтектичного процесу 915 К згідно з [88, 89].

В системі CdS-GeS₂ перитектично утворюється сполука Cd₄GeS₆ при 1337 К [90] зі складом перитектичної точки 28 мол. % GeS₂, фазовим переходом для Cd₄GeS₆ при 1306-1308 К та складом евтектичної точки 69 мол. % GeS₂ при 1076 К (рис. 1.26). Згідно з [91] сполука Cd₄GeS₆ утворюється при 1048 К зі складом перитектичної точки – 30 мол. % GeS₂. Координати евтектики – 79 мол. % GeS₂, 973 К. Розчинність на основі GeS₂ становить до 7 мол. % CdS при 973 К. Сполука Cd₄GeS₆ кристалізується у власному структурному типі і є родоначальником сполук ікосаедричного класу [92].

Рис. 1.26. Діаграма стану системи CdS-GeS₂ [90]

У табл. 1.7 наведено параметри решітки Cd_4GeS_6 . Розчинність на її основі становить 20-21 мол. % GeS_2 для HTM- Cd_4GeS_6 (або 19.9–20.75 мол. % CdS згідно тензиметричними даними [93]. Значення твердих розчинів при температурі відпалу 810 К на основі компонентів системи становить менше 1.5 мол. % GeS₂ на основі CdS та менше 1 мол. % CdS на основі GeS₂.

Перші дослідження системи CdS-SnS₂ проведено у [94], де вказано на утворення трьох сполук: CdSn₂S₅, що утворюється конгруентно при 1075 K, а також CdSnS₃ та Cd₂SnS₄, що утворюють ся перитектично при 960 та 1060 K відповідно. Подальші дослідження заперечують їх існування. Діаграма стану системи CdS-SnS₂ 90 (рис. 1.27) згідно [87] належить до евтектичного типу без

утворення проміжних сполук. Координати евтектичної точки складають 22 мол. % CdS, 1043 К.

Система CdSe-SiSe₂ 1.28 представлена на рис. [95]. Сполука Cd_4SiSe_6 утворюється інконгруентно при 1416 К та має поліморфний перехід 1231при областю гомогенності). 1237 К (з Склад евтектичної точки 59 мол. % SiSe₂, 1185 К, відповідно. Область гомогенності на основі сполуки α-Cd₄SiSe₆ є в інтервалі 19.9 – 20.5 мол. % SiSe₂.

Розчинність SiSe₂ в CdSe є

не більше, ніж 0.6 мол. % CdSe. Сполука α -Cd₄SiSe₆ кристалізується в моноклінній структурі ($\Pi\Gamma$ Cc) ([96], табл. 1.7).

У роботах [97, 98] підтверджується інконгруентне утворення у системі CdSe–GeSe₂ (рис. 1.29) сполуки Cd₄GeSe₆, що при 1113 К чи при 1136 К відповідно, утворюючи евтектику з GeSe₂ при 30 мол. % CdSe при температурі

989 К з координатами перитектичної точки 49 мол. % CdSe. Область гомогенності для Cd₄GeSe₆ лежить у межах 78,9 – 80,1 мол. % CdSe. Розчинність на основі вихідних сполук лежить в межах 2 мол. % CdSe та 1 % GeSe₂ [98].Тернарна сполука Cd₄GeSe₆ кристалізується в моноклінній сингонії (табл. 1.7.) [99, 100].

Рис. 1.30. Діаграма стану системи CdSe–SnSe₂ [87]

Діаграма стану системи CdSe–SnSe₂ згідно з [87] є евтектичного типу з координатами евтектичної точки 78 мол. % SnSe₂ та 893 К (рис. 1.30).

Таблиця 1.7

SnSe₂

893

20

	-				
Сполука	ПΓ	Пері	Inc		
		а	b	С	л-ра
	Ca	12.346(2)	7.084(1)	12.378(2)	[02]
Cu_4Oes_6	CC	β	$= 110.20(2)^{\circ}$		[92]
C4 6:6-	Сс	1.282(66)	7.35(91)	1281(97)	[06]
Cu 451566		β	[90]		
Cd ₄ GeSe ₆	Сс	1,281	0,738	1,279	[00]
		/	[99]		
		1,2823	0,7409	1,2802	[100]
		/	$\beta = 109.60^{\circ}$		[100]

Кристалографічні параметри сполук систем $CdX-Si(Ge)X_2$, де X - S, Se

Існування сполуки CdSnSe₃, що наведена в [84] не підтверджено. Розчинність при температурі відпалу (823 К) на основі CdSe становить 1 мол. % SnSe₂, на основі SnSe₂ – менше, ніж 0,5 мол. % CdSe [87].

1.3. Тетрарні халькогенідні системи Tl₂X-B^{II}X-D^{IV}X₂

У літературі відомо про дослідження рівноваг у сульфуро- та селеновмісних квазіпотрійних системах $Tl_2X-B^{II}X-D^{IV}X_2$ (де $B^{II} - Hg$, Pb; $D^{IV} - Si$, Ge, Sn; X – S, Se) [101–107], в яких утворюються тетрарні сполуки складів $Tl_2B^{II}D^{IV}X_4$, $Tl_2B^{II}D^{IV}_2X_6$ та $Tl_2B^{II}D^{IV}_3X_8$. Спосіб утворення та кристалографічні параметри тетрарних сполук наведено в табл. 1.8. Ці халькогеніди кристалізуються у моноклінній ($\Pi\Gamma P2_1/a$), кубічній ($\Pi\Gamma I-43d$) та, частіше, в тетрагональній сингоніях ($\Pi\Gamma I-42m$).

Також, відомо про існування аналогічних тетрарних сполук з лужними металами та Cu, Ag складів 2:1:1:4. Наприклад, Cu₂MgSnS₄ [108], Cu₂CdGeSe₄ [109], Ag₂FeSnS₄ [110], Li₂CdGe(Sn)Se₄ [111]. Дані халькогеніди відносяться до напівпровідників зі структурою алмазу та, завдяки високій термічній стабільності та іншим оптичним властивостям, можуть використовуватись в області нелінійно-оптичних застосувань.

Також утворюються тетрарні сполуки з лужними металами мольного складу 2:1:2:6, що володіють нелінійно-оптичними властивостями: Na₂CdGe₂Se₆ ($\Pi\Gamma$ I4/mcm) [112], K₂MnGe₂Se₆ ($\Pi\Gamma$ P2₁2₁2₁) [113]).

Сполуки складу 2:1:3:8 відомі з лужними металами, Купрумом (Аргентумом). Вони кристалізуються в ромбічній ($\Pi\Gamma P2_12_12_1$: Cs₂ZnGe₃Te₈, Cs₂CdGe₃S₈ та Cs₂CdGe₃Se₈ [114]), моноклінній ($\Pi\Gamma P21/a$: Cs₂ZnGe₃S₈ та α-K₂ZnSn₃S₈ [115, 116]), тетрагональній ($\Pi\Gamma I4_1/a$): Cu₂FeSn₃S₈, Cu₂CdSn₃S₈ [117]) або кубічній структурі алмазу ($\Pi\Gamma Fd$ -3m): Ag₂FeSn₃S₈ [118, 119].

Виходячи з того, що іони Tl^{+1} є подібні до лужних металів та до іонів $Ag^{+1}(Cu^{+1})$, нами зроблено припущення про можливість утворення тетрарних сполук з аналогічними чи подібними складами (2:1:1:4, 2:1:2:6, 2:1:3:8 тощо) у досліджуваних системах Tl_2 Se–CdSe–Si(Ge, Sn)Se₂ та споріднених.

Таблиця 1.8

10	• •	1 •	•					InIV	\$7
Кристал	11441	та фізич	іні па р а	метри	тетрарних	СПОЛУК	TIAB	1) ¹	X
repriorasi		ru wish	iiii iiupu	merph	repupting	Ullonyk	1120	$\boldsymbol{\nu}$	∡ ▲4

Сполиса	тν	пг	Пе	Література			
Сполука	1 _{пл} , к	111	а	b	С		
Tl ₂ HgSiS ₄	654**	_	_	_	_	[101]	
Tl ₂ HgGeS ₄	698*	_	_	_	_	[101]	
Tl ₂ HgSnS ₄	718**	I-42m	0.78586(3)	_	0.67005(3)	[101, 106]	
Tl ₂ PbSiS ₄	818**	$P2_{1}/a$	0.88141(4)	0.90150(5)	1.04383(5)	[101, 104]	
				β=94.490			
TlaPhGeS4	781**	$P2_1/a$	0.89079	0.90951	1.04772	[101 102]	
1121 00004	/01	$I \Delta_{1}/u$		<i>β</i> =94.116			
Tl ₂ HgSiSe ₄	703**		0.80032(3)	_	0.66879(4)	[101, 103]	
Tl ₂ HgGeSe ₄	764*	I-42m	0.79947(4)	_	0.67617(4)	[101, 103]	
Tl ₂ HgSnSe ₄	883**		0.80407(1)	_	0.68852(2)	[101]	
Tl ₂ PbSiSe ₄	788**	$P2_{1}/a$	_	_	_	[101]	
Tl ₂ PbGeSe ₄	710**	$P2_{1}/a$	_	_	_	[101, 102]	
Tl ₂ MnGeTe ₄	-	I-47m	0.8399	_	0.6963		
Tl ₂ MnSnTe ₄	_	1 7211	0.84503	_	0.71078		
Tl ₂ CdGeTe ₄	_		0.83825	_	0.70775	[107]	
Tl ₂ CdSnTe ₄	_	I-47m	0.84250	_	0.72171	[10/]	
Tl ₂ HgGeTe ₄	-	1 <i>¬∠III</i>	0.83571	_	0.70684		
Tl ₂ HgSnTe ₄	_		0.8397	_	0.7157		

** – інконгруентний спосіб утворення

* – конгруентний спосіб утворення

1.4. Висновки з літературного огляду

Проведено огляд літературних джерел по бінарних, квазібінарних та аналогічних до квазіпотрійних Tl₂Se–CdSe–Si(Ge, Sn)Se₂.

У бінарних системах утворюються сполуки різного складу, зокрема і Tl₂S(Se, Te); ZnSe, CdS(Se, Te), HgTe; SiSe(Te)₂; GeS(Se)₂, SnS(Se)₂. Ці сполуки

володіють сталою будовою, конгруентним типом плавлення та мають стехіометричний склад, тому можуть бути компонентами квазітернарних систем Tl₂Se–CdSe–Si(Ge, Sn)Se₂ та споріднених.

Квазібінарні системи типу $Tl_2X-B^{II}X$ є евтектичного типу взаємодії між бінарними халькогенідами з незначними протяжностями твердих розчинів на основі компонентів. Повідомляється також про утворення проміжних сполук в даних системах. Неоднозначність результатів потребує проведення додаткового експерименту для встановлення характеру фазових рівноваг у досліджуваних системах.

Для квазібінарних систем типу Tl₂X-D^{IV}X₂ характерне утворення тернарних сполук при таких молярних співвідношеннях компонентів: Tl₂D^{IV}₂X₅ (1:2), $Tl_2D^{IV}X_3$ (1:1) та $Tl_4D^{IV}X_4$ (2:1). Аналіз літературних джерел по фазовому утворенню тернарних сполук у цих системах показав, що сполуки типів $Tl_4D^{IV}X_4$ та $Tl_2D^{IV}X_3$ утворюються переважно за конгруентним механізмом, в той час як сполуки Tl₂D^{IV}₂X₅, мають переважаючим інконгруентний тип $Tl_2Si_2S_5$ ta утворення, крім $Tl_2Ge_2S_5$, що плавляться конгруентно. Спостерігається закономірне пониження температури плавлення для сульфуровмісних сполук типу $Tl_2D^{IV}X_3$ (в ряді Si \rightarrow Ge \rightarrow Sn), що можна пояснити зростаючим впливов на хімічний зв'язок ролі елемента D^{IV}, а саме збільшення його іонного радіусу, що призводить до енергетичного послаблення хімічного зв'язку, та зумовлює зменшення температури плавлення при переході Si→Ge→Sn. Така закономірність є характерною і для селеновмісних сполук даного типу. Сполуки Tl₂D^{IV}X₃ мають ланцюгову шарувату будову та кристалізуються в основному в моноклінній ПГ Р-1, а сполуки даного складу зі Sn - y триклінній та ромбічній сингоніях; сполуки типів $Tl_4D^{IV}X_4$ та $Tl_2D^{IV}_2X_5$ кристалізуються у триклінній сингонії.

У квазібінарних системах $B^{II}X-D^{IV}X_2$ дані про наявність тернарних сполук типу $B^{II}_2D^{IV}X_4$, $B^{II}_2D^{IV}X_3$, $B^{II}D^{IV}X_3$, (2:1:4, 2:1:3 та 1:1:3) є суперечливими. Але утворюються сполуки типу $B^{II}_4D^{IV}X_6$, що належать до класу ікосаедричних, плавляться інконгруентно та кристалізуються у нецентросиметричній моноклінній сингонії *ПГ Сс*.

Вивчалися квазіпотрійні халькогенідні системи $Tl_2X-B^{II}X-D^{IV}X_2$, у яких двовалентними металами є B^{II} – Hg, Pb, чотиривалентними – є D^{IV} – Si, Ge, Sn; халькогенами є X – S, Se. В них встановлено утворення на перерізах $Tl_2D^{IV}X_3$ – $B^{II}X$ сполук еквімолярного складу $Tl_2B^{II}(Si, Ge, Sn)X_4$, Tl_2PbSiS_4 , $Tl_{0.5}Pb_{1.75}GeS_4$ та підтверджено Tl_2PbGeS_4 , а на перерізах $D^{IV}X_2$ – $Tl_2B^{II}D^{IV}X_4$ – сполук $Tl_2Hg(Si, Ge)_2Se_6$, $Tl_2B^{II}(Si, Ge)_3S_8$. Халькогеніди Tl_2HgSnS_4 та $Tl_2HgSi(Ge, Sn)Se_4$ кристалізуються в $\Pi\Gamma$ *I*-42*m*, Tl_2PbSiS_4 – в $\Pi\Gamma$ *P*2₁/*a*, а $Tl_{0.5}Pb_{1.75}GeS_4$ – в $\Pi\Gamma$ *I*-43*d*. Також відома структура шести телуридів складу $Tl_2B^{II}D^{IV}Te_4$ (B^{II} – Cd, Hg, Mn; D^{IV} – Ge, Sn), що кристалізуються в $\Pi\Gamma$ *I*-42*m*.

Проаналізовано системи $A_2X-B^{II}X-D^{IV}X_2$ (A^I – Cu, Ag), де при мольних співвідношеннях елементів 2:1:1:4 та 2:1:3:8 встановлено утворення тетрарних сполук, що відповідають складам $A^I_2B^{II}D^{IV}X_4$ (напр., Cu₂CdGeSe₄, Ag₂CdGe(Sn)Se₄) та $A^I_2B^{II}D^{IV}_3X_8$ (Cu₂CdSn₃S₈, Ag₂FeSn₃S₈). Враховуючи результати досліджень талієвмісних систем з Hg, Pb, подібність одновалентного Талію з одновалентними Аргентумом та Купрумом можна сподіватись на утворення сполук при аналогічних складах і в талієвмісних системах з Кадмієм та можливістю їх застосування в електро-, фото-оптичних та інших галузях.

Тетрарні сполуки мольних складів 2:1:1:4, 2:1:2:6 та 2:1:3:8 утворюються з лужними металами. Вони кристалізуються в ромбічній ($\Pi\Gamma P2_12_12_1$: Cs₂ZnGe₃Te₈, Cs₂CdGe₃S₈ та Cs₂CdGe₃Se₈, моноклінній ($\Pi\Gamma P2_1/a$: Cs₂ZnGe₃S₈ та α -K₂ZnSn₃S₈. Сполуки Cs₂M^{II}M^{IV}₃Se₈ є напівпровідниками з широкою зміною електронних та оптичних властивостей. Дані сполуки можуть застосовуватись в якості детекторів випромінювання. Можна очікувати на утворення сполук подібних складів і в талієвмісних системах.

Отже, вивчення квазіпотрійних систем $Tl_2Se-CdSe-Si(Ge, Sn)Se_2 \in$ перспективним об'єктом досліджень, які дозволять виявити нові тетрарні сполуки та тверді розчини на їх основі, встановити для них тип утворення, розрахувати кристалічну структуру, підібрати технологічні умови для вирощування монокристалів, виміряти для них фізичні властивості, зробити висновки щодо можливого застосування та розширити базу даних про халькогенідні напівпровідники.

РОЗДІЛ 2. МЕТОДИКА ЕКСПЕРИМЕНТУ

2.1. Характеристика вихідних речовин та способів синтезу

Синтез зразків здійснювали за допомогою прямого однотемпературного методу сплавлянням простих речовин з високим ступенем чистоти: талію – 99.99 ваг. %, цинку – 99.99 ваг. %, кадмію – 99.9999 ваг. %, силіцію – 99.9999 ваг. %, германію – 99.9999 ваг. %, стануму – 99.999 ваг. %, сірки – 99.997 ваг. %, селену – 99.999 ваг. %, телуру – 99.999 ваг. %.

Для отримання сполук HgSe та HgTe для подальшого одержання на їх основі селенідних, телуридних сплавів на основі ртуті, попередньо проводили прямий метод синтезу, використовуючи ртуть марки P-1.

Для зважування шихти користувалися електронними вагами типу WPS 60/C/2 "RAD WAG". Загальна маса наважки становила 1,0-1,5 г. Шихту поміщали у попередньо підготовлені кварцові ампули. Сірку додатково очищали перегонкою через динамічний вакуум. Оксидну плівку темно-сірого кольору, що утворюється на поверхні талію, перед проведенням синтезу очищували механічно.

Кварцові ампули вакуумували до тиску 1.33×10^{-2} Па. Синтез проводили в муфельній печі МП-60, виробництва фірми "Progret", з програмованим регулятором температури ПР-03, а також в промислових печах СШОЛ–0.1,6/12-M3-У4-2 (ТУ 16.531.437-80), де температура регулюється у ручному режимі за допомогою автотрансформатора АОМН-40-220-75 УХЛ4 (ТУ 16-517.847-74) та вольтметра В7-38.

Сплави синтезували, нагріваючи до 1060 чи 1300 К, що залежало від складу зразків, з наступним охолодженням до 570 К (470 К для телуридних сплавів) і гомогенізуючий відпал за цієї температури 350 год. Після цього зразки загартовували у 20 %-ий водний розчин NaCl. Зразки, які із сіркою утворюють високу пружність парів, синтезували з проміжними відпалами при 670 К. Для окремих зразків проводили звичайне охолодження до кімнатної температури без загартування та гомогенізуючиого відпалу.

2.2. Методи отримання монокристалів

Ріст монокристалів сполук Tl₂CdGe(Sn)Se₄, Tl₂CdSi(Ge)₃Se₈ проводили вертикальним методом Бріджмена-Стокбаргера з розплаву. Умови росту кристалів вибирали з урахуванням аналізу побудованих T-x діаграм (для сполуки Tl₂CdSi₃Se₈ термограми сплаву) та літературних даних [120].

Ріст монокристалів здійснювали на установці, що представлена на рис. 2.1, що містить дві незалежні печі, розділені диском із нержавіючої сталі, що відводить тепло. Отвір у центрі диска має діаметр, як і у керамічних нагрівних елементів печей. Диски з різним діаметром та товщиною дозволяють коригувати температурний профіль печі. За допомогою регуляторів температури ВРТ-3 точність підтримки температури була \pm 0,5 К. Схематичне представлення розподілу температури вздовж печей показане у правій частині рисунка (рис. 2.1).

Рис. 2.1. Схема установки для росту:

1 – металевий диск-1,

2 – асбесто-цементний кожух, 3 – термопара (Pt/Pt-Rh), 4 –кварцовий ростовий контейнер, 5 – розплав,

6 — металевий диск-2, 7 – ніхромовий нагрівник,

8 – термоізолятор, 9 – блок для руху ампули, 10 – металевий диск-3

Завдяки незалежному регулюванню температури в різних зонах нагрівників градієнт температури в зоні кристалізації можна змінювати. Швидкість росту монокристалів була 0.5 мм/год. Маса шихти складала 10 г. Завантаження здійснювали у ростові контейнери, які відразу вакуумовували і

запаювали. Полікристалічний зразок після попереднього прямого методу синтезу у ростовій ампулі ставили у верхню «гарячу» зону печі на 24 год., де він плавився, перебуваючи на витримці. Максимальна температура гарячої зони була 1050 К для $Tl_2CdSnSe_4$, 1150 К для $Tl_2CdGeSe_4$ та 900 К для $Tl_2CdGe_3Se_8$, тоді як температурний градієнт при фронті кристалізації (на границі розділ у тверде тіло-розплав) був 1.5–4 К/мм. Температура холодної зони була 570 К. Швидкість росту монокристалів становила 0.5 мм/год.

2.3. Методи фізико-хімічного аналізу

2.3.1. Рентгенівські методи дослідження

Для встановлення фазового складу синтезованих зразків проводили рентгенофазовий аналіз. Порошкові рентгенограми досліджували на дифрактометрі DRON 4-13 [121] при Ка-випромінюванні в діапазоні $10^{\circ} \le 2\theta \le 80^{\circ}$, крок сканування 0.05° по 5 с у кожній точці. Набори даних для обчислення структурних розрахунків були записані в діапазоні $10^{\circ} \le 2\theta \le 100^{\circ}$, крок сканування 0.05°, експозиція 20 с.

Зв'язок довжини хвилі падаючих променів λ , міжплощинної віддалі d з кутом падіння θ представлено законом Брега:

$d \sin\theta = n\lambda$,

де d – міжплощинна віддаль кристалічної гратки; θ – кут між падаючим та відбитим від поверхні кристалу рентгенівським променем n = 1, 2, 3, ... – порядок відбиття. З даного рівняння можна визначити міжплощинні відстані d [122].

Кристалічну структуру нових тетрарних халькогенідів та твердих розчинів розраховували за допомогою рентгеноструктурного аналізу (метод порошку), уточнюючи параметри елементарних комірок методом Рітвельда з використанням програмного пакету WinCSD.

При розрахунку структурних параметрів враховували поправки на теплові коливання, що описує формула:

 $\tau = \exp\{-B_{i30} \left(\sin(\theta /) \lambda\right)^2\},\$

де – В_{ізо} – параметри ізотропного теплового зміщення атомів;

θ-дифракційне відбиття; λ – довжина хвилі.

Достовірність результатів обрахунку кристалічної структури оцінено за величиною фактора розбіжності *R* [122, 123].

2.3.2. Дослідження структури методом монокристалу

Зі зразка вибрано монокристал, який було наклеєно на капілярі та закріплено на гоніометрі у монокристальному дифрактометрі Oxford Diffraction X'calibur, що має детектор CCD Atlas (МоК_а випромінювання, $\lambda = 0,071073$ нм) Дослідження проводили за допомогою проф. М. Дашкевича в Інституті низьких температур та структурних дослідів імені В. Тшебятовського ПАН, м. Вроцлав, Польща. Початкові дані оброблені програмою CrysAlis Data Reduction. Врахована поправка абсорбції. Рефлекси коригували по факторах Лоренца та поляризації. Кристалічну структуру визначали за допомогою програми SHELX-2019 [124].

Достовірність визначеної моделі структури оцінювалась за значеннями факторів розбіжності *R* :

$$R1 = \frac{\sum \left\| F_{cnocm} \left| - \left| F_{posp} \right| \right\|}{\sum \left| F_{cnocm} \right|}, \text{ де}$$

 $F_{\text{спост.}}$ – спостережувані структурні фактори; $F_{\text{розр.}}$ – розраховані структурні фактори та

$$wR2 = \sqrt{\frac{\sum w (F_{cnocm}^2 - F_{posp}^2)^2}{\sum w (F_{cnocm}^2)^2}}$$
, де

 $F_{\text{спост.}}$ – спостережувані структурні фактори; $F_{\text{розр.}}$ – розраховані структурні фактори та w_i – ваговий множник. $w_i = 1/[\sigma^2(F_{cnocm}^2) + (w_1 \cdot P)^2 + w_2 \cdot P]$, де σ – недостовірність (дисперсія),

*w*₁, *w*₂ – коефіцієнти,

$$\mathbf{P} = [\max(F_{cnocm}^2, 0) + 2 \cdot F_{posp}^2]/3.$$

2.3.3. Метод мікроструктурного аналізу

(MCA) Мікроструктурний здійснювали аналіз 3a допомогою мікротвердометра Leica VMHT Auto [125]. На першому етапі аналізу здійснювали підготовку шліфів [126-128]. Досліджувану поверхню шліфували наждачним папером, зменшуючи зернистість. Потім шліфували на предметному склі абразивними порошками М20-М7 у гліцерині та полірували пастою ГОІ на лляному сукні в якості полірувальника. Далі шліф промивали водою та знежирювали спиртом.

2.3.4. Диференційний-термічний аналіз

Зразки даних систем досліджували методом диференційно-термічного аналізу [129] за допомогою системи F. Paulik, J. Paulik, L. Erdey [130] або установки "Термодент T-04" [131] з комп'ютерним регулюванням. За допомогою програмного управління забезпечувалось рівномірне нагрівання печі. Швидкість нагріву становила 10 К/хв, охолодження проводили в інерційному режимі. Установка дозволяє нагрівати зразки до температури 1490 К. Температурний контроль здійснювався за допомогою комбінованої платина/платино-родієвої термопари (Pt/Pt–Rh), два виходи від якої виведені у середину печі: до одного прикріплюється досліджуваний зразок, маса якого становила 0.5–1 г, до іншого еталонний зразок (Al₂O₃). Досліджувані зразки, еталон та репери завантажували у сосудики Степанова та вакуумували до тиску $1*10^{-2}$ Па та запаювали. Як реперні речовини для калібрування результатів аналізу застосовували NaCl, Cu, Cd, Sn, Ag, Sb.

2.4. Методи якісного та кількісного аналізу

Дослідження щодо підтвердження складу сполук проводили за допомогою порошкової дифракції рентгенівських променів (XRPD), скануючої електронної мікроскопії (SEM) в поєднанні з енергодисперсною спектроскопією (EDS) на скануючому електронному мікроскопі Tescan Vega 3 LMU з енергодисперсійним рентгенівським мікроаналізатором Oxford Instruments Aztec ONE з детектором X-Max^N20 (прискорювальна напруга 25 кВ; K-, L- та М-лінії спектра; збільшення - 1000) при ЦККНО у Львівському національному Університеті імені Івана Франка [132].

2.5. Методи дослідження елекронної структури

Рентгенівська фотоелектронна спектроскопія (РФС) містить інформацію про хімічний та елементарний матеріали. Зразок піддають ренгенівському опроміненню, що призводить до емісій фотоелектронів. Їх кінетична енергія у момент виділення і визначає елементи електронної структури. Таким чином, велика кількість електроенергії та кількість електронів з цією енергією (позиція та інтенсивність піків на спектрі РФС) дозволяють ідентифікувати хімічний елемент, визначити його хімічний стан та кількість.

Електронну структуру сполук встановлювали з *ab initio* розрахунків як реалізовано в пакеті WIEN2k [133] для $Tl_2CdGeSe_4$ та $Tl_2CdSnSe_4$ та підтверджували експериментальними даними з допомогою методу РФС.

Для вимірювань РФС кристалів, їх різали напівдиском діаметром 10 мм і висотою 1,7 мм. Експерименти РФС проводили за допомогою UHV-Analysis-System, компанія SPECS Surface Nano Analysis Company (Берлін, Німеччина). Енергетична шкала спектрометра System XPS була градуйована на основі вимірювань енергій зв'язку еталонних чистих металів міді та золота, як зазначено в [134]. РФС-спектри кристалів були отримані з використанням для збудження рентгенівської трубки Mg K α (hv = 1253,6 eB) і встановлення постійної енергії проходження 35 еВ. Оскільки РФС визнано дуже чутливою технікою ефекту зарядної поверхні [135], ефекти заряджання в цій роботі були компенсовані щодо випадкового вуглецю (його лінія 1s була встановлена як 284,6 eB, як запропоновано для такого роду споріднених четвертинних селенідів. Експериментальні умови обробки поверхні кристалів іонами Ar+ такі ж, як і в аналогічних РФС-експериментах споріднених четвертинних селенідів: 3 kV, тривалість ~ 5 хв, густина струму ~18 мкА·см⁻², весь Ar+ іонний потік ~5,35·10¹⁶ іонів см⁻² [136, 137].

2.6. Методи фізичних досліджень

Одним із найбільш поширених та ефективних способів оцінки оптичної ширини забороненої зони є метод Таука [138]. У цьому випадку в області основного краю поглинання при $\alpha \ge 10^3$ см⁻¹ справедливий вираз з [139, 140]. Важливою характеристикою напівпровідників, що визначає основну мету їх практичного застосування, є зміна ширини забороненої зони при зміні температури. Підвищення температури гратки спотворює енергетичний спектр як фононів, так і електронів [139]. Для оцінки Ед напівпровідників також використовуються інші методи, наприклад, іноді визначається приблизне значення Ед при $\alpha < 10^3$ см⁻¹ при якомусь фіксованому рівні поглинання [141, 142].

Зміна енергії забороненої зони з температурою пов'язана зі змінами частоти фононів, які стимулюють різні ефекти, такі як теплове розширення ґратки, збільшення електрон-фононного зв'язку і, отже, взаємне відштовхування внутрішньозонних станів електронів. Детальне чисельне моделювання температурної залежності енергії забороненої зони з урахуванням теплового розширення енергетичних станів дозволених зон напівпровідників виконано в [143].

Для оцінення оптичних значень ширини забороненої зони проводилися дослідження спектрального розподілу коефіцієнту поглинання у області краю смуги власного поглинання. Для вимірювань використовувалися плоскі пластинки із паралельними гранями оптичної якості, які виготовлялися із Tlвмісних сполук та мали товщину 0,06-0,1 мм. Для оптичного збудження користувалися галогенною лампою з відповідним фільтром. Неполяризоване світло направлялося на кристали паралельно до осі *с*, тобто перпендикулярно пластинкам. Дослідження залежності коефіцієнта адсорбції проводилося у кріостаті з можливістю стабілізування температури в інтервалі 77–300 К. Температуру задавали терморегулятором Utrecs K 41–3 з точністю ±0,1К.

У приладу ролі спектрального використовувався дифракційний монохроматор МДР – 206 із кремнієвим фотоприймачем для діапазону 360-1100 нм (спектральний дозвіл 0,2 нм). Спектральний розподіл фотопровідності досліджували на зразках у формі паралелепіпедів розміром 5×3×0,3 мм³. Електричні сигнали реєструвалися електрометром Keithley 6514 з точністю в режимі резист. вимірювання 1,5% шкали, рівень шуму <1 fA. Як омічні контакти використовували галій-індієву евтектику, нанесену втиранням на подані кристали. Після проведеного експерименту спостерігали характерні експоненційні залежності, описані Урбахом в [144], з яких визначали значення енергії власного поглинання в області смуги краю поглинання досліджуваних халькогенідів.

РОЗДІЛ З. ФАЗОВІ РІВНОВАГИ В СИСТЕМАХ Tl₂Se-CdSe-(Si,Ge, Sn)Se₂

3.1. Система Tl₂Se–CdSe–SiSe₂

Обмежуючі системи розглянуті в розділі 1: Tl₂Se–CdSe в підрозділі 1.2.1, система Tl₂Se–SiSe₂ – в підрозділі 1.2.2, система SiSe₂–CdSe – в підрозділі 1.2.3.

3.1.1. Переріз Tl₂Se–CdSe

Через неоднозначність результатів [58, 59] щодо рівноваг між Tl₂Se і CdSe проведено дослідження фізико-хімічної взаємодії по перерізу Tl₂Se–CdSe. Синтезовано сплави в концентраційному інтервалі 10–95 мол. % CdSe. Результати РФА представлено на рис. 3.1.

Рис. 3.1. Дифрактограми зразків системи Tl₂Se–CdSe при 570 К [145]

Протяжності граничних α -твердих розчинів на основі сполуки Tl₂Se (ПГ *P4/ncc*) та β – на основі сполуки CdSe (ПГ *P6₃mc*), що були досліджені при температурі гомогенізуючого відпалу (570 К), становлять у межах до 7 та 3 мол. % відповідно. За результатами РФА сплав, що відповідає складу 5 мол. % CdSe є однофазним, а складу 95 мол. % CdSe – двофазний, хоча спостерігається невелике зміщення дифракційних відбить у двох випадках. Підтверджено утворення бінарних (Tl₂Se, CdSe) сполук та проведено їх ідентифікацію при 570 К у *ПГ P4/ncc* та *P6*₃*mc* відповідно, що узгоджуються з літературними даними [7, 15]. Утворення сполуки складу Tl₁₆Cd₃Se₁₁ [59] не підтвердилось.

Побудовано діаграму стану системи Tl₂Se–CdSe (рис. 3.2), яка відноситься до V типу діаграм стану за класифікацією Розебома.

Рис. 3.2. Переріз Tl₂Se-CdSe [145]

Бінарний евтектичний нонваріантний процес $L_e \leftrightarrow \alpha + \beta$ проходить при 622 К; склад евтектичної точки становить 13 мол. % CdSe.

3.1.2. Переріз Tl₂Se–SiSe₂

Політермічний переріз Tl₂Se–SiSe₂ побудовано в роботі [60] до 52,5 мол. % SiSe₂, де наведено дані про утворення двох сполук складів

Tl₄SiSe₄ та Tl₂SiSe₃. Нами досліджено фазові рівноваги в цій системі в інтервалі 55-100 мол. % SiSe₂ та встановлено утворення тернарної сполуки складу Tl₂Si₂Se₅ за перитектичною реакцією L_p+SiSe₂↔Tl₂Si₂Se₅ при 825 К (рис. 3.3). Склад перитектичної точки становить 63 мол. % SiSe₂. Лінії первинної кристалізації сполук Tl₂SiSe₃ та Tl₂Si₂Se₅ перетинаються в евтектичній точці складу 57 мол.% SiSe₂.

Рис. 3.3. Переріз Tl₂Se–SiSe₂ (0-52.5 мол. % SiSe₂ [60], 55-100 мол. % SiSe₂ – дана робота)

3.1.3. Переріз Tl₄SiSe₄–CdSe

Побудовано діаграму стану системи Tl₄SiSe₄–CdSe (рис. 3.4), котра є квазібінарною евтектичного типу ($L_e \leftrightarrow \delta + \beta$; δ , β -тверді розчини на основі Tl₄SiSe₄ та CdSe) з кординатами евтектичної точки 7 мол. % CdSe, 626 К [146]. Розчинність на основі вихідних компонентів системи є незначна (до 3 мол. %).

Рис. 3.4. Переріз Tl₄SiSe₄–CdSe [146]

3.1.4. Переріз Tl₂SiSe₃–CdSe

Tl₂SiSe₃-CdSe. Досліджено діаграму стану системи Встановлено утворення нової тетрарної сполуки Tl₂CdSiSe₄ при молярному співвідношенні сполук ϵ -Tl₂SiSe₃ та β -CdSe 1:1. Результати РФА наведено на рис. 3.5. Не отримати чистий зразок тетрарної Tl₂CdSiSe₄, вдалося сполуки, яка утворюється інконгруентно за реакцією $L_p + \beta - CdSe \leftrightarrow \sigma - Tl_2 CdSiSe_4$ при температурі 728 К (рис. 3.6). Склад перитектичної точки визначений екстраполяцією трьох ліній до точки їх перетину та становить 11 мол. % CdSe. Розчинність на основі вихідних компонентів є незначною. Склад евтектичної точки становить 7 мол. % CdSe при 696 К ($L_e \leftrightarrow \beta$ -*CdSe* + σ -*Tl*₂*CdSiSe*₄).

Рис. 3.5. Дифрактограми зразків системи Tl₂SiSe₃

Рис. 3.6. Діаграма стану системи Tl₂SiSe₃--CdSe

3.1.5. Переріз Tl₂SiSe₃-Tl₂CdSi₃Se₈

Політермічний переріз Tl₂SiSe₃–Tl₂CdSi₃Se₈ (рис. 3.7) є квазібінарний евтектичного типу. Координати евтектичної точки становлять 25 мол. %, 698 К, які встановлено екстраполяцією двох ліній ліквідусу, які відповідають

первинній кристалізації твердих розчинів на основі ε -Tl₂SiSe₃ та θ -Tl₂CdSi₃Se₈ ($L_e \leftrightarrow \varepsilon$ -Tl₂SiSe₃+ θ -Tl₂CdSi₃Se₈).

Проведений ДТА аналіз для зразка складу $Tl_2CdSi_3Se_8$ (рис.3.8) вказує, що для даної сполуки характерний конгруентний тип плавлення при 887 К. Зразок сполуки $Tl_2CdSi_3Se_8$ є прозорим однофазним сплавом жовтого кольору. Результати МСА наведені на рис 3.9.

Рис. 3.9. Мікроструктура зразка Tl₂CdSi₃Se₈

Для зразка сполуки Tl₂CdSi₃Se₈ представлене зменшене у $3 \cdot 10^3$ разів фото сколу кристалу (Рис. 3.10 *a*), що використовували для проведення кількісного аналізу. Результати поелементного мапування показано на рис. 3.10 *b*, елементний склад – на рис. 3.10 *c*. Усереднений результат дослідження поверхні сполуки Tl₂CdSi₃Se₈ виражається складом Tl₂Cd_{1.2}Si_{3.17}Se_{8.4}, що є близьким до вихідного.

Рис. 3.10. Результати СЕМ/ЕДС для сполуки Tl₂CdSi₃Se₈ (ваг. %). Мікрофото для кількісного аналізу (*a*), результати мапування (*b*), елементний склад (*c*)

3.1.6. Переріз Tl₂CdSi₃Se₈-CdSe

Політермічний переріз Tl₂CdSi₃Se₈–CdSe (рис. 3.11) є також квазібінарниим евтектичного типу та характеризується проходженням при

858 К відповідного нонваріантного процесу ($L_e \leftrightarrow \theta - Tl_2 CdSi_3 Se_8 + \beta - CdSe$). У підсолідусній області у рівновазі перебувають двофазні θ - та β -тверді розчини на основі Tl₂CdSi₃Se₈ та CdSe.

Рис. 3.11. Переріз Tl₂CdSi₃Se₈-CdSe

3.1.7. Ізотермічний переріз системи Tl₂Se–CdSe–SiSe₂ при 570 К

Ізотермічний переріз системи $Tl_2Se-CdSe-SiSe_2$ при 570 К [147] представлено на рис. 3.12. Підтверджено утворення при 570 К бінарних та потрійних сполук, що кристалізуються у ПГ *P4/ncc* [15] (Tl₂Se), *F-43m* [7] (CdSe), *P2*₁/*c* [50] (SiSe₂), *Cc* [62] (Tl₄SiSe₄), *P*-1 [61] (Tl₂SiSe₃) та *Cc* [96] (Cd₄SiSe₆) та встановлено утворення трьох нових сполук: тернарної Tl₂Si₂Se₅ та двох тетрарних Tl₂CdSiSe₄, Tl₂CdSi₃Se₈.

Тетрарна сполука Tl₂CdSiSe₄ утворюється на перерізі Tl₂SiSe₃–CdSe, інша Tl₂CdSi₃Se₈ – на перерізі Tl₂CdSiSe₄–SiSe₂.

Ізотермічний переріз даної системи при температурі відпалу 570 К характеризується наявністю дев'яти однофазних полів. Вони відповідають α , β , γ , δ , ϵ , η , ζ , σ , θ -твердим розчинам на основі Tl₂Se, CdSe, SiSe₂, Tl₄SiSe₄, Tl₂SiSe₃, Tl₂Si₂Se₅, Cd₄SiSe₆, Tl₂CdSiSe₄ та Tl₂CdSi₃Se₈.

Рис. 3.12. Ізотермічний переріз системи Tl₂Se-CdSe-SiSe₂ при 570 К [147]

Однофазні поля розділені сімнадцятьма двофазними (α-Tl₂Se-β-CdSe, α- $Tl_2Se-\varepsilon-Tl_4SiSe_4$, $\delta-Tl_4SiSe_4-\varepsilon-Tl_2SiSe_3$, $\varepsilon-Tl_2SiSe_3-\eta-Tl_2Si_2Se_5$, $\eta-Tl_2Si_2Se_5-\gamma-\tau$ SiSe₂, γ -SiSe₂- ζ -Cd₄SiSe₆, ζ -Cd₄SiSe₆- β -CdSe, δ -Tl₄SiSe₄- β -CdSe, δ - δ -Tl₄SiSe₄- β -CdSe, δ - ε -Tl₂SiSe₃- σ -Tl₂CdSiSe₄, σ -Tl₂CdSiSe₄- β -CdSe, Tl₂CdSiSe₄. ε-Tl₂SiSe₃-θ- $Tl_2CdSi_3Se_8$, η - $Tl_2Si_2Se_5-\theta$ - $Tl_2CdSi_3Se_8$, γ - $SiSe_2-\theta$ - $Tl_2CdSi_3Se_8$, θ - $Tl_2CdSi_3Se_8-\sigma$ - θ -Tl₂CdSi₃Se₈- ζ -Cd₄SiSe₆, θ -Tl₂CdSi₃Se₈- β -CdSe) Tl₂CdSiSe₄, та дев'яти трифазних δ- $Tl_4SiSe_4 - \sigma - Tl_2CdSiSe_4 - \varepsilon - Tl_2SiSe_3$, $\varepsilon - Tl_2SiSe_3 - \sigma - Tl_2CdSiSe_4 - \theta - Tl_2CdSi_3Se_8$, -3 $Tl_2SiSe_3-\theta-Tl_2CdSi_3Se_8-\eta-Tl_2Si_2Se_5, \eta-Tl_2Si_2Se_5-\theta-Tl_2CdSi_3Se_8-\gamma-SiSe_2, \gamma-SiSe_2-\theta-Tl_2CdSi_3Se_8-\eta-Tl_2Si_2Se_5, \eta-Tl_2Si_2Se_5-\theta-Tl_2CdSi_3Se_8-\eta-SiSe_2-\theta-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-00-Tl_2Si_2Se_5-0$ ζ -Cd₄SiSe₆- θ -Tl₂CdSi₃Se₈- β -CdSe, $Tl_2CdSi_3Se_8$ – ζ - Cd_4SiSe_6 , β-CdSe-θ- $Tl_2CdSi_3Se_8-\sigma$ - $Tl_2CdSiSe_4$) полів. Розчинність на основі CdSe становить до 5 мол. %, а на основі інших сполук – менше 3 мол. %.

3.2. Система Tl₂Se–CdSe–GeSe₂

Обмежуючі системи квазіпотрійної системи $Tl_2Se-CdSe-GeSe_2 \in \kappa$ вазібінарними, вихідні компоненти яких утворюються конгруентно.

Система Tl₂Se–CdSe розглянута в розділі 3 (підрозділ 3.1.1), система Tl₂Se– GeSe₂ – в розділі 1 (підрозділ 1.2.2), система CdSe–GeSe₂ – в розділі 1 (підрозділ 1.2.3).

3.2.1. Переріз Tl₄GeSe₄-CdSe

Побудовано діаграму стану системи Tl₄GeSe₄–CdSe [146], яка є евтектичного типу з обмежуючою розчинністю ($L \leftrightarrow \delta$ -Tl₄GeSe₄+ β -CdSe). Результати РФА наведено на рис. 3.13, а діаграму стану зображено на рис. 3.14.

Рис. 3.13. Дифрактограми зразків перерізу Tl₄GeSe₄--CdSe

Ліквідус перерізу представлено двома кривими первинної кристалізації δ - та β -твердих розчинів на основі Tl₄GeSe₄ та CdSe. Склад евтектичної точки становить 8 мол. % CdSe, 634 К. Розчинність на основі вихідних компонентів системи є незначна (до 3 мол. %).

3.2.2. Переріз Tl₂GeSe₃–CdSe

Переріз Tl₂GeSe₃–CdSe є квазібінарною системою. Результати РФA сплавів відпалених при 570 К представлені на рис. 3.15. В системі при складі 50 мол. % CdSe утворюється нова тетрарна сполука Tl₂CdGeSe₄. На основі сполук перерізу розчинність незначна.

Тетрарна сполука утворюється інконґруентно за перитектичною реакцією $L_p+\beta$ -*CdSe* $\leftrightarrow \sigma$ -*Tl*₂*CdGeSe*₄ при еквімолярному співвідношенні компонентів CdSe та Tl₂GeSe₃ (рис. 3.16).

Рис. 3.15. Дифрактограми зразків системи Tl₂GeSe₃ - CdSe

Ліквідус представлено трьома кривими первинної кристалізації, що відповідають ε -, β - та σ' -твердим розчинам на основі Tl₂GeSe₃, CdSe та BTM Tl₂CdGeSe₄ відповідно. Склад перитектичної точки тетрарної сполуки визначено екстраполяцією трьох ліній до точки їх перетину і становить 21 мол. % CdSe при 809 К. Лінії ліквідусу, що відповідають за первинну кристалізацію тетрарної сполуки і є-твердого розчину на основі Tl₂GeSe₃ перетинаються в евтектичній точці на складі 14 мол. % CdSe (склад встановлено побудовою трикутника Тамана). Евтектичний процес проходить при 702 К і відповідає перетворенню $L_e \leftrightarrow \varepsilon - Tl_2 GeSe_3 + \sigma - Tl_2 CdGeSe_4$. В системі присутня ще одна нонваріантна рівновага при 683 К, що відповідає поліморфному фазовому перетворенню HT↔BT модифікацій тетрарної сполуки Tl₂CdGeSe₄. Результати ДТА підтверджують, що розчинність на основі вихідних компонентів є незначною, те як термічні ефекти, що відповідають перитектичному та евтектичному процесам проявляються на крайніх складах.

Рис. 3.16. Діаграма стану системи $Tl_2GeSe_3 - CdSe$

3.2.3. Переріз 'Tl₂CdSe₂'–GeSe₂

Переріз 'Tl₂CdSe₂'–GeSe₂ (рис. 3.17) є квазібінарним лише в межах 75–100 мол. % GeSe₂. Ліквідус перерізу складається з трьох кривих, що відповідають первинній кристалізації твердих розчинів на основі CdSe (β), BTM Tl₂CdGeSe₄ (σ '), Tl₂CdGe₃Se₈ (θ) та GeSe₂ (γ).

Лінії ліквідусу, що відповідають первинній кристалізації сполук CdSe (β) та Tl₂CdGe₃Se₈ (θ), перетинаються в перехідній точці складу 64 мол. % GeSe₂ при 809 K, а для сполук Tl₂CdGe₃Se₈ (θ) та GeSe₂ (γ) – в евтектичній точці складу 79 мол. % GeSe₂, 828 K. На перерізі знаходиться декілька областей вторинної кристалізації: L+ α -Tl₂Se+ β -CdSe, L+ β -CdSe+ δ -Tl₄GeSe₄, L+ σ -Tl₂CdGeSe₄, L+ σ -Tl₂CdGeSe₄.

Рис. 3.17. Переріз "Tl₂CdSe₂"-GeSe₂

Нижче солідусу до 50 мол. % GeSe₂ переріз перетинає два трифазні поля і двофазну рівновагу (β-CdSe+δ-Tl₄GeSe₄), горизонталі при температурах 583, 615 К, відповідають двом потрійним нонваріантним процесам: евтектичному Е₁ $(L \leftrightarrow \alpha - Tl_2Se + \beta - CdSe + \delta - Tl_4GeSe_4)$ перитектичному U_1 $(L+\beta-CdSe\leftrightarrow\delta$ та $Tl_4GeSe_4 + \sigma - Tl_2CdGeSe_4$). В межах 50-100 мол. % GeSe₂ для перерізу характерні двофазні рівноваги. В частині 50-75 мол. % GeSe2 переріз є з'єднуючою прямою потрійного перитектичного процесу U_2 $(L+\beta-CdSe\leftrightarrow\sigma'-Tl_2CdGeSe_4+\theta-$ *Tl*₂*CdGe*₃*Se*₈) при 764 К. Розчинність на основі сполук менша 3 мол. %.

Ще одна нова сполука Tl₂CdGe₃Se₈ утворюється у квазіпотрійній системі Tl₂Se–CdSe–GeSe₂ при співвідношенні бінарних сполук 1:1:3. Її склад потрапляє на переріз 'Tl₂CdSe₂'–GeSe₂. Проведений ДТА аналіз зразка складу Tl₂CdGe₃Se₈ (рис. 3.18) підтверджує, що для даної сполуки характерний конгруентний тип плавлення при 835 K, додатково на цьому рисунку видно, що кристали сполуки Tl₂CdGe₃Se₈ прозорі червоного кольору [148]. На рис. 3.19 представлено мікроструктуру даного зразка – сплав однофазний.

Для зразка, що відповідає сполуці $Tl_2CdGe_3Se_8$, представлені результати підтвердження складу методом SEM в поєднанні з методом EDS. На рис. 3.20 *а* представлено SEM-мікрофото досліджуваного зразка, на рис. 3.20 *b* - результати мапування, на рис. 5 *с* – елементний склад. Усередненим результатом дослідження є склад $Tl_{1.79}Cd_{1.0}Ge_{2.99}Se_{7.83}$ [148], що підтверджує характерне для даних сполук співвідношення атомів 2:1:3:8.

Рис. 3.20. Результати SEM/EDS для сполуки Tl₂CdGe₃Se₈ (ваг. %). Мікрофото для кількісного аналізу (*a*), результати мапування (*b*), елементний склад (*c*)
3.2.4. Переріз Tl₂GeSe₃-Tl₂CdGe₃Se₈

Переріз Tl₂GeSe₃–Tl₂CdGe₃Se₈ (рис. 3.21) неквазібінарний та є з'єднуючою прямою перитектичного потрійного процесу U₅ ($L+\eta$ - $Tl_2Ge_2Se_5\leftrightarrow\varepsilon$ - $Tl_2GeSe_3+\theta$ - $Tl_2CdGe_3Se_8$). Координати перехідної точки (25 мол. %, 693 К) встановлено екстраполяцією ліній ліквідусу, який для даного перерізу складається з двох первинних кристалізацій розплавів на основі Tl₂Ge₂Se₅(η) та Tl₂CdGe₃Se₈(θ).

Рис. 3.21. Переріз Tl₂GeSe₃-Tl₂CdGe₃Se₈

Нижче ліквідусу є дві області вторинної кристалізації: $L+\eta-Tl_2Ge_2Se_5+\epsilon-Tl_2GeSe_3$ та $L+\eta-Tl_2Ge_2Se_5+\theta-Tl_2CdGe_3Se_8$.

Солідус перерізу представлений горизонталлю при 686 К, нижче якої в рівновазі знаходяться ε - та θ -тверді фази на основі Tl₂GeSe₃ та Tl₂CdGe₃Se₈ відповідно. Розчинність на основі Tl₂GeSe₃ ε менше 3 мол. %.

3.2.5. Переріз Tl₂CdGe₃Se₈–CdSe

Переріз Tl₂CdGe₃Se₈–CdSe (рис. 3.22) квазібінарний евтектичного типу. Ліквідусом перерізу є криві, що відповідають первинній кристалізації твердих розчинів на основі Tl₂CdGe₃Se₈ та CdSe, що перетинаються в евтектичній точці складу 25 мол. % CdSe, 825 К. Цей нонваріантний процес, що одночасно є солідусом системи, можна представити реакцією: $L_e \leftrightarrow \theta$ -Tl₂CdGe₃Se₈+ β -CdSe. Нижче солідусу у рівновазі перебувають двофазні тверді розчини θ та β на основі Tl₂CdGe₃Se₈ і CdSe. Розчинність на основі CdSe є менша 3 мол. %.

Рис. 3.22. Переріз Tl₂CdGe₃Se₈--CdSe

3.2.6. Переріз Tl₄GeSe₄-Tl₂CdGeSe₄

Переріз Tl₄GeSe₄–Tl₂CdGeSe₄ (рис. 3.23) неквазібінарний. Ліквідус перерізу складається з двох ліній, нижче яких проходить первинна кристалізація твердих розчинів на основі Tl₄GeSe₄ (δ) та Tl₂CdGeSe₄ (σ). Солідус системи представлено горизонтальною лінією при 615 K, що є зв'язуючого прямою перитектичного нонваріантного процесу U₁ (*L*+ β -*CdSe* $\leftrightarrow \delta$ -*Tl₄GeSe₄+\sigma-<i>Tl₂CdGeSe₄*). Ще одна горизонталь при 683 K відповідає фазовому переходу BT (σ ') \leftrightarrow HT (σ) модифікації сполуки Tl₂CdGeSe₄ (σ '). Нижче солідусу у рівновазі перебувають двофазні тверді розчини на основі Tl₄GeSe₄ (δ) та Tl₂CdGeSe₄ (σ). Розчинність на основі Tl₄GeSe₄ (δ) є менша 3 мол. %.

Рис. 3.23. Переріз Tl₄GeSe₄-Tl₂CdGeSe₄

3.2.7. Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 К

Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 K зображено на рис. 3.24. Підтверджено утворення при цій температурі бінарних Tl₂Se, CdSe, GeSe₂ та потрійних Tl₂GeSe₃, Tl₄GeSe₄, Tl₂Ge₂Se₅, Cd₄GeSe₆ сполук, що кристалізуються у ПГ *P*4/*ncc* [15] (Tl₂Se), *F*-43*m* [7] (CdSe), *P*2₁/*c* [55] (GeSe₂), *C*2/*c* [73] (Tl₄GeSe₄), *P*-1 [72] (Tl₂GeSe₃), *C*2/*c* [71] (Tl₂Ge₂Se₅) та *Cc* [99] (Cd₄GeSe₆).

Встановлено утворення нових тетрарних сполук: Tl₂CdGeSe₄ на перерізі Tl₂GeSe₃–CdSe, та Tl₂CdGe₃Se₈ на перерізі Tl₂CdGeSe₄–CdSe. Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ характеризується наявністю дев'яти однофазних полів. Вони відповідають α , β , γ , δ , ε , η , ζ , σ , θ -твердим розчинам на основі Tl₂Se, CdSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅, Cd₄GeSe₆, Tl₂CdGeSe₄ та Tl₂CdGe₃Se₈.

Рис. 3.24. Ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 К

Однофазні поля розділені сімнадцятьма двофазними (α -Tl₂Se– β -CdSe, α -Tl₂Se– δ -Tl₄GeSe₄, δ -Tl₄GeSe₄– ϵ -Tl₂GeSe₃, ϵ -Tl₂GeSe₃– η -Tl₂Ge₂Se₅, η -Tl₂Ge₂Se₅– γ -GeSe₂, γ -GeSe₂– ζ -Cd₄GeSe₆, ζ -Cd₄GeSe₆– β -CdSe, δ -Tl₄GeSe₄– β -CdSe, δ -Tl₄GeSe₄– π -Tl₂CdGeSe₄, ϵ -Tl₂GeSe₃– σ -Tl₂CdGeSe₄, ϵ -Tl₂GeSe₃– σ -Tl₂CdGe₃Se₈, η -Tl₂Ge₂Se₅– θ -Tl₂CdGe₃Se₈, η -Tl₂CdGe₃Se₈, θ -Tl₂CdGe₃Se₈, θ -Tl₂CdGe₃Se₈– θ -CdSe) та дев'ятьма трифазними (α -Tl₂Se– β -CdSe– δ -Tl₄GeSe₄, δ -Tl₄GeSe₄– θ -CdSe– σ -Tl₂CdGeSe₄, δ -Tl₄GeSe₄– θ -CdSe– σ -Tl₂CdGeSe₄, δ -Tl₄GeSe₄– σ -Tl₂CdGeSe₄– ϵ -Tl₂GeSe₃, ϵ -Tl₂GeSe₃– σ -Tl₂CdGeSe₄– θ -CdSe– σ -Tl₂CdGeSe₄, δ -Tl₄GeSe₄– θ -CdSe– σ -Tl₂CdGe₃Se₈, ϵ -Tl₂GeSe₃– θ -CdSe– θ -Tl₂CdGe₃Se₈– η -CdSe– θ -CdSe– θ -Tl₂CdGe₃Se₈– σ -CdSe– θ -Tl₂CdGe₃Se₈– σ -CdSe– θ -Tl₂CdGe₃Se₈– σ -CdSe– θ -Tl₂CdGe₃Se₈– σ -CdSe– θ -CdSe– θ -Tl₂CdGe₃Se₈– σ -CdSe– θ -Tl₂CdGe₃Se₈– σ -CdSe– θ

3.2.8. Проекція поверхні ліквідусу Tl₂Se-CdSe-GeSe₂

Побудовано проекцію поверхні ліквідусу квазіпотрійної системи Tl₂Se-CdSe-GeSe₂ (рис. 3.25) на основі семи побудованих політермічних перерізів $(Tl_2Se-CdSe, Tl_4GeSe_4-CdSe, Tl_2GeSe_3-CdSe, 'Tl_2CdSe_2'-GeSe_2, Tl_2GeSe_3-Tl_2CdGe_3Se_8, Tl_2CdGe_3Se_8-CdSe, Tl_4GeSe_4-Tl_2CdGeSe_4), літературних даних по обмежуючих квазібінарних перерізах Tl_2Se-GeSe_2 та GeSe_2-CdSe, а також по результатах ДTA окремих зразків всередині концентраційного трикутника. Два квазібінарні перерізи Tl_4GeSe_4-CdSe та Tl_2GeSe_3-CdSe тріангулюють квазіпотрійну систему Tl_2Se-CdSe-GeSe_2 на три підсистеми: Tl_2Se-CdSe-Tl_4GeSe_4, Tl_4GeSe_4-CdSe-Tl_2GeSe_3-CdSe-GeSe_2.$

Рис. 3.25. Проекція поверхні ліквідусу Tl₂Se-CdSe-GeSe₂

Проекція поверхні ліквідусу складається із десяти полів первинної кристалізації фаз: α -, β -, γ -, δ -, ε -, η -, σ -, σ' -, θ - та ζ -твердих розчинів на основі Tl₂Se, CdSe, GeSe₂, Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅, HT і BT модифікацій Tl₂CdGeSe₄, Tl₂CdGe₃Se₈ та Cd₄GeSe₆ відповідно (табл. 3.1). Дані поля з'єднані двадцятьма двома моноваріантними кривими та сходяться у двадцяти одній потрійній нонваріантній точці.

На поверхні ліквідусу біля квазібінарного перерізу Tl₂GeSe₃–CdSe зображено також моноваріантну криву *a-b*, що пов'язана з фазовим переходом тетрарної фази $\sigma' \leftrightarrow \sigma$. При 683 К крива *a-b* характеризується нонваріантними рівновагами між процесами $L_{U7}+\sigma' \leftrightarrow \beta+\sigma$ (точка *a*) та $L_{U6}+\sigma' \leftrightarrow \varepsilon+\sigma$ (точка *b*).

Таблиця 3.1

N⁰	Нонв	Нонваріантний процес	T, K	Склад, мол. %		
П.П.	. точ.			Tl ₂ Se	CdSe	GeSe ₂
1	p_1	$L_{pI} + \gamma \leftrightarrow \eta$	778	36	-	64
2	p_2	$L_{p2} + \eta \leftrightarrow \varepsilon$	706	50	-	50
3	p_3	$L_{p3}+eta \leftrightarrow \zeta$	1136	-	50	50
4	p_4	$L_{p4}+\beta \leftrightarrow \sigma'$	809	44	12	44
5	e_1	$L_{eI} \leftrightarrow \alpha + \beta$	622	87	13	-
6	e_2	$L_{e2} \leftrightarrow \alpha + \delta$	610	80	-	20
7	<i>e</i> ₃	$L_{e3} \leftrightarrow \delta + \varepsilon$	624	62	-	38
8	e_4	$L_{e4} \leftrightarrow \gamma + \zeta$	989	-	20	80
9	e_5	$L_{e5} \leftrightarrow \delta + \beta$	634	60	10	30
10	e_6	$L_{e6} \leftrightarrow \varepsilon + \sigma'$	702	48	5	47
11	<i>e</i> ₇	$L_{e7} \leftrightarrow \theta + \beta$	825	17	31	52
12	e_8	$L_{e8} \leftrightarrow \gamma + \theta$	828	17,5	17,5	65
13	U_I	$L_{UI} + \beta \leftrightarrow \delta + \sigma$	615	52,5	11	36,5
14	U_2	$L_{U2}+eta \leftrightarrow \sigma'+ heta$	764	30	20	50
15	U_3	$L_{U3}+eta \leftrightarrow heta +\zeta$	813	8	39	53
16	U_4	$L_{U4} + \gamma \leftrightarrow \eta + \theta$	753	28	9	63
17	U_5	$L_{U5} + \eta \leftrightarrow \varepsilon + \theta$	686	37	10	53
18	E_1	$L_{EI} \leftrightarrow \alpha + \beta + \delta$	583	77	8	15
19	E_2	$L_{E2} \leftrightarrow \delta + \varepsilon + \sigma$	585	57	5	38
20	E_3	$L_{E3} \leftrightarrow \gamma + \zeta + \theta$	818	10	25	65
21	E_4	$L_{E4} \leftrightarrow \varepsilon + \theta + \sigma$	687	37,5	12,5	50

Нонваріантні точки та їх склади у системі Tl₂Se-CdSe-GeSe₂

У табл. 3.1 наведено нонваріантні процеси, що проходять у досліджуваній системі. У квазіпотрійній системі $Tl_2Se-CdSe-GeSe_2$ квазібінарні перерізи Tl_4GeSe_4-CdSe та Tl_2GeSe_3-CdSe тріангулюють її на три квазіпотрійні підсистеми: $Tl_2Se-CdSe-Tl_4GeSe_4$, $Tl_4GeSe_4-CdSe-Tl_2GeSe_3$ та Tl_2GeSe_3-CdSe GeSe_2. У табл. 3.1 не представлені нонваріантні процеси, пов'язані з фазовим

перетворенням тетрарної фази Tl₂CdGeSe₄ які на рис. 3.25 зображені ізотермою a-b при 683 К.

3.3. Система Tl₂Se–CdSe–SnSe₂

В квазіпотрійній системі Tl₂Se–CdSe–SnSe₂ обмежуючі є квазібінарними системами. Система Tl₂Se–CdSe розглянута в розділі 3 (підрозділ 3.1.1), система Tl₂Se–SnSe₂ – в розділі 1 (підрозділ 1.2.2), система CdSe–SnSe₂ – в розділі 1 (підрозділ 1.2.3).

3.3.1. Переріз Tl₄SnSe₄–CdSe

Переріз Tl₄SnSe₄–CdSe (рис. 3.26) є квазібінарним евтектичного типу $(L_e \leftrightarrow \delta + \beta)$ з координатами евтектики 15 мол. % CdSe при 703 К. Тверді розчини на основі компонентів Tl₄SnSe₄ (δ) та CdSe (β) складають 10 та ~3 мол. % відповідно при 570 К [146].

Рис. 3.26. Діаграма стану системи $Tl_4SnSe_4 - CdSe$ [146]

3.3.2. Переріз Tl₂SnSe₃–CdSe

Політермічний переріз Tl₂SnSe₃–CdSe є квазібінарною системою. При дослідженні даного перерізу [149] встановлено, що при еквімолярному співвідношенні вихідних сполук утворюється нова тетрарна сполука

 $Tl_2CdSnSe_4$. Результати рентгенофазового аналізу системи при 570 К представлені на рис. 3.27. Підтверджено утворення бінарної CdSe (гексагональна сингонія, *ПГ Р63mc* [7]) і тернарної Tl_2SnSe_3 (ромбічна сингонія, *ПГ Рпат* [66]) сполук. Розчинність на основі вихідних компонентів є менше 5 мол. %. Усі зразки містять дві фази, одна з яких – $Tl_2CdSnSe_4$.

Рис. 3.27. Дифрактограми окремих зразків системи Tl₂SnSe₃ - CdSe

Для побудови діаграми стану системи Tl₂SnSe₃–CdSe, проведено диференційно-термічний аналіз 15-ти зразків (рис. 3.28). Ліквідус даної системи характеризується наявністю трьох кривих, що відповідають первинній кристалізації граничних α -, β - та (σ - σ')-твердих розчинів на основі Tl₂SnSe₃, CdSe та HT-BT модифікацій сполуки Tl₂CdSnSe₄. Тетрарна сполука Tl₂CdSnSe₄ утворюється за перитектичною реакцією: $L_p + \beta \leftrightarrow \sigma' - Tl_2 CdSnSe_4$ при температурі 860 К. Склад перитектичної точки визначено екстраполяцією двох ліній до точки їх перетину із перитектичною горизонталлю та становить ~ 25 мол. % CdSe. Утворення сполуки складу Tl₂CdSnSe₄ додатково підтверджено за допомогою побудованого трикутника Тамана. Дві криві ліквідуса, які

відповідають за первинну кристалізацію тетрарної сполуки і δ -твердого розчину на основі Tl₂SnSe₃, перетинаються в евтектичній точці, склад якої, 11 мол. % CdSe, також встановлено побудовою трикутника Тамана. Евтектичний процес проходить при 720 К і відповідає перетворенню: $L_e \leftrightarrow \delta + \sigma'$ - $Tl_2CdSnSe_4$. В системі присутня ще одна нонваріантна рівновага при 687 К, що відповідає поліморфному фазовому переходу тетрарної сполуки: HT-Tl₂CdSnSe₄ \leftrightarrow BT-Tl₂CdSnSe₄.

Рис. 3.28. Діаграма стану системи $Tl_2SnSe_3 - CdSe$ [149]

3.3.3. Переріз А-В ('Tl_{1.9}Cd_{0.05}Se_{1.00}'-'Cd_{0.5}Sn_{0.95}Se_{1.95}')

На політермічному перерізі В–С (ізоконцентрата 5 мол. % CdSe) ліквідус складається з п'яти областей первинної кристалізації α -, δ -, ε -, η -, γ -твердих розчинів на основі Tl₂Se, Tl₄SnSe₄, Tl₂SnSe₃, Tl₂Sn₂Se₅ та SnSe₂ (рис. 3.29).

Рис. 3.29. Переріз А-В ("Tl_{1.9}Cd_{0.05}Se_{1.00}"-"Cd_{0.5}Sn_{0.95}Se_{1.95}"

Нижче від первинної проходить вторинні кристалізації фаз в першій половині перерізу до горизонталей при 592 К ($\alpha+\beta$, $\alpha+\delta$, $\beta+\delta$), 680 К ($\beta+\delta$), 665 К ($\delta+\sigma$, $\varepsilon+\sigma$, $\delta+\sigma$); в другій половині – при 643 К ($\varepsilon+\sigma$, $\varepsilon+\eta$, $\eta+\sigma$), 696 К ($\eta+\sigma'$, $\gamma+\sigma'$), та 775 К ($\gamma+\beta$). Два поля вторинної кристалізації $\delta+\sigma'$ додаються через поліморфізм Tl₂CdSnSe₄.

Горизонталі при вище зазначених температурах складають солідус системи та належать потрійним нонваріантним процесам E_1, U_1, E_2, E_3, U_3 та U_2 відповідно. Рівняння нонваріантних процесів наведено в табл. 3.2. Також солідусом є лінії закінчення кристалізації суміші сплавів трьох подвійних евтектик e_1 , e_6 , e_7 та із з'єднуючих прямих потрійних перитектик U_1 - U_3 , вище нонваріантних температур протікання цих процесів. Нижче солідусу знаходиться шість областей третинної кристалізації $\alpha+\beta+\delta$, $\delta+\beta+\sigma$, $\delta+\sigma+\varepsilon$, $\varepsilon + \sigma + \eta$, $\eta + \sigma' + \gamma$, яка при 687 К переходить в $\eta + \sigma + \gamma$ та $\sigma' + \beta + \gamma$, що як і попередня при 687 К перетворюється в $\sigma + \beta + \gamma$. Однак при 623 К твердий розчин на основі Tl₂Sn₂Se₅ твердофазно розпадається на суміш твердих розчинів на основі Tl₂SnSe₃ Ta SnSe₂ ($\eta \leftrightarrow \varepsilon + \gamma$).

3.3.4. Переріз A–SnSe₂ ("Tl₂CdSe₂"–SnSe₂)

Політермічний переріз A–SnSe₂ (A – зразок складу 50 мол. % Tl₂Se/ 50 мол. % CdSe) перетинає два квазібінарні перерізи Tl₄SnSe₄–CdSe та Tl₂SnSe₃–CdSe і є двофазною рівновагою в інтервалі 50-100 мол. % SnSe₂ в квазіпотрійній системі (рис. 3.30).

Рис. 3.30. Переріз A-SnSe₂ ("Tl₂CdSe₂"-SnSe₂)

Ліквідусом є криві, що відповідають початку кристалізації β - та γ -твердих розчинів на основі CdSe та на основі SnSe₂.

Нижче первинної кристалізації цих фаз проходить вторинна кристалізація: бінарних евтектичних ($\alpha+\beta$, $\beta+\delta$) та перитектичної ($\beta+\sigma', \beta+\sigma$) сумішей, що починаються в e_1 , e_6 , p_2 та поле сумісної кристалізації $\beta+\gamma$ твердих розчинів, після їх первинної кристалізації.

Солідусом перерізу є третинна кристалізація, що представлена горизонталями при температурах 592, 680 К, які відповідають двом потрійним нонваріантним процесам: евтектичному E_1 та перитектичному U_1 процесам. Горизонталь при 775 К є з'єднуючою прямою потрійного нонваріантного процесу U_2 (табл. 3.2). Додатково солідусом є криві, що відповідають завершенню кристалізації подвійних евтектик e_1 та e_6 (вище температур E_1 та

 U_1) та граничного ү-твердого розчину вище температури U_2 . Нижче солідусу сплави є трифазними: в межах 0-33,3 мол. % SnSe₂ знаходяться α -, β - та δ -тверді розчини, від 33,3 до 50 мол. % SnSe₂ β -, δ - та σ -тверді розчини. Горизонталь при 687 К відповідає поліморфному перетворенню тетрарної сполуки $\sigma \leftrightarrow \sigma'$.

3.3.5. Переріз Tl₂Sn₂Se₅–CdSe

Політермічний переріз $Tl_2Sn_2Se_5$ -CdSe (рис. 3.31) є неквазібінарним так як $Tl_2Sn_2Se_5$ утворюється інконгруентно та твердофазно розкладається. У квазіпотрійній системі Tl_2Se -CdSe-SnSe₂ він перетинає об'єми кристалізації підсистеми Tl_2SnSe_3 -CdSe-SnSe₂.

Рис. 3.31. Переріз Tl₂Sn₂Se₅-CdSe

Ліквідус описується двома кривими первинної кристалізації γ - та β твердих розчинів на основі SnSe₂ та CdSe, нижче яких вторинно кристалізуються: $\eta + \gamma$, $\gamma + \sigma'$, $\beta + \gamma$.

Солідусом є горизонталі при 696 та 775 К, що належать потрійним перитектичним процесам U_3 та U_2 (див. табл. 3.2). Додатково солідусом є лінії закінчення кристалізації η , $\sigma'+\gamma$ та β твердих розчинів вище відповідних нонваріантних процесів. Нижче солідусу дві трифазні області $\eta+\sigma'+\gamma$ та

 $\sigma'+\beta+\gamma$ обмежені та розділені невеликими одно- та двофазними областями: η , $\sigma'+\gamma$ та β . Фазове перетворення при 687 К сполуки Tl₂CdSnSe₄ перетинає три із п'яти підсолідусних полів і додає ще дві області: $\eta+\sigma+\gamma$ та $\sigma+\beta+\gamma$ трифазних рівноваг. Додатково в першій половині цього перерізу, як і в попередньому, горизонталь при 623 К відповідає твердофазному розпаду Tl₂Sn₂Se₅ на Tl₂SnSe₃ та SnSe₂. Тому під полем η створюється поле $\varepsilon+\gamma$, а під полем $\eta+\sigma+\gamma$ – поле $\varepsilon+\sigma+\gamma$.

3.3.6. Переріз Tl₄SnSe₄–Tl₂CdSnSe₄

Політермічний переріз Tl₄SnSe₄–Tl₂CdSnSe₄ (рис. 3.32) неквазібінарний та є з'єднуючою прямою потрійного перитектичного процесу U_1 ($L+\beta \leftrightarrow \delta+\sigma'$) та перетинає поля кристалізації підсистеми Tl₄SnSe₄–Tl₂SnSe₃–CdSe.

Рис. 3.32. Переріз Tl₄SnSe₄–Tl₂CdSnSe₄

Нижче ліквідусу первинно кристалізуються δ - та β - тверді розчини на основі Tl₄SnSe₄ та CdSe, вторинно –евтектична (δ + β) та перитектична (β + σ ′, а далі β + σ) суміші до температури 680 К, нижче якої зразки є двофазними (δ + σ ′), при 687 К має місце фазовий перехід Tl₂CdSnSe₄.

На основі Tl₄SnSe₄ в квазіпотрійній системі Tl₂Se–CdSe–SnSe₂ найбільший твердий розчин (при 570 К близько 7 мол. % по цьому перерізу).

3.3.7. Переріз Tl₂Se–Tl₂CdSnSe₄

Політермічний переріз $Tl_2Se-Tl_2CdSnSe_4$ (рис. 3.33) перетинає квазібінарний переріз Tl_4SnSe_4 -CdSe.

Рис. 3.33. Діаграма стану політермічного перерізу Tl₂Se–Tl₂CdSnSe₄

Ліквідус складається з двох областей, які відповідають початку кристалізації α - та β -твердих розчинів на основі Tl₂Se і CdSe, нижче яких знаходяться вторинні кристалізації сумішей бінарних сплавів $\alpha+\beta$, $\beta+\delta$ та дві області ($\beta+\sigma'$ *i* $\beta+\sigma$), що розділені фазовим перетворенням сполуки Tl₂CdSnSe₄, що починають кристалізуватися при температурах евтектик e_1 , e_6 та перитектики p_2 .

Солідус перерізу представлений горизонталями при 592 та 680 К, які належать потрійним евтектичному E_1 та перитектичному U_1 процесам (див. табл.3.2). Додатково солідусом є лінії, що відділяють α - та $\sigma' i \sigma$ -тверді розчини вище температур цих нонваріантних процесів. Нижче солідусу сплави

трифазні, розділені двофазним полем вторинної кристалізації евтектичної суміші $\delta + \beta$ та обмежені α -, $\alpha + \beta$, $\sigma' i \sigma$ -твердими розчинами. Розчинність на основі α та δ -твердих розчинів незначна 1-2 мол. %.

3.3.8. Переріз Tl₂Sn₂Se₅-Tl₂CdSnSe₄

Політермічний переріз $Tl_2Sn_2Se_5-Tl_2CdSnSe_4$ (рис. 3.34) неквазібінарний та знаходиться в тій же підсистемі ($Tl_2SnSe_3-CdSe-SnSe_2$), що і попередній.

Рис. 3.34. Діаграма стану політермічного перерізу Tl₂Sn₂Se₅–Tl₂CdSnSe₄

Його ліквідус аналогічно до попереднього перерізу показує наявність первинної кристалізації γ - та β -твердих розчинів на основі SnSe₂ та CdSe, нижче якої проходить вторинна кристалізація бінарних перитектичних ($\gamma+\eta$, $\beta+\sigma'$) сумішей, що починаються в p_1 та p_2 та поле сумісної кристалізації $\gamma+\beta$ твердих розчинів, після їх первинної кристалізації. При 687 К проходить фазове перетворення $\sigma \leftrightarrow \sigma'$.

Солідус перерізу описується горизонталлю при температурі 696 К (відповідає перитектиці U₃, а даний переріз є з'єднуючою прямою цього потрійного перитектичного процесу), нижче якої сплави двофазні до горизонталі при 623 К, що пов'язана з твердофазним розпадом η ↔ ε + γ . Нижче цієї температури сплави є трифазними.

3.3.9. Ізотермічний переріз системи Tl₂Se-CdSe-SnSe₂ при 570 К

Ізотермічний переріз системи Tl₂Se-CdSe-SnSe₂ при 570 К представлено на рис. 3.35. Два квазібінарні перерізи Tl₄SnSe₄-CdSe та Tl₂SnSe₃-CdSe триангулюють квазіпотрійну систему Tl₂Se-CdSe-SnSe₂ на три підсистеми: Tl₂Se-CdSe-Tl₄SnSe₄, Tl₄SnSe₄-CdSe-Tl₂SnSe₃ та Tl₂SnSe₃-CdSe-SnSe₂. При дослідженні фазових рівноваг у даній системі було підтверджено утворення при 570 К бінарних та потрійних сполук: Tl₂Se, CdSe, SnSe₂, Tl₂SnSe₃ та Tl₄SnSe₄. Tl₂Se кристалізується в ПГ *P4/ncc* (a = 0.8619(6), c = 1.2580(1) нм); CdSe – у ПГ $P6_{3}mc$ (a = 0,42994(2), c = 0,70104(8) нм); SnSe₂ – у ПГ P-3m1 (a = 0,3815(2), c = $\Pi\Gamma P2_1/c$ (*a* = 0,8481(2), 0.6139(4) нм): Tl₄SnSe₄ V b = 0.8401(4). c = 1,5808(1) нм, $\beta = 102,51^{\circ}$); Tl₂SnSe₃ – у ПГ *Pnam* (a = 0,8049(1), b = 0,8173(2),c = 2,1279(1) нм). Результати ідентифікації сполук підтверджують літературні дані [15, 7, 81, 82].

Рис. 3.35. Ізотермічний переріз системи Tl₂Se-CdSe-SnSe₂ при 570 К

Встановлено утворення нової тетрарної сполуки $Tl_2CdSnSe_4$, що утворюється на квазібінарному перерізі Tl_2SnSe_3 -CdSe при мольному співвідношенні компонентів 1:1.

Ізотермічний переріз системи $Tl_2Se-CdSe-SnSe_2$ характеризується наявністю шести однофазних полів. Вони відповідають α , β , γ , δ , ε , σ -твердим розчинам на основі Tl_2Se , CdSe, SnSe_2, Tl_4SnSe_4 , Tl_2SnSe_3 та $Tl_2CdSnSe_4$, розділених десятьма двофазними (α -Tl_2Se- β -CdSe, α -Tl_2Se- δ -Tl_4SnSe_4, δ -Tl_4SnSe_4- ε -Tl_2SnSe_3, ε -Tl_2SnSe_3- γ -SnSe_2, γ -SnSe_2- β -CdSe, δ -Tl_4SnSe_4- β -CdSe, δ -Tl_4SnSe_4- σ -Tl_2CdSnSe_4, ε -Tl_2SnSe_3- σ -Tl_2CdSnSe_4, σ -Tl_2CdSnSe_4- β -CdSe, γ -SnSe_2- σ -Tl_2CdSnSe_4) та п'ятьма трифазними (α -Tl_2Se- β -CdSe- δ -Tl_4SnSe_4, δ -Tl_4SnSe_4- β -CdSe- σ -Tl_2CdSnSe_4, δ -Tl_4SnSe_4- β -CdSe, δ -Tl_4SnSe_4- β -CdSe- σ -Tl_2CdSnSe_4, δ -Tl_4SnSe_4- β -CdSe- δ -Tl_4SnSe_4, δ -Tl_4SnSe_4- β -CdSe- σ -Tl_2CdSnSe_4, δ -Tl_4SnSe_4- β -CdSe) полями.

Розчинність для Tl_4SnSe_4 складає 10 мол.% CdSe вздовж перерізу Tl_4SnSe_4 —CdSe, для $Tl_2Se - 3$ мол.% вздовж перерізу Tl_2Se —CdSe, для CdSe - 3 мол.% вздовж перерізів Tl_2Se —CdSe, Tl_4SnSe_4 —CdSe та Tl_2SnSe_3 —CdSe, на основі інших сполук – менше 3 мол. %.

3.3.10. Проекція поверхні ліквідусу Tl₂Se–CdSe–SnSe₂

Поверхня ліквідусу системи $Tl_2Se-CdSe-SnSe_2$ (рис. 3.36, [150]) побудована за даними досліджень вищепредставлених дев'яти політермічних перерізів ($Tl_2Se-CdSe$, Tl_4SnSe_4-CdSe , Tl_2SnSe_3-CdSe [9], ' $Tl_2CdSe_3'-SnSe_2$, ' $Tl_{38}CdSe_{20}'-'CdSn_{19}Se_{39}'$, $Tl_4SnSe_4-Tl_2CdSnSe_4$, $Tl_2Sn_2Se_5-CdSe$, $Tl_2Sn_2Se_5-Tl_2CdSnSe_4$ та $Tl_2Se-Tl_2CdSnSe_4$), а також за літературними даними [74, 87] по обмежуючих діаграмах стану досліджуваної квазіпотрійної системи. Два квазібінарні перерізи (Tl_4SnSe_4 -CdSe та Tl_2SnSe_3 -CdSe) триангулюють досліджувану квазіпотрійну систему на три підсистеми: $Tl_2Se-CdSe-Tl_4SnSe_4$, Tl_4SnSe_4 -CdSe- Tl_2SnSe_3 та Tl_2SnSe_3 -CdSe- $SnSe_2$.

Рис. 3.36. Поверхня ліквідусу системи Tl₂Se–CdSe–SnSe₂ [150]

Проекція поверхні ліквідусу складається із восьми полів первинної кристалізації фаз: α -, β -, γ -, δ -, ε -, η -, σ' -, σ -твердих розчинів на основі Tl₂Se, CdSe, SnSe₂, Tl₄SnSe₄, Tl₂SnSe₃ та HT і BT модифікацій Tl₂CdSnSe₄, B квазіпотрійній системі ці поля розділені 21 моноваріантними кривими та 19 нонваріантними точками (табл. 3.2). На поверхні ліквідусу по обидві сторони від квазібінарного перерізу Tl₂SnSe₃-CdSe зображено також моноваріантні криві *a*-*b* та *c*-*d*, що пов'язані з фазовим переходом тетрарної фази $\sigma' \leftrightarrow \sigma$. При температурі переходу 687 K крива *a*-*b* описується нонваріантними процесами $L_{U4}+\sigma' \leftrightarrow \beta+\sigma$ (точка *a*) та $L_{U5}+\sigma' \leftrightarrow \varepsilon+\sigma$ (точка *b*). Інша крива *c*-*d* характеризує рівноваги між процесами $L_{U6}+\sigma' \leftrightarrow \varepsilon+\sigma$ (точка *c*) та $L_{U7}+\sigma' \leftrightarrow \gamma+\sigma$ (точка *d*). У табл. 3.2 не представлені нонваріантні процеси, пов'язані з фазовим перетворенням тетрарної фази Tl₂CdSnSe₄ які на рис. 3.36, 3.38, 3.39 зображені ізотермами *a*-*b*, *c*-*d* при 687 K.

91

N⁰	Нонв.	Нонваріантний процес	T, K	Склад, мол. %			
П.П.	точки			Tl ₂ Se/CdSe/SnSe ₂			
1	p_1	$Lp_1 + \gamma \leftrightarrow \eta$	732	40	-	60	
2	p_2	$Lp_2 + \beta \leftrightarrow \sigma'$	860	42	14,5	43,5	
3	<i>e</i> ₁	$Le_1 \leftrightarrow \alpha + \beta$	622	13	87	-	
4	<i>e</i> ₂	$Le_2 \leftrightarrow \alpha + \delta$	633	88	-	12	
5	<i>e</i> ₃	$Le_3 \leftrightarrow \delta + \varepsilon$	693	61	-	39	
6	<i>e</i> ₄	$Le_4 \leftrightarrow \varepsilon + \eta$	694	42	-	58	
7	<i>e</i> ₅	$Le_5 \leftrightarrow \gamma + \beta$	891	-	20	80	
8	<i>e</i> ₆	$Le_6 \leftrightarrow \delta + \beta$	703	60,5	9	30,5	
9	<i>e</i> ₇	$Le_7 \leftrightarrow \varepsilon + \sigma'$	720	46	7	47	
10	U_1	$L_{UI} + \beta \leftrightarrow \delta + \sigma$	680	52	11	37	
11	U_2	$L_{U2} + \beta \leftrightarrow \sigma' + \gamma$	775	35	15	50	
12	U_3	$L_{U3} + \gamma \leftrightarrow \eta + \sigma'$	696	37	8	55	
13	E_I	$L_{EI} \leftrightarrow lpha + eta + \delta$	592	84	7	9	
14	E_2	$L_{E2} \leftrightarrow \delta + \varepsilon + \sigma$	665	55	6	39	
15	E_3	$L_{E3} \leftrightarrow \varepsilon + \gamma + \beta$	643	40	6	54	

Нонваріантні точки та їх склади у квазіпотрійній системі Tl₂Se–CdSe–SnSe₂

3.3.11. Просторова діаграма стану підсистеми Tl₂Se-CdSe-Tl₄SnSe₄

В підсистемі Tl₂Se–CdSe–Tl₄SnSe₄ ліквідус описаний полями (рис. 3.37, [150]), що відповідають первинній кристалізації твердих розчинів на основі сполук: Tl₂Se ($Tl_2Se-e_1-E_1-e_2-Tl_2Se$), CdSe ($CdSe-e_1-E_1-e_6-CdSe$) та Tl₄SnSe₄ ($Tl_4SnSe_4-e_2-E_1-e_6-Tl_4SnSe_4$).

Однофазні об'єми у цій просторовій діаграмі, що відповідають граничним *α*-, *β*- та *δ*-твердим розчинам, виділені темним сірим кольором. Нижче первинної проходить вторинна кристалізація сплавів, що починається з бінарних евтектик e_1 , e_2 , e_6 обмежуючих систем і завершується потрійним евтектичним нонваріантним процесом при 592 К ($L \leftrightarrow \alpha + \beta + \delta$).

Рис. 3.37. Просторова діаграма стану підсистеми Tl_2 Se-CdSe-Tl₄SnSe₄ [150]

3.3.12. Просторова діаграма стану підсистеми Tl₄SnSe₄-CdSe-Tl₂SnSe₃

В підсистемі Tl₄SnSe₄-CdSe-Tl₂SnSe₃ (рис. 3.38, [150]) є п'ять полів первинної кристалізації – тверді розчини на основі сполук: Tl₄SnSe₄ (*Tl₄SnSe₄* $e_3-E_2-e_6-Tl_4SnSe_4$), CdSe (*CdSe-e_6-U_1-p_2-CdSe*), Tl₂SnSe₃ (*Tl₂SnSe₃-e_3-E_2-e_7-Tl₂SnSe₃*) та Tl₂CdSnSe₄, що розділене ізотермою *a-b*, яка відповідає фазовому переходу цієї сполуки (*p₂-a-b-e₇- p₂, a-U₁-E₂-b-a*).

Об'єми, що відповідають граничним δ -, β -, ε - та σ -твердим розчинам, на діаграмі є світло сірого кольору.

Моноваріантні криві, що є початком вторинної кристалізації сплавів, виходять з перитектичної точки p_2 , та трьох евтектичних e_1 , e_2 , e_6 та закінчують кристалізуватися (p_2 та e_6) в потрійній перитектичній точці U_1 , де проходить нонваріантний процес $L+\beta \leftrightarrow \delta+\sigma$, а далі в евтектичній E_2 , куди сходяться потрійний U_1 і бінарні e_3 та e_7 , за реакцією: $L \leftrightarrow \delta + \varepsilon + \sigma$.

Рис. 3.38. Просторова діаграма стану підсистеми Tl₄SnSe₄-CdSe-Tl₂SnSe₃ [150]

3.3.13. Просторова діаграма стану підсистеми Tl₂SnSe₃-CdSe-SnSe₂

Ліквідус підсистеми Tl₂SnSe₃-CdSe-SnSe₂ (рис. 3.39, [150]) описується п'ятьма полями, що відповідають первинній кристалізації твердих розчинів на основі сполук: Tl₂SnSe₃ (Tl₂SnSe₃- e_4 - U_3 - e_6 -Tl₂SnSe₃), Tl₂Sn₂Se₅ (p_1 - e_4 - E_3 - U_3 - p_1), SnSe₂ (SnSe₂- e_5 - U_2 - U_3 - p_1 -SnSe₂), CdSe (CdSe- e_5 - U_2 - p_2 -CdSe) та Tl₂CdSnSe₄ (два поля, що розділяються ізотермою *c*-*d*: p_2 - U_2 -*d*-*c*- e_7 - p_2 , *c*-*d*- U_3 - E_3 -*c*).

Об'єми граничних δ -, β - γ - та σ -твердих розчинів виділені сірим кольором.

Нижче первинної проходить вторинна кристалізація двох перитектик p_1 і p_2 та трьох евтектик e_5 , e_4 та e_7 , а також поля спільної вторинної кристалізації частини рідини від перитектичних нонваріантних процесів U_2 та U_3 .

Отже, для цієї підсистеми є характерні два перитектичні $U_2 (L+\beta \leftrightarrow \sigma'+\gamma)$ та $U_3 (L+\gamma \leftrightarrow \eta+\sigma')$ та евтектичний $E_3 (L \leftrightarrow \varepsilon + \eta + \sigma)$ нонваріантні процеси, що представлені в просторі діаграми кольоровими площинами. Через твердофазний розпад сполуки Tl₂Sn₂Se₅ ($\eta \leftrightarrow \varepsilon + \gamma$) при 623 К існує ще площина, нижче якої у рівновазі перебувають ε -, σ - та γ -тверді розчини.

Рис. 3.39. Просторова діаграма стану підсистеми Tl₂SnSe₃-CdSe-SnSe₂ [150]

3.4. Висновки до розділу 3

Досліджено фазові рівноваги в системах Tl₂Se–CdSe–Si(Ge, Sn)Se₂ методами РФА, ДТА та MCA.

У системі Tl₂Se–CdSe–SiSe₂ побудовано 6 політермічних перерізів, з яких два, Tl₂Se–SiSe₂ та Tl₂Se–CdSe, уточнено. Побудовано ізотермічний переріз системи Tl₂Se–CdSe–SiSe₂ при 570 К. Встановлено утворення при 825 К однієї тетрарної сполуки Tl₂Si₂Se₅ інконгруентно та двох тетрарних сполук Tl₂CdSiSe₄ (*I*-42*m*) - інконгруентно та Tl₂CdSi₃Se₈ (*P*2₁2₁2₁) - конгруентно. Для сполуки Tl₂CdSi₃Se₈ методом СЕМ в поєднанні з ЕДС підтверджено склад, який є близький до вихідного. Розчинність на основі CdSe становить 5 мол. %, на основі інших сполук – менше 3 мол. %.

У системі Tl₂Se–CdSe–GeSe₂ побудовано 6 політермічних перерізів, ізотермічний переріз системи Tl₂Se–CdSe–GeSe₂ при 570 К та проекція поверхні ліквідусу квазіпотрійної системи Tl₂Se–CdSe–GeSe₂. Встановлено утворення 2 тетрарних сполук Tl₂CdGeSe₄ (*I*-42*m*) та Tl₂CdGe₃Se₈ (*P*2₁2₁2₁), що утворюються інконгруентно та конгруентно відповідно. Для сполуки Tl₂CdGe₃Se₈ методом СЕМ в поєднанні з ЕДС підтверджено склад, що є близьким до вихідного. Розчинність на основі CdSe становить 5 мол. %, на основі інших сполук незначна.

У системі Tl₂Se–CdSe–SnSe₂ побудовано 8 політермічних перерізів, два з яких Tl₄SnSe₄–CdSe та Tl₂SnSe₃–CdSe є квазібінарними і тріангулюють досліджувану систему на три незалежні підсистеми Tl₂Se–CdSe–Tl₄SnSe₄, Tl₄SnSe₄–CdSe–Tl₂SnSe₃ та Tl₂SnSe₃–CdSe–SnSe₂. Для кожної з цих підсистем представлена просторова діаграма стану. Побудовано ізотермічний переріз при 570 К та проекція поверхні ліквідусу системи Tl₂Se–CdSe–SnSe₂. Встановлено утворення 1 тетрарної сполуки Tl₂CdSnSe₄ (*I*-42*m*), яка утворюються інконгруентно. Розчинність на основі Tl₄SnSe₄ становить до 7 мол. %, на основі інших сполук – менше 5 мол. % .

РОЗДІЛ 4. ФАЗОВІ РІВНОВАГИ В СПОРІДНЕНИХ СИСТЕМАХ

4.1. Система Tl₂S-CdS-GeS₂

При вивченні фазових рівноваг в квазіпотрійній системі Tl₂S–CdS–GeS₂ при 570 К підтверджено утворення бінарних Tl₂S, CdS, GeS₂ та потрійних Tl₂GeS₃, Tl₄GeS₄, Tl₂Ge₂S₅, Cd₄GeS₆ сполук, що кристалізуються у *ПГ R*3 [3] (Tl₂S), *P6₃mc* [7] (CdS), *Pc* [7] (GeS₂), *Cc* [70] (Tl₄GeS₄), *P*-1 [69] (Tl₂GeS₃), *C2/c* [71] (Tl₂Ge₂S₅) та *Cc* [93] (Cd₄GeS₆) та встановлено утворення нових тетрарних сполук: Tl₂CdGe₂S₆ на перерізі Tl₂Ge₂S₅–CdS та Tl₂CdGe₃S₈ на перерізі Tl₂CdGe₂S₆–GeS₂.

Для підтвердження атомного складу елементів полікристалічний зразок Tl₂CdGe₂S₆ дослідили методом СЕМ в поєднанні з ЕДС (рис. 4.1).

Рис. 4.1. Результати СЕМ/ЕДС для сполуки Tl₂CdGe₂S₆ (ваг. %): мікрофото повепхні зразка (*a*), результати мапування (*b*), елементний склад (*c*)

Збільшене фото поверхні показано на рис. 4.1 *а*. Результати якісного аналізу (СЕМ) показані на рис. 4.1 *b* (поелементне мапування). Результати кількісного аналізу (ЕДС) показані на рис. 4.1 *с*. Усереднений склад сполуки відповідає формулі $Tl_2Cd_{1.27}Ge_{2.15}S_{6.45}$, що близько до цілочислових значень складу 2:1:2:6.

4.1.1. Ізотермічний переріз системи Tl₂S–CdS–GeS₂ при 570 К

Ізотермічний переріз системи Tl₂S–CdS–GeS₂ при 570 K зображено на рис. 4.2. Він характеризується наявністю дев'яти однофазних полів. Вони відповідають α , β , γ , δ , ε , η , ζ , σ , θ -твердим розчинам на основі Tl₂S, CdS, GeS₂, Tl₄GeS₄, Tl₂GeS₃, Tl₂Ge₂S₅, Cd₄GeS₆, Tl₂CdGe₂S₆ та Tl₂CdGe₃S₈.

Рис. 4.2. Ізотермічний переріз системи Tl_2S –CdS–GeS₂ при 570 К

Однофазні поля розділені сімнадцятьма двофазними (α -Tl₂S- β -CdS, α -Tl₂S- δ -Tl₄GeS₄, δ -Tl₄Gee₄- ϵ -Tl₂GeS₃, ϵ -Tl₂GeS₃- η -Tl₂Ge₂S₅, η -Tl₂Ge₂S₅- γ -GeS₂, γ -GeS₂- ζ -Cd₄GeS₆, ζ -Cd₄GeS₆- β -CdS, δ -Tl₄GeS₄- β -CdS, δ -Tl₄GeS₄- σ -Tl₂CdGeS₄, ϵ -Tl₂GeS₃- σ -Tl₂CdGeS₄, σ -Tl₂CdGeS₄, σ -Tl₂CdGeS₄, σ -Tl₂CdGeS₄, η -Tl₂Ge₂S₅- σ -Tl₂CdGeS₄, σ -Tl₂CdGe₃S₈- σ -Tl₂CdGeS₄, θ -Tl₂CdGeS₆, σ -

Tl₂CdGeS₄– ζ -Cd₄GeS₆, γ -GeS₂– θ -Tl₂CdGe₃S₈), які обмежені дев'ятьма трифазними (α -Tl₂S– β -CdS– δ -Tl₄GeS₄, δ -Tl₄GeS₄– β -CdS– σ -Tl₂CdGeS₄, δ -Tl₄GeS₄– σ -Tl₂CdGeS₄– ϵ -Tl₂GeS₃, ϵ -Tl₂GeS₃– σ -Tl₂CdGeS₄– η -Tl₂Ge₂S₅, η -Tl₂Ge₂S₅– θ -Tl₂CdGe₃S₈– σ -Tl₂CdGeS₄, η -Tl₂Ge₂S₅– θ -Tl₂CdGe₃S₈– σ -Tl₂CdGeS₄, η -Tl₂Ge₂S₅– θ -Tl₂CdGe₃S₈– σ -Tl₂CdGeS₆, σ -Tl₂CdGeS₄– θ -Tl₂CdGe₃S₈– ζ -Cd₄GeS₆, σ -Tl₂CdGeS₄– θ -Tl₂CdGe₃S₈– ζ -Cd₄GeS₆, σ -Tl₂CdGeS₄– θ -CdS– ζ -Cd₄GeS₆) полями. Розчинність на основі CdS становить до 5 мол. %, а на основі інших сполук – менше 3 мол. %.

4.2. Система Tl₂S-CdS-SnS₂

В квазіпотрійній системі $Tl_2S-CdS-SnS_2$ при 570 К підтверджено утворення бінарних Tl_2S , CdS, SnS₂ та потрійних Tl_4SnS_4 , Tl_2SnS_3 , $Tl_2Sn_2S_5$ сполук, що кристалізуються у *ПГ R3* [3] (Tl_2S), *P6₃mc* [7] (CdS), *P-3m1* [7] (SnS₂), *P2*₁/*c* [80] (Tl_4SnS_4), *C2/m* [79] (Tl_2SnS_3), *C2/c* [78] ($Tl_2Sn_2S_5$). Встановлено утворення нових тетрарних сполук: $Tl_2CdSn_2S_6$, склад якої підтверджено методом СЕМ в поєднанні з ЕДС (рис. 4.3) та $Tl_2CdSn_3S_8$.

Рис. 4.3. Результати СЕМ/ЕДС для сполуки Tl₂CdSn₂S₆ (ваг. %): мікрофото повепхні зразка (*a*), результати мапування (*b*), елементний склад (*c*)

Мікрофотографія поверхні сплаву, що відповідає сполуці $Tl_2CdSn_2S_6$ представлена на рис. 4.3 *а.* Результати якісного аналізу (СЕМ) показані на рис. 4.3 *b* (поелементне мапування). Результати кількісного аналізу (ЕДС) показані на рис. 4.3 *с.* Усереднений результат дослідження складу сполуки $Tl_2CdSn_2S_6$ виражається складом $Tl_{2.1}Cd_1Sn_{2.5}S_{6.6}$, що є близьким до вихідного.

4.2.1. Ізотермічний переріз системи Tl₂S–CdS–SnS₂ при 570 К

Ізотермічний переріз системи Tl₂S–CdS–SnS₂ при 570 K зображено на рис. 4.4. Він характеризується наявністю восьми однофазних полів. Вони відповідають α , β , γ , δ , ε , η , σ та θ -твердим розчинам на основі Tl₂S, CdS, SnS₂, Tl₄SnS₄, Tl₂SnS₃, Tl₂Sn₂S₅, Tl₂CdSn₂S₆ та Tl₂CdSn₃S₈.

Рис. 4.4. Ізотермічний переріз системи Tl₂S-CdS-GeS₂ при 570 К

Однофазні поля розділені п'ятнадцятьма двофазними рівновагами (α -Tl₂S- β -CdS, α -Tl₂S- δ -Tl₄SnS₄, δ -Tl₄SnSe₄- ϵ -Tl₂GeS₃, ϵ -Tl₂SnS₃- η -Tl₂Sn₂S₅, η -Tl₂Sn₂S₅- γ -SnS₂, γ -SnS₂- β -CdS, δ -Tl₄SnS₄- β -CdS, δ -Tl₄SnS₄- σ -Tl₂CdSnS₄, ϵ -Tl₂SnS₃- σ -Tl₂CdSnS₄, η -Tl₂Sn₂S₅- σ -Tl₂CdSnS₄, η -Tl₂Sn₂S₅- θ - σ -Tl₂CdSnS₄, η -Tl₂Sn₂S₅- θ - σ -Tl₂CdSnS₄, η -Tl₂Sn₂S₅- θ - σ -Tl₂CdSnS₄, σ -Tl₂CdSnS

Tl₂CdSn₃S₈, θ -Tl₂CdSn₃S₈– σ -Tl₂CdSnS₄, γ -SnS₂– θ -Tl₂CdSn₃S₈, θ -Tl₂CdSn₃S₈– β -CdS), які обмежують вісімом трифазних (α -Tl₂S– β -CdS– δ -Tl₄SnS₄, δ -Tl₄SnS₄– β -CdS– σ -Tl₂CdSnS₄, δ -Tl₄SnS₄– σ -Tl₂CdSnS₄– ϵ -Tl₂SnS₃, ϵ -Tl₂SnS₃– σ -Tl₂CdSnS₄– η -Tl₂Sn₂S₅, η -Tl₂Sn₂S₅– θ -Tl₂CdSn₃S₈– σ -Tl₂CdSnS₄, η -Tl₂Sn₂S₅– θ -Tl₂CdSn₃S₈– σ -Tl₂CdSnS₄, η -Tl₂Sn₂S₅– θ -Tl₂CdSn₃S₈– γ -SnS₂, γ -SnS₂– θ -Tl₂CdSn₃S₈– β -CdS, σ -Tl₂CdSnS₄– θ -Tl₂CdSn₃S₈– β -CdS) полів.

Розчинність на основі CdS становить до 5 мол. %, а на основі інших сполук – менше 3 мол. %.

4.3. Система Tl₂Se–ZnSe–GeSe₂

4.3.1. Переріз Tl₂Se–ZnSe

Побудовано діаграму стану перерізу Tl₂Se–ZnSe [145], що належить до перитектичного типу ($L_p+\beta \Leftrightarrow \alpha$). Результати РФА представлені на рис. 4.5, а діаграма стану на рис. 4.6. Координати перитектичної точки становлять 33 мол. % ZnSe, 710 К. Після 50 мол. % ZnSe у зоні ліквідусу немає ефектів ДТА, тому ліквідус встановлювали екстраполяцією лінії до літературної температури плавлення ZnSe (1793 K [20]).

Розчинність твердих розчинів на основі Tl_2Se (α), що ідентифіковані у ПГ *P4/ncc* [15] та на основі ZnSe (β) (ПГ *F*-43*m* [7]) становлять 8 мол. % ZnSe та до 3 мол. % Tl₂Se при 570 К.

4.3.2. Переріз Tl₄GeSe₄–ZnSe

Побудовано діаграму стану перерізу Tl₄GeSe₄–ZnSe (рис. 4.7), яка є евтектичного типу. Криві ліквідусу первинної кристалізації твердих розчинів на основі Tl₄GeSe₄ (δ) та ZnSe (β) перетинаються в евтектичній точці, координати якої становлять 7 мол. % ZnSe, 618 К.

Рис. 4.7. Діаграма стану системи Tl₄GeSe₄–ZnSe Розчинність на основі вихідних компонентів незначна.

4.3.3. Переріз Tl₂GeSe₃–ZnSe

Методами РФА та ДТА побудовано діаграму стану квазібінарної системи Tl₂GeSe₃–ZnSe (рис. 4.8), для якої характерний евтектичний тип взаємодії. Криві ліквідусу, що відповідають первинній кристалізації ε- та β-твердих розчинів на основі Tl₂GeSe₃ та ZnSe перетинаються в евтектичній точці, координати якої становлять 7 мол. % ZnSe, 681 К. При дослідженні рівноваг системи не виявлено утворення проміжних тетрарних фаз.

Рис. 4.8. Діаграма стану системи Tl₂GeSe₃–ZnSe

Розчинність на основі ZnSe становить до 5 мол. % [151].

4.3.4. Ізотермічний переріз системи Tl₂Se- ZnSe-GeSe₂ при 570 К

Ізотермічний переріз системи Tl₂Se–ZnSe–GeSe₂ при 570 К зображено на рис. 4.9. Встановлено утворення нової тетрарної сполуки Tl₂ZnGe₃Se₈, що утворюється по перерізу "Tl₂ZnSe₂"–GeSe₂ при співвідношенні граничних компонентів 3:1.

Ізотермічний переріз системи $Tl_2Se-ZnSe-GeSe_2$ при 570 К характеризується існуванням семи однофазних полів. Вони відповідають α , β , γ , δ , ε , η , θ -твердим розчинам на основі Tl_2Se , ZnSe, GeSe₂, Tl_4GeSe_4 , Tl_2GeSe_3 , $Tl_2Ge_2Se_5$ та $Tl_2ZnGe_3Se_8$. Однофазні поля розділені дванадцятьма двофазними (α -Tl_2Se- β -ZnSe, α -Tl_2Se- δ -Tl_4GeSe_4, δ -Tl_4GeSe_4- ϵ -Tl_2GeSe_3, ϵ -Tl_2GeSe_3- η -Tl_2Ge_2Se_5, η -Tl_2Ge_2Se_5- γ -GeSe₂, γ -GeSe₂- β -ZnSe, δ -Tl_4GeSe₄- β -ZnSe, ϵ -Tl_2GeSe_3- η -

 $\beta - ZnSe, \quad \epsilon - Tl_2GeSe_3 - \theta - Tl_2CdGe_3Se_8, \quad \theta - Tl_2CdGe_3Se_8 - \beta - ZnSe, \quad \eta - Tl_2Ge_2Se_5 - \theta - Tl_2CdGe_3Se_8, \quad \gamma - GeSe_2 - \theta - Tl_2CdGe_3Se_8).$

Рис. 4.9. Ізотермічний переріз системи Tl₂Se-ZnSe-GeSe₂ при 570 К

Двофазні поля обмежені шістьма трифазними (α -Tl₂Se– β -ZnSe– δ -Tl₄GeSe₄, δ -Tl₄GeSe₄– β -ZnSe– ϵ -Tl₂GeSe₃, ϵ -Tl₂GeSe₃– β -ZnSe– θ -Tl₂CdGe₃Se₈, ϵ -Tl₂GeSe₃– θ -Tl₂CdGe₃Se₈– η -Tl₂Ge₂S₅, η -Tl₂Ge₂Se₅– θ -Tl₂CdGe₃Se₈– γ -GeSe₂, γ -GeSe₂– θ -Tl₂CdGe₃Se₈– β -ZnSe) полями. Розчинність α -твердих розчинів на основі Tl₂Se становить до 8 мол. %, на основі ZnSe – до 5 мол. %, на основі інших сполук незначна.

4.4. Система Tl₂Se–ZnSe–SnSe₂

4.4.1. Переріз Tl₄SnSe₄–ZnSe

Побудовано діаграму стану квазібінарної системи Tl₄SnSe₄–ZnSe (рис. 4.10), для якої характерний евтектичний тип проходження рівноваг. Дві криві ліквідусу, що відповідають первинній кристалізації δ- та β-твердих

розчинів на основі Tl₄SnSe₄ та ZnSe, перетинаються в евтектичній точці, координати якої становлять 11 мол. % ZnSe, 676 К.

Рис. 4.10. Діаграма стану системи Tl_4SnSe_4 –ZnSe

Розчинність на основі вихідних компонентів системи становить до 5 мол. %.

4.4.2. Переріз Tl₂SnSe₃–ZnSe

Методами РФА та ДТА побудовано діаграму стану квазібінарної системи Tl_2SnSe_3 –ZnSe (рис. 4.11), що характеризується утворенням тетрарної сполуки складу $Tl_2ZnSnSe_4$ за перитектичною реакцією $L_p+\beta$ -ZnSe $\leftrightarrow \sigma$ -Tl_2ZnSnSe_4 з координатами перитектичної точки 18 мол. % ZnSe, 674 К. Дві криві ліквідусу, що відповідають первинній кристалізації є- та σ -твердих розчинів на основі Tl_2SnSe_3 та $Tl_2ZnSnSe_4$ відповідно перетинаються в евтектичній точці, координати якої становлять 15 мол. % ZnSe, 602 К.

Рис. 4.11. Діаграма стану системи Tl₂SnSe₃-ZnSe

Розчинність ε- та β-твердих розчинів на основі Tl₂SnSe₃ та ZnSe становить до 5 мол [151].

4.4.3. Ізотермічний переріз системи Tl₂Se- ZnSe-SnSe₂ при 570 К

Ізотермічний переріз системи Tl₂Se–ZnSe–SnSe₂ при 570 К зображено на рис. 4.12. Встановлено утворення нової тетрарної сполуки Tl₂ZnSnSe₄, що утворюється по перерізу Tl₂SnSe₃–ZnSe при мольному співвідношенні компонентів 1:1.

570 К Ізотермічний переріз Tl₂Se–ZnSe–SnSe₂ системи при характеризується існуванням шести однофазних полів. Вони відповідають α , β , γ , δ , ϵ та σ -твердим розчинам на основі Tl₂Se, ZnSe, SnSe₂, Tl₄SnSe₄, Tl₂SnSe₃ та Tl₂ZnSnSe₄. Однофазні поля розділені десятьма двофазними (α -Tl₂Se- β -ZnSe, α - $Tl_2Se-\delta-Tl_4SnSe_4$, $\delta-Tl_4SnSe_4-\epsilon-Tl_2SnSe_3$, $\epsilon-Tl_2SnSe_3-\gamma-SnSe_2$, $\gamma-SnSe_2-\beta-ZnSe$, $\gamma-SnSe_2-\beta-ZnSe$, $\gamma-SnSe_3-\gamma-S$ $SnSe_2 - \sigma - Tl_2 ZnSnSe_4$, ϵ -Tl₂SnSe₃- σ -Tl₂ZnSnSe₄, δ -T₄SnSe₄- σ -Tl₂ZnSnSe₄, σ-Tl₂ZnSnSe₄– β -ZnSe, δ -Tl₄SnSe₄– β -ZnSe), які обмежені п'ятьма трифазними (α - $Tl_2Se-\beta$ -ZnSe- δ -Tl₄SnSe₄, δ -Tl₄SnSe₄- β -ZnSe- σ -Tl₂ZnSnSe₄, δ -Tl₄SnSe₄– σ - $Tl_2ZnSnSe_4 - \varepsilon - Tl_2SnSe_3$, $\varepsilon - Tl_2GeSe_3 - \sigma - Tl_2ZnSnSe_4 - \gamma - SnSe_2$ Ta $\sigma - Tl_2ZnSnSe_4 - \gamma - \sigma - Tl_2ZnSnSe_4 - \gamma - \sigma - Tl_2ZnSnSe_4$

SnSe₂–β-ZnSe) полями. Розчинність α-твердих розчинів на основі Tl₂Se становить до 8 мол. %, на основі інших сполук – до 5 мол. %.

Рис. 4.12. Ізотермічний переріз системи Tl₂Se–ZnSe–SnSe₂ при 570 К

4.5. Системи Tl₂Te–CdTe–SiTe₂

У підрозділі наведено результати дослідження рівноваг по перерізах Tl₂Te–SiTe₂ та Tl₂SiTe₃–CdTe, що є квазібінарними у системі Tl₂Te–CdTe–SiTe₂.

4.5.1. Переріз Tl₂Te– SiTe₂

Для встановлення можливості існування сполуки Tl_2SiTe_3 досліджено переріз Tl_2Te —SiTe₂ [152]. Підтверджено існування бінарних телуридів Tl_2Te , SiTe₂ та виявлено чотири нових набори відбить на дифрактограмах, що відповідають сполукам складів $Tl_{18}SiTe_{11}$, Tl_4SiTe_4 , Tl_2SiTe_3 , $Tl_2Si_2Te_5$.

Для зразка складу Tl₁₈SiTe₁₁, представлені результати вивчення складу методом СЕМ в поєднанні з методом ЕДС. На рис. 4.13 *а* – зображено

мікрофото поверхні зразка, що використовувався для проведення кількісного аналізу. На рис. 4.13 b – показано результати поелементного та загального мапування. На рис. 4.13 c наведено результати дослідження елементного співвідношення зразка з вихідним складом Tl₁₈SiTe₁₁. Усередненим результатом досдідження є склад Tl₁₈Si_{1.09}Te_{11.06}, що дуже добре узгоджується з відношенням атомів як 18:1:11.

Рис. 4.13. Результати СЕМ/ЕДС для сполуки Tl₂CdSn₂S₆ (ваг. %): мікрофото повепхні зразка (*a*), результати мапування (*b*), елементний склад (*c*)

Побудована діаграма стану перерізу $Tl_2Te-SiTe_2$ (рис. 4.14) є квазібінарною системою. Її ліквідує представлений сімома кривими первинної кристалізації сполук Tl_2Te , $Tl_{18}SiTe_{11}$, Tl_4SiTe_4 , $Tl_{18}SiTe_{11}$, $HTM-Tl_2SiTe_3$, $BTM-Tl_2SiTe_3$, $Tl_2Si_2Te_5$ та SiTe₂. Дані криві з'єднуються між собою в точках плавлення евтектик, перитектик та проміжних сполук. Для зразка складу 50 мол. % SiTe₂ наявні два ендотермічні ефекти, що відповідають конгруентному

плавленню Tl₂SiTe₃ при 618 К та фазовому переходу BTM↔HTM сполуки Tl₂SiTe₃ при 567 К.

Рис. 4.14. Діаграма стану системи $Tl_2Te - SiTe_2$ [152]

(I – результати ДТА; II – однофазні зразки РФА, III – двофазні зразки РФА: 1 - L; $2 - L + Tl_2Te$; $3 - L + Tl_{18}SiTe_{11}$; $4 - L + Tl_4SiTe_4$; $5 - L + HTM-Tl_2SiTe_3$; $6 - L + BTM-Tl_2SiTe_3$; $7 - BTM-Tl_2SiTe_3 + Tl_2Si_2Te_5$; $8 - L + Tl_2Si_2Te_5$; $9 - L + SiTe_2$; $10 - Tl_2Te + Tl_{18}SiTe_{11}$; $11 - Tl_{18}SiTe_{11} + Tl_4SiTe_4$; $12 - Tl_4SiTe_4 + HTM-Tl_2SiTe_3$; $13 - HTM-Tl_2SiTe_3 + Tl_2Si_2Te_5$; $14 - Tl_2Si_2Te_5 + SiTe_2$)

Три нонваріантних евтектичних процеси, що проходять в даній системі, відповідають реакціям: Le₁ \leftrightarrow Tl₂Te + Tl₁₈SiTe₁₁ (4 мол. % SiTe₂, 679 K), Le₂ \leftrightarrow Tl₄SiTe₄+HTM-Tl₂SiTe₃ (38 мол. % SiTe₂, 521 K), Le₃ \leftrightarrow Tl₂Si₂Te₅+ SiTe₂ (83 мол. % SiTe₂, 563 K).

Таким чином, при дослідженні перерізу $Tl_2Te-SiTe_2$ було встановлено існування конгруентної сполуки Tl_2SiTe_3 та ще трьох нових фаз, що відповідають складам $Tl_{18}SiTe_{11}$, Tl_4SiTe_4 та $Tl_2Si_2Te_5$.
4.5.2. Переріз Tl₂SiTe₃-CdTe

Результати рентгенофазового аналізу системи "Tl₂SiTe₃" – CdTe при 520 К представлені на рис. 4.15 [153]. Встановлено існування γ -твердого розчину на основі тетрарної фази, протяжність якого змінюється в діапазоні концентрацій Tl_{2+x}Cd_{1-1.5x}Si_{1+x/2}Te₄, де x = 0.1. Графічне представлення зміни параметрів кристалічної гратки зображено на рис. 4.16. Розчинність на основі CdTe становить менше 3 мол. %.

Рис. 4.15. Дифрактограми зразків системи $Tl_2SiTe_3 - CdTe$

Рис. 4.16. Зміна параметрів гратки зразків системи Tl₂SiTe₃ – CdTe

Побудовано діаграму стану системи "Tl₂SiTe₃"–CdTe (рис. 4.17). Дана система є квазібінарним перерізом у квазіпотрійній системі Tl₂Te–CdTe–SiTe₂ з ліквідусом, що представлений трьома кривими первинної кристалізації: високотемпературної модифікації фази δ -Tl₂SiTe₃, BTM сполуки α -Tl₂CdSiTe₄ та незначного твердого розчину на основі CdTe (γ). Склад перитектичної точки визначений екстраполяцією трьох ліній до точки їх перетину і становить 32 мол. % CdTe.

Рис. 4.17. Діаграма стану системи $Tl_2SiTe_3 - CdTe$ [153]

(I – результати ДТА; II – однофазні зразки РФА, III – двофазні зразки РФА: 1 – L; 2 – L + γ -CdTe; 3 – L + α -Tl₂CdSiTe₄; 4 – α -Tl₂CdSiTe; 5 – α -Tl₂CdSiTe + γ -CdTe; 6 – γ -CdTe; 7 – L + δ -Tl₂SiTe₃; 8 – L + β -Tl₂CdSiTe₄; 9 – δ -Tl₂SiTe₃ + β -Tl₂CdSiTe₄; 10 – β -Tl₂CdSiTe₄; 11 – σ -Tl₂SiTe₃ + β -Tl₂CdSiTe₄; 12 – β -Tl₂CdSiTe₄ + γ -CdTe)

4.6. Система Tl₂Te-HgTe-SiTe₂

У підрозділі наведено результати дослідження фазових рівноваг по перерізу Tl₂SiTe₃–HgTe, що є квазібінарним у системі Tl₂Te–HgTe–SiTe₂.

4.6.1. Переріз Tl₂SiTe₃–HgTe

Систему "Tl₂SiTe₃"–HgTe досліджено методами РФА та ДTA [154]. Результати рентгенофазового аналізу для системи представлені на рис. 4.18.

Рис. 4.18. Дифрактограми зразків системи Tl₂SiTe₃ – HgTe

Встановлено існування γ -твердого розчину на основі тетрарної фази Tl₂HgSiTe₄, протяжність якого змінюється в діапазоні концентрацій Tl_{2+x}Hg_{1-1.5x}Si_{1+x/2}Te₄, де x = 0.1. Розчинність на основі вихідних компонентів становить менше 3 мол. %. Графічне представлення зміни параметрів кристалічної гратки зображено на рис. 4.19.

Рис.4.19. Зміна параметрів гратки зразків системи Tl₂SiTe₃ –HgTe

Побудовано діаграму стану системи "Tl₂SiTe₃"–HgTe (рис. 4.20). Для її побудови проведено диференційно-термічний та рентгено-фазовий аналіз 14-ти зразків.

Рис. 4.20. Діаграма стану системи Tl₂SiTe₃ – HgTe [154]

(I – результати ДТА; II – однофазні зразки РФА, III – двофазні зразки РФА: 1 – L; 2 – L + β -HgTe; 3 – L + BTM-Tl₂SiTe₃; 4 – L + α -Tl₂HgSiTe₄; 5 – α -Tl₂HgSiTe₄ + β -HgTe; 6 – β -HgTe; 7 – BTM-Tl₂SiTe₃ + α -Tl₂HgSiTe₄; 8 – α -Tl₂HgSiTe₄; 9 – HTM-Tl₂SiTe₃ + α -Tl₂HgSiTe₄) Дана система є квазібінарною, її ліквідус представлений трьома кривими первинної кристалізації: BTM-Tl₂SiTe₃, α -Tl₂CdSiTe₄ та сполуки β -HgTe. Тетрарна фаза α -Tl₂HgSiTe₄ утворюється інконгруентно при температурі 738 К. При температурі перитектики (738 К) проходить рівноважний процес: L+HgTe $\leftrightarrow \alpha$ -Tl₂HgSiTe₄. В системі проходить нонваріантний евтектичний процес, що відповідає рівновазі: L \leftrightarrow BTM-Tl₂SiTe₃+ α -Tl₂HgSiTe₄ (12 мол. % HgTe, 582 K).

Для зразка складу 25 мол. % HgTe та декількох інших, що межують з ним, зафіксовано ефект при 565 К, що відповідає поліморфному переходу тернарної фази "Tl₂SiTe₃": BTM-Tl₂SiTe₃+HTM-Tl₂SiTe₃. Розчинність на основі HgTe становить менше 3 мол. %.

4.7. Висновки до розділу 4

Досліджено фазові рівноваги в системах $Tl_2S-CdS-Ge(Sn)S_2$, $Tl_2Se-ZnSe-Ge(Sn)Se_2$ при 570 К та $Tl_2Te-Cd(Hg)Te-SiTe_2$ при 520 К методами РФА, ДТА та MCA.

У системі Tl₂S–CdS–GeS₂ встановлено утворення двох нових тетрарних сполук Tl₂CdGe₂S₆ та Tl₂CdGe₃S₈ Побудовано ізотермічний переріз системи Tl₂S–CdS–GeS₂ при 570 К, що характеризується наявністю дев'яти однофазних, сімнадцяти двофазних та дев'яти трифазних полів. Склад сполуки Tl₂CdGe₂S₆, підтверджений методом СЕМ/ЕДС та є близьким до вихідного. Розчинність на основі CdS становить до 5 мол. %, а на основі інших сполук – менше 3 мол. %.

У системі Tl₂S–CdS–SnS₂ виявлено утворення двох нових тетрарних сполук Tl₂CdSn₂S₆ та Tl₂CdSn₃S₈ Побудовано ізотермічний переріз системи Tl₂S–CdS–SnS₂ при 570 К, що характеризується наявністю восьми однофазних, п'ятнадцяти двофазних та восьми трифазних полів. Склад сполуки Tl₂CdSn₃S₈, підтверджений методом CEM/EДC, є близьким до вихідного. Розчинність на основі CdS становить до 5 мол. %, а на основі інших сполук – менше 3 мол. %.

У системі Tl₂Se–ZnSe–GeSe₂ встановлено утворення нової тетрарної сполуки Tl₂ZnGe₃Se₈, побудовано 3 політермічних перерізи та ізотермічний переріз системи Tl₂Se–ZnSe–GeSe₂ при 570 К, для якого характерно наявність семи однофазних, дванадцяти двофазних та шести трифазних полів. Розчинність α -твердих розчинів на основі Tl₂Se становить до 8 мол. %, а на основі інших сполук – до 5 мол. %.

У системі Tl₂Se–ZnSe–SnSe₂ виявлено утворення тетрарної сполуки Tl₂ZnSnSe₄, побудовано два політермічних перерізи та ізотермічний переріз системи Tl₂Se–ZnSe–SnSe₂ при 570 К, для якого характерно наявність шести однофазних, десяти двофазних та п'яти трифазних полів. Розчинність на основі Tl₂Se по перерізу Tl₂Se–ZnSe становить 8 мол. %, на основі інших сполук – до 5 мол. %.

РОЗДІЛ 5. КРИСТАЛІЧНА СТРУКТУРА ТА ВЛАСТИВОСТІ ТЕТРАРНИХ СПОЛУК

5.1. Вирощування монокристалів Tl₂CdGe(Sn)Se₄ та Tl₂CdSi(Ge)₃Se₈

Розглянувши побудовані фазові діаграми систем Tl₂Ge(Sn)Se₃-CdSe та термограми зразків. шо відповідають сполукам $Tl_2CdGe(Sn)Se_4$ та $Tl_2CdSi(Ge)_3Se_8$ (для визначення температури переохолодження), проведено вирощування їх монокристалів з розчину-розплаву та з розчину вертикальним методом Бріджмена-Стокбаргера. Вихідні склади вибирали з області первинної кристалізації Tl₂CdGe(Sn)Se₄: при 20 мол.% CdSe по перетинах Tl₂Ge(Sn)Se₃-CdSe (використовували розчин-розплавний метод росту). Так як сполуки $Tl_2CdSi(Ge)_3Se_8 \in$ конгруентними, то їх вирощували із стехіометричних складів (розплавний метод). Спочатку синтезували полікристалічні зразки з простих речовин: талію, кадмію, германію (олова) та селену чистотою не менше 99,999 мас.% із загальною масою 10 г (для Tl₂CdGeSe₄ i Tl₂CdSi(Ge)₃Se₈) та 20 г (Tl₂CdSnSe₄). Розраховані кількості вихідних речовин поміщали в кварцову ємність з конічним дном, яку відкачували до залишкового тиску 1,33·10⁻² Па і потім спаювали. Попередній синтез проводили в муфельній печі МП-60 при нагріванні до 1270 К зі швидкістю 15-20 К/год і витримкою при цій температурі протягом 5 год. Зразки охолоджували до кімнатної температури (10 К/год).

Вирощування монокристалів проводили у вертикальній двозонній печі. Градієнт температури на межі розділу тверда речовина-розплав був встановлений шляхом розділення зон диском з нержавіючої сталі, який також діяв як тепловідвід. Максимальна температура верхньої гарячої зони становила 1050 К, нижньої зони відпалу – 650 К, а градієнт температури на межі розплав – тверде тіло становив 1,5-4 К/мм.

Синтезовані відразу у ростових ємностях для запобігання втрат зразки, було переміщено в попередньо розігріту ростову піч. Розплав у гарячій зоні витримували 24 год, далі ампулу опускали для кристалізації 3-4 мм розплаву та формували затравку з наступним рекристалізаційним відпалом протягом 1 доби. Потім контейнер піднімали на 2 мм, і монокристал вирощували на затравці шляхом переміщення контейнера через поверхню розділу розплав-Ампула рухалася високотемпературної тверда речовина. 3 ЗОНИ В низькотемпературну зі швидкістю ~0,5 мм/год. Після потрапляння В ізотермічну зону при 650 К кристал відпалювали протягом 250 год для повної кристалізації НТ модифікації. До кімнатної температури охолоджували зі швидкістю 40-60 К/добу. Загалом процес росту тривав 27 днів. Отриманий однорідний конічний блискучо-сірий монокристал Tl₂CdSnSe₄ мав довжину 44 мм і діаметр в основі 10 мм та придатний для фізичних досліджень і практичного використання. Фото кристала наведено на рис. 5.1 [149].

Рис. 5.1. Фото кристала Tl₂CdSnSe₄ [149]

Монокристал легко сколюється через площину спайності, утворюючи дзеркальну гладку поверхню, яка не потребує додаткової обробки перед вимірюваннями. Отримати в монокристалічному вигляді сполуки Tl₂CdGeSe₄ та Tl₂CdSi(Ge)₃Se₈ не вдалося – вийшли крупнокристалічні полікристали.

Картину порошкової рентгенівської дифракції (РФА) для визначення фазового складу вирощеного кристала Tl₂CdSnSe₄ знімали на дифрактометрі ДРОН 4–13 з використанням рентгенівського джерела Cu K α в області 10 \leq 2 θ \leq 100°, крок сканування 0,05°, експозиція 5 с у кожній точці. Структурні параметри уточнювали повнопрофільним аналізом (метод Рітвельда) за допомогою програмного забезпечення CSD [123]. Рентгеноструктурний аналіз підтвердив, що HTM-Tl₂CdSnSe₄ кристалізується в тетрагональній симетрії *ПГ I*-42*m* з параметрами елементарної комірки *a* = 0,80480 *нм*, *c* = 0,68569 *нм*. Ці результати РФА для кристала $Tl_2CdSnSe_4$ добре узгоджуються з результатами, отриманими для полікристалічного зразка $Tl_2CdSnSe_4$ у роботі [149].

Для цих експериментальних досліджень зразки сколювалися вздовж площини спайності з наступним проведенням для них оптичних вимірювань та РФС. Для вимірювань РФС кристал $Tl_2CdSnSe_4$ мав форму напівдиска діаметром 10 мм і висотою 1,7 мм. Електронні та оптичні властивості монокристалу $Tl_2CdSnSe_4$ та досліджених полікристалічних зразків розглянуто далі в підрозділах 5.6 та 5.7 даної роботи.

5.2. Кристалічна структура сполук $Tl_2CdSi(Ge, Sn)Se_4$ та $Tl_2CdHg(Cd)Te_4$

Рентгенівським методом порошкової дифракції досліджена кристалічна структура для п'яти тетрарних селенідів: Tl₂CdSiSe₄, HT-модифікації Tl₂CdSnSe₄ [149] та сполук Tl₂CdGeSe₄, Tl₂CdHg(Cd)Te₄ [155], які є ізоструктурними. Їх структура належить до CT Tl₂HgGeTe₄ [107].

Результати розрахунку параметрів комірки сполук в ізотропній апроксимації та умови рентгенівского експерименту наведено в табл. 5.1.

Елементарна комірка сполуки Tl₂CdSnSe₄ координаційні та многогранники атомів представлено на рис. 5.2. Атоми Tl координуються Se, многогранники вісьмома атомами утворюючи 3 деформованих тетрагональних антипризм. Атоми Cd мають тетраедричне оточення, атоми Sn також розміщені у центрі тетраедрів з атомами Se у вершинах.

Рис. 5.2. Елементарна комірка та координаційне оточення атомів сполуки Tl₂CdSnSe₄

Експериментальні, розраховані та різницеві між ними профілі рентгенограм сполук $Tl_2CdSnSe_4$, $Tl_2CdGeSe_4$, $Tl_2CdSnSe_4$, $Tl_2CdHg(Cd)Te_4$ наведені на рис. 5.3, крім сполуки $Tl_2CdSiSe_4$, яку не вдалося отримати в чистому вигляді і для якої визначалися лише параметри комірки.

Атомні координати та ізотропні теплові параметри наведено у табл. 5.2, а міжатомні відстані та координаційні числа (КЧ) атомів сполук – у табл. 5.3.

Рис. 5.3. Спостережувана (кола), розрахована (лінії) та різницева між ними дифракційні картини сполук $Tl_2CdSnSe_4$, $Tl_2CdGeSe_4$, $Tl_2CdSiTe_4$, $Tl_2HgSiTe_4$

Кристалографічні дані і деталі структурних досліджень сполук Tl₂CdSiSe₄, Tl₂CdGeSe₄, Tl₂CdSnSe₄, Tl₂CdSiTe₄ та Tl₂HgSiTe₄ [149, 155]

Емпірична формула	Tl ₂ CdSiSe ₄	Tl ₂ CdGeSe ₄	Tl ₂ CdSnSe ₄	Tl ₂ CdSiTe ₄	Tl ₂ HgSiTe ₄
Число формульних одиниць	2				
Просторова група	<i>I</i> -42 <i>m</i> (№ 121)				
а (нм)	0,8020(2)	0,80145(9)	0,80490(6)	0,84121(6)	0,83929(4)
с (нм)	0,6646(2)	0,67234(9)	0,68573(8)	0,70289(9)	0,70396(5)
Об'єм комірки (нм ³)	0,4274(7)	0,4319(2)	0,4443(1)	0,4974(2)	0,49587(9)
Кількість атомів в комірці	16,0				
Розрахована густина (г/см ³)	6,720(1)	6,995(3)	7,144(2)	7,075(2)	7,687(2)
Спосіб обрахунку		Ι	Товнопрофільний	Í	
Програма для обрахунку	WinCSD				
R _I		0,1058	0,0815	0,0896	0,0619
R _P		0,2653	0,2641	0,2074	0,1586
Вісь текстури і параметр		[0 0 1] 1,24(3)	[0 0 1] 1,24(3)	[0 0 1] 1,24(3)	[0 0 1] 1,24(3)
Фактор шкали		0,259(2)	0,24497(3)	0,1313(1)	0,2224(1)

Координати атомів та ізотропні теплові параметри для сполук $Tl_2CdGeSe_4$,

r	T				2 2
Атом	ПСТ	x/a	y/b	z/c	$B_{i30} \times 10^2$, HM^2
Tl ₂ CdG	eSe ₄				
T1	4 <i>c</i>	0	1/2	0	1,51(5)*
Cd	2 <i>b</i>	0	0	1/2	1,51(5)*
Ge	2°	0	0	0	1,51(5)*
Se	8 <i>i</i>	0,1641(6)	0,1641(6)	0,2819(12)	1,51(5)*
Tl ₂ CdSt	nSe ₄				
Tl	4 <i>c</i>	0	1/2	0	0,3(18)
Cd	2 <i>b</i>	0	0	1/2	1,2(3)
Sn	2°	0	0	0	0,9(3)
Se	8 <i>i</i>	0,1713(5)	0,1713(5)	0,252(15)	0,7(2)
Tl ₂ CdSi	Te ₄				
Tl	4 <i>c</i>	0	1/2	0	0,96(1)
Cd	2 <i>b</i>	0	0	1/2	0,9(2)
Si	2°	0	0	0	1,8(7)
Те	8 <i>i</i>	0,1711(3)	0,1711(3)	0,2159(5)	0,21(6)
Tl ₂ HgSi	iTe ₄				
Tl	4 <i>c</i>	0	1/2	0	0,70(9)
Hg	2 <i>b</i>	0	0	1/2	1,10(8)
Si	2°	0	0	0	1,5(5)
Te	8 <i>i</i>	0,1703(2)	0,1711(3)	0,2155(3)	0,18(5)
1	1				

Tl₂CdSnSe₄, Tl₂CdSiTe₄ та Tl₂HgSiTe₄

* - фіксовано

Міжатомні відстані δ (нм) та координаційні числа (К.Ч.) атомів у структурі сполук Tl₂CdGeSe₄, Tl₂CdSnSe₄, Tl₂CdSiTe₄ та Tl₂HgSiTe₄

Tl ₂ CdGeSe ₄		Tl ₂ CdSnSe ₄					
Атом	ІИ	δ (нм)	К.Ч.	Атом	ІИ	δ (нм)	К.Ч.
T1	–4Se	0,3336(5)	8	T1	–4Se	0,342(3)	8
	–4Se	0,3545(6)	0		–4Se	0,3453(3)	0
Cd	–4Se	0,2656(7)	4	Cd	–4Se	0,258(3)	4
Ge	–4Se	0,2368(6)	4	Sn	–4Se	0,263(3)	4
	–Ge	0,2367(6)			–Cd	0,258(3)	
Sa	–Cd	0,2656(7)	6	Sa	–Sn	0,263(3)	6
36	-2Tl	0,3336(5)	0	36	-2Tl	0,342(3)	0
	-2Tl	0,3545(6)			-2T1	0,3453(3)	
Tl_2Cc	lSiTe ₄			Tl ₂ HgSiTe ₄			
Атом	и	δ (nm)	К.Ч	Атом	и	δ (nm)	К.Ч.
T1	–4Te	0,3470(2)	Q	Tl	–4Te	0,3465(2)	0
	–4Te	0,3704(2)	0		–4Te	0,3703(2)	0
Cd	–4Te	0,2848(3)	4	Hg	–4Te	0,2845(2)	4
Si	–4Te	0,2536(3)	4	Si	–4Te	0,2527(2)	4
	– Si	0,2536(3)			–Si	0,2527(2)	
Та	-Cd	0,2848(3)	6	Та	–Hg	0,2845(2)	6
Ie	-2Tl	0,3470(2)	0	Te	-2Tl	0,3465(2)	0
	-2Tl	0,3704(2)			-2T1	0.3703(2)	

5.3. Кристалічна структура сполуки TlCd_{0,5}GeS₃

Методом порошку досліджена кристалічна структура сполуки TlCd_{0,5}GeS₃, яка утворюється у квазіпотрійній системі Tl₂S–CdS–GeS₂. Визначено, що вона кристалізується у власному структурному типі. Умови рентгенівського експерименту та результати дослідження кристалічної структури для даної сполуки наведено у табл. 5.4.

Таблиця 5.4

Умови рентгенівського експерименту та результати дослідження кристалічної структури сполуки TlCd_{0,5}GeS₃

Емпірична формула	TlCd _{0,5} GeS ₃
Число формульних одиниць	9
Просторова група	<i>R</i> 3 (№ 146)
а (нм)	1,28787(3)
с (нм)	0,87098(4)
Об'єм комірки (нм ³)	1,2511(1)
Кількість атомів в комірці	49,5
Розрахована густина (г/см ³)	5,1284
Спосіб обрахунку	Повнопрофільний
Програма для обрахунку	WinCSD
R _I	0,0469
R _P	0,1488
Вісь текстури і параметр	[0 0 1] 1,24(3)

Координати атомів та ізотропні теплові параметри для сполуки TlCd_{0,5}GeS₃ представлено у табл. 5.5.

Атом	ПСТ	<i>x/a</i>	y/b	<i>z/c</i>	Заповнення	$B_{i30} \times 10^2 (\text{Hm}^2)$
T1	3a	0	0	0,4257(8)	1,0	1,42(13)
M*	9 <i>c</i>	0,4496(3)	0,0240(3)	0,1409(7)	0,667 Tl +	0,78(8)
					0,167 Cd	
Cd	3 <i>a</i>	0	0	0,0000*	1,0	1,6(2)
Ge	9 <i>c</i>	0,3183(6)	0,2282(6)	0,2029(10)	1,0	1,0(2)
S 1	9 <i>c</i>	0,1932(13)	0,0559(14)	0,154(2)	1,0	1,5(3)
S2	9 <i>c</i>	0,4832(12)	0,2643(13)	0,120(2)	1,0	1,2(3)
S 3	9 <i>c</i>	0,3183(6)	0,2282(6)	0,2029(10)	1,0	1,0(2)

Координати атомів та ізотропні теплові параметри для сполуки TlCd_{0,5}GeS₃

*зафіксовано

Експериментальна і розрахована дифрактограми та різницева між ними для сполуки TlCd_{0.5}GeS₃ представлена на рис. 5.4.

Рис. 5.4. Експериментальна і розрахована дифрактограми та різницева між ними для сполуки TlCd_{0,5}GeS₃

Елементарна комірка сполуки $TlCd_{0,5}GeS_3$ та координаційні многогранники атомів Tl, Cd і Ge представлені на рис. 5.5.

Таблиця 5.5

Рис. 5.5. Елементарна комірка сполуки $TlCd_{0,5}GeS_3$ та координаційні многогранники атомів Tl, Cd і Ge

Міжатомні відстані у та координаційні числа атомів Tl, Cd і Ge у структурі сполуки TlCd_{0,5}GeS₃ наведено в табл. 5.6.

Таблиця 5.6

Міжатомні відстані δ (нм) та координаційні числа (К.Ч.) атомів Tl, Cd і Ge y

Атоми		δ (нм)	К.Ч.	
Tl	- 3S1	0,324(2)	9	
	- 3\$3	0,3581(15)		
	- 382	0,376(2)		
М	- 1S2	0,291(2)	8	
	- 1 S 2	0,327(2)		
	- 1 S 1	0,329(2)		
	- 1S3	0,349(2)		
	- 1S2	0,352(2)		
	- 1S1	0,353(2)		
	- 1S1	0.380(2)		

структурі TlCd_{0,5}GeS₃

Атоми		δ (нм)	К.Ч.
	- 1S1	0.380(2)	
Cd	- 3S1	0,259	6
	- 3S2	0,277	
Ge	- 1S1	0,203(2)	4
	- 1S2	0,206(2)	
	- 1\$3	0,213(2)	
	- 1S3	0,228(2)	

Продовження таблиці 5.6

Міжатомні відстані добре узгоджуються з сумою радіусів відповідних іонів. Координаційними многогранниками для атомів Tl та атомів статистичної суміші (Tl+Cd) є дев'яти- і восьмивершинники з атомів S. Атоми Cd центрують октаедри, атоми Ge – тетраедри з атомів S.

Укладка координаційних поліедрів для атомів Tl, Cd та Ge у структурі сполуки TlCd_{0,5}GeS₃ представлена на рис. 5.6. Дев'ятивершинники, центровані атомами Tl, і октаедри, центровані атомами Cd, чергуються між собою і з'єднані спільними трикутними гранями та формують колони вздовж напрямку *Z*. Тетраедри, центровані атомами Ge, з'єднуються між собою спільними вершинами і формують вздовж напрямку Z ланцюги. Кожен тетраедр трьома іншими вершинами також з'єднує три колони з дев'ятивершинників і октаедрів.

Рис. 5.6. Укладка координаційних поліедрів для атомів Tl, Cd та Ge у структурі сполуки TlCd_{0,5}GeS₃

5.4. Кристалічна структура сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$

Досліджена кристалічна структура сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$, що кристалізується у структурному типі $Na_{0,5}CoO_2$. Кристалографічні дані та деталі структурних досліджень сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$ наведено у табл. 5.7. Координати атомів та ізотропні теплові параметри у структурі сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$ представлено у табл. 5.8.

Таблиця 5.7

Емпірична формула	$Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$
Число формульних одиниць	2
Просторова група	<i>P</i> 6 ₃ / <i>mmc</i> (№ 194)
а (нм)	0,37512(2)
с (нм)	1,5112(1)
Об'єм комірки (нм ³)	0,18416(4)
Кількість атомів в комірці	7,3
Розрахована густина (г/см ³)	5,728
Спосіб обрахунку	Повнопрофільний
Програма для обрахунку	WinCSD
R_{I}	0,0578
$R_{\rm P}$	0,2269
Вісь текстури і параметр	[0 0 1] 0,69(3)

Кристалографічні дані і деталі структурних досліджень сполуки Tl_{2/3}Cd_{1/3}Sn_{2/3}S₂

Таблиця 5.8

Координати атомів та ізотропні теплові параметри для сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$

Атом	ПСТ	x/a	y/b	z/c	Заповнення	$B_{i30} \times 10^2 (\text{Hm}^2)$
T11	2 <i>b</i>	0	0	1/4	0,183	2,5(4)
T12	2c	1/3	2/3	1/4	0,487	2,1(2)
Μ	2a	0	0	0	1/3Cd+2/3Sn	0,56(15)
S	4f	1/3	2/3	0,5969(9)	1,0	1,0(4)

Експериментальна і розрахована дифрактограми та різницева між ними для Tl_{2/3}Cd_{1/3}Sn_{2/3}S₂ представлена на рис. 5.7. Присутність CdS як домішкової фази враховано при розрахунку.

Рис. 5.7. Експериментальна і розрахована дифрактограми та різницева між ними для Tl_{2/3}Cd_{1/3}Sn_{2/3}S₂:

1 (верхня) - Tl_{2/3}Cd_{1/3}Sn_{2/3}S₂ (91,06 ваг. %), 2 (нижня) – CdS (8,94 ваг. %)

Міжатомні відстані та координаційні числа атомів Tl, Cd і Sn у структурі сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$ наведено в табл. 5.9. Елементарна комірка сполуки $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$ та координаційні многогранники атомів Tl, Cd і Sn представлені на рис. 5.8. Кожен атом Tl координує навколо себе шість атомів S, які утворюють тригональні призми. Атоми статистичної суміші (Cd +Sn) центрують октаедри з атомів S.

Рис. 5.8. Елементарна комірка сполуки Tl_{2/3}Cd_{1/3}Sn_{2/}3S₂ та координаційні многогранники атомів Tl, Cd і Sn

Міжатомні відстані б (нм) та координаційні числа (К.Ч.) атомів у структурі $Tl_{2/3}Cd_{1/3}Sn_{2/3}S_2$

Атоми		δ (нм)	К.Ч.
T11	- 6S	0,3169(10)	6
T12	- 6S	0,3169(10)	6
М	- 6S	0,2615(7)	6

Укладка координаційних многогранників атомів Tl (Tl1 i Tl2) і атомів статистичної суміші (Cd+Sn) представлена на рис. 5.9. Ряди тригональних призм і октаедрів чергуються між собою вздовж напрямку *Z*.

Рис. 5.9. Укладка координаційних многогранників атомів Tl (Tl1 i Tl2) і атомів статистичної суміші (Cd+Sn)

5.5. Кристалічна структура сполук Tl₂CdGe₃S₈ та Tl₂CdSi(Ge)₃Se₈

Методом монокристалу досліджено кристалічну структуру для нового тетрарного халькогеніду Tl₂CdGe₃S₈. Сполука Tl₂CdGe₃S₈ кристалізується у структурному типі Cs₂CdGe₃Se₈. Кристалографічні дані та деталі структурних досліджень для Tl₂CdGe₃S₈ наведено у табл. 5.10. Координати атомів та

анізотропні теплові параметри у структурі сполуки Tl₂CdGe₃S₈ представлено у табл. 5.11.

Таблиця 5.10

Емпірична формула	$Tl_2CdGe_3S_8$
Просторова група	$P2_{1}2_{1}2_{1}$
Параметри комірки	
а (нм)	0,73429(2)
<i>b</i> (нм)	1,16741(4)
с (нм)	1,68191(5)
Об'єм (нм ³)	1,44178(7)
Число формульних одиниць	4
Обрахована густина (г/см ³)	4,586
Коефіцієнт абсорбції (мм ⁻¹)	31,011
F(000)	1736
Розміри кристалу (мм)	0,125 \[] 0,115 \[] 0,064
Інтервал <i>Ө</i> збору даних	2,422-26,732
Інтервал індексів	$-9 \le h \le 9, -14 \le k \le 14, -20 \le l \le$
	20
Кількість рефлексів	24568
Незалежні рефлекси	3056 [<i>R</i> (інт.) = 0,0507]
Спосіб обрахунку	Повноматричний МНК по F^2
Параметр Флека	0,356(11)
Дані/обмеження/параметри	3056/0/128
Критерій узгодження	1,032
$R[I>2\sigma(I)]$	R1 = 0,0321, wR2 = 0,0645
<i>R</i> (всі дані)	R1 = 0,0467, wR2 = 0,0696
Максимальні пік та яма $\times 10^{-3}$ (е/нм ³)	2,277 and -0,936

Результати дослідження кристалічної структури сполуки Tl₂CdGe₃S₈

Таблиця	5	1	1
гаолиця	\mathcal{I}	. 1	T

TC	•	•	•	•			T1 0 10	D F
KOODHUUDTU	OTOMID TO	101100Th	Λ Π Π Π Π Π		TODOMOTOR		TTL CAL	$-\Delta$
координати		а аньзоты	лонні іс	лловг	парамстри		1 DUUU	103738
			• •			j	2	5~ 0

Атом	ПСТ	x/a		y/b		z/c		$U_{e\kappa \epsilon}$	_з ×10 ² (нм ²)
T11	4 <i>a</i>	0,25049(13))	0,30379(6)		0,33740(4)		0,0623(2)	
T12	4 <i>a</i>	0,75771(12)	0,75771(12)		0,12483(6)		0,05502(4))604(2)
Cd	4a	0,02428(12))	0,50045	5(9)	0,154	14(7)	0,0)292(2)
Ge1	4a	0,52431(16)	0,47090)(11)	0,153	881(9)	0,0)218(3)
Ge2	4a	0,7343(2)		0,43251	(11)	0,484	184(6)	0,0)238(3)
Ge3	4a	0,7570(2)		0,55271	(11)	0,326	670(6)	0,0)237(3)
S 1	4 <i>a</i>	0,2834(4)		0,3625(3)	0,149	946(19)	0,0)281(7)
S2	4a	-0,0007(5)		0,6278(4)	0,275	56(2)	0,0)346(9)
S 3	4a	0,0133(5)		0,6345(4)	0,036	57(2)	0,0)373(9)
S4	4a	0,7613(4)		0,3613(2)	0,157	745(17)	0,0)262(6)
S5	4a	0,5002(4)		0,5897(3)	0,260)7(2)	0,0)322(9)
S 6	4 <i>a</i>	0,5094(5)		0,5990(3)	0,0527(2)		0,0316(9)	
S7	4a	0,7775(5)		0,3663(3)		0,36075(17)		0,0313(8)	
S 8	4a	0,7177(5)		0,6192(3) 0,45		0,451	47(17)	0,0)306(8)
Анізотр	опні тепло	ові параметр	И						
Атом	U_{11}	U_{22}	U_{32}	3	U_{23}		U_{13}		U_{12}
Tl1	0,0832(5)	0,0489(4)	0,0	547(4)	0,0019	9(3)	0,0000(5))	-0,0032(5)
T12	0,0554(4)	0,0653(5)	0,0	606(4)	0,0072	2(3)	-0,0019(4	1)	0,0015(5)
Cd	0,0227(4)	0,0376(5)	0,0	275(5)	0,0009	9(5)	0,0001(4))	0,0031(4)
Ge1	0,0193(6)	0,0261(7)	0,0	201(6)	0,0003	3(6)	-0,0006(6	5)	0,0003(5)
Ge2	0,0280(7)	0,0262(7)	0,0	172(5)	0,0004	4(5)	-0,0007(6	5)	-0,0009(7)
Ge3	0,0245(6)	0,0291(7)	0,0	173(5)	0,000	5(5)	-0,0003(6	5)	-0,0005(7)
S 1	0,0216(16)	0,0246(16)	0,0	381(17)	-0,002	24(15)	-0,0001(1	14)	-0,0017(13)
S2	0,0272(19)	0,045(2)	0,0	31(2)	-0,007	'9(18)	0,0055(1	4)	-0,0082(17)
S 3	0,037(2)	0,037(2)	037(2) 0,0		0,0092	2(18)	-0,0093(1	15)	-0,0128(18)
S4	0,0209(14)	0,0285(16)	0,0	292(14)	0,0023	3(14)	0,0002(1	8)	0,0038(14)
S5	0,0245(19)	0,045(2)	0,0	271(18)	-0,011	8(17)	-0,0036(1	13)	0,0081(16)
S 6	0,0294(19)	0,033(2)	0,0	325(19)	0,0108	8(16)	0,0078(1	4)	0,0090(15)
S 7	0,048(2)	0,0270(17)	0,0	186(14)	-0,001	1(13)	0,0027(1	5)	0,0042(18)
S 8	0,046(2)	0,0276(17)	0,0	183(14)	-0,002	20(13)	-0,0004(1	15)	0,0025(17)

Міжатомні відстані δ (нм) та координаційні числа (К.Ч.) атомів Tl, Cd і Ge у структурі Tl₂CdGe₃S₈ показані в табл. 5.12. Елементарна комірка сполуки Tl₂CdGe₃S₈ та координаційне оточення атомів Tl, Cd і Ge зображено на рис. 5.10. Атоми Tl1 і Tl2 центрують тригональні призми з двома і трьома додатковими атомами, сформовані атомами S. Для усіх атомів Ge (Ge1, Ge2 i Ge3) і Cd координаційне оточення з атомів S формує тетраедри.

Таблиця 5.12

Атоми		δ (нм)	К.Ч.	
T11	- 1S1	0,3243(3)	8	
	- 1S2	0,3346(4)		
	- 1S3	0,3484(4)		
	- 1 S 6	0,3498(3)		
	- 1S5	0,3510(3)		
	- 1S7	0,3570(3)		
	- 1S3	0,3842(3)		
	- 1S7	0,3957(3)		
T12	- S4	0,3254(2)	9	
	- S2	0,3361(3)		
	- S1	0,3447(3)		
	- S 8	0,3463(3)		
	- S 8	0,3493(3)		
	- \$5	0,3655(3)		
	- S 6	0,3677(3)		
	- S 3	0,3842(4)		
	- S 8	0,3854(3)		
Cd	- 1S1	0,2494(3)	4	
	- 1 S 3	0,2521(4)		
	- 1S4	0,2524(3)		
	- 1S2	0,2534(4)		
Ge1	- 1S4	0,2161(3)	4	
	- 1 S 1	0,2176(3)		
	- 1 S 6	0,2268(4)		
	- 1S5	0,2278(4)		
Ge2	- 1S3	0,2163(4)	4	
	- 1 S 6	0,2231(4)		
	- 1S7	0,2248(3)		
	- 1S8	0,2254(4)		
Ge3	- 1S2	0,2162(4)	4	
	- 1S5	0,2230(4)		
	- 1S7	0,2255(4)		
	- 1S8	0,2256(3)		

Міжатомні відстані δ (нм) та координаційні числа (К.Ч.) атомів сполуки $Tl_2CdGe_3S_8$

Рис. 5.10. Елементарна комірка сполуки Tl₂CdGe₃S₈ та координаційне оточення атомів Tl, Cd і Ge

Укладка координаційних многогранників атомів Ge i Cd у структурі сполуки $Tl_2CdGe_3S_8$ показана на рис. 5.11. Ізольовані шари тетраедрів чергуються між собою вздовж напрямку *Y*.

Рис. 5.11. Укладка координаційних многогранників атомів Ge i Cd у структурі сполуки Tl₂CdGe₃S₈

Нові тетрарні сполуки Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈ є ізоструктурними та кристалізуються також у структурному типі Cs₂CdGe₃Se₈ [114]. Кристалографічні дані та деталі структурних досліджень сполук Tl₂CdSi₃Se₈ і Tl₂CdGe₃Se₈ наведено у табл. 5.13. Координати атомів та ізотропні теплові параметри сполук Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈ представлено у табл. 5.14.

Кристалографічні дані і деталі структурних досліджень сполук Tl₂CdSi(Ge)₃Se₈ [153]

Емпірична формула	Tl ₂ CdSi ₃ Se ₈	Tl ₂ CdGe ₃ Se ₈
Просторова група	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	$P2_12_12_1$ (No. 19)
а (нм)	0,7487(1)	0,76033(9)
<i>b</i> (нм)	1,2117(3)	1,2072(2)
С (НМ)	1,7137(3)	1,7475(2)
Об'єм комірки (нм ³)	1,5547(8)	1,6040(6)
Число формульних одиниць	4	4
Розрахована густина (г/см ³)	$5,285 \text{ g/cm}^3$	$5,675 \text{ g/cm}^3$
Коефіцієнт абсорбції	$770,50 \text{ mm}^{-1}$	793,85 mm ⁻¹
F(000)	2096	2312
Дифрактометр	ДРОН-4-13	ДРОН-4-13
2Θ	10,00-100,00	10,00-100,00
Спосіб обрахунку	Повнопрофільний	Повнопрофільний
R_I	0,0947	0,1255
R_P	0,2772	0,2831
Вісь текстури і параметр	[0 1 0] 0,096(4)	[0 1 0] 0,134(5)

Рентгенівська спостережувана, розрахована та різницева між ними для сполук Tl₂CdSi(Ge)₃Se₈ показані на рис. 5.12

Рис. 5.12. Рентгенівська спостережувана (кола), розрахована (лінії) та різницева між ними для сполук Tl₂CdSi₃Se₈ (a) та Tl₂CdGe₃Se₈ (δ)

Таблиця 5.14

Координати атомів та ізотропні теплові параметри для сполук $Tl_2CdSi_3Se_8$ та

Atom	ПСТ	x/a	y/b	z/c	$B_{iso.} \times 10^2 (nm^2)$
Tl ₂ CdSi ₃ S	e ₈				
T11	4a	0,271(2)	0,8945(6)	0,9444(6)	1,72(10)
T12	4a	0,725(2)	0,7001(5)	0,6669(6)	1,35(9)
Cd	4a	0,480(3)	0,9925(10)	0,6615(10)	2,0(3)
Si1	4a	0,506(9)	0,960(4)	0,165(5)	1,0*
Si2	4a	0,734(14)	0,925(3)	0,492(3)	1,0*
Si3	4a	0,762(10)	0,954(3)	0,817(4)	1,0*
Se1	4a	0,506(4)	0,891(2)	0,7622(13)	1,7(4)
Se2	4a	0,998(4)	0,401(2)	0,7324(14)	2,0(5)
Se3	4a	0,230(4)	0,6454(12)	0,8380(13)	1,7(4)
Se4	4a	0,783(4)	0,6324(12)	0,8497(14)	0,9(5)
Se5	4a	0,962(3)	0,6185(14)	0,4695(13)	0,7(5)
Se6	4a	0,010(4)	0,3932(14)	0,9354(14)	1,1(4)
Se7	4a	0,765(5)	0,8669(11)	0,9496(13)	1,2(4)
Se8	4a	0,754(5)	0,8677(13)	0,3609(13)	0,9(5)
Tl ₂ CdGe ₃ S	Se ₈				
T11	4a	0,284(2)	0,8871(6)	0,9490(6)	1,84(10)
T12	4a	0,7094(14)	0,6949(6)	0,6650(7)	1,35(9)
Cd	4a	0,476(3)	0,9874(9)	0,6677(10)	1,8(3)
Ge1	4a	0,512(4)	0,9622(12)	0,162(2)	1,7(4)
Ge2	4a	0,762(5)	0,9173(11)	0,4877(12)	1,3(5)
Ge3	4a	0,777(4)	0,9496(12)	0,8254(13)	2,3(5)
Se1	4a	0,484(4)	0,8903(14)	0,7767(12)	2,6(4)
Se2	4a	0,995(4)	0,4034(12)	0,7412(12)	2,5(5)
Se3	4a	0,262(4)	0,6263(10)	0,8461(12)	1,2(4)
Se4	4a	0,764(3)	0,6314(10)	0,8456(13)	2,2(4)
Se5	4a	0,973(3)	0,6168(12)	0,4835(12)	0,7(5)
Se6	4a	0,009(3)	0,3833(11)	0,9433(13)	1,8(4)
Se7	4a	0,792(3)	0,8585(11)	0,9563(12)	1,6(4)
Se8	4a	0,758(4)	0,8535(10)	0,3510(14)	2,4(4)

 $Tl_2CdGe_3Se_8$

* Зафіксовано

Міжатомні відстані δ (нм) та координаційні числа (К.Ч.) атомів в структурі сполук Tl₂CdSi₃Se₈ and Tl₂CdGe₃Se₈ наведено в табл. 5.15.

Міжатомні відстані б (нм) та координаційні числа (К.Ч.) атомів в структурі

Атоми		δ , нм	К.Ч.	
		Tl ₂ CdSi ₃ Se ₈	Tl ₂ CdGe ₃ Se ₈	
T11	- 1Se3	0,354(2)	0,363(2)	9
	- 1Se4	0,355(3)	0,360(2)	
	- 1Se5	0,355(2)	0,359(2)	
	- 1Se1	0,358(3)	0,338(2)	
	- 1Se2	0,364(3)	0,395(3)	
	- 1Se7	0,365(2)	0,340(2)	
	- 1Se7	0,371(4)	0,376(3)	
	- 1Se6	0,375(2)	0,376(2)	
	- 1Se7	0,380(4)	0,388(3)	
T12	- 1Se4	0,327(3)	0,327(2)	7
	- 1Se1	0,327(3)	0,351(2)	
	- 1Se6	0,353(3)	0,365(2)	
	- 1Se2	0,363(3)	0,375(2)	
	- 1Se8	0,365(4)	0,349(3)	
	- 1Se5	0,376(2)	0,387(2)	
	- 1Se5	0,395(2)	0,389(2)	
Cd	- 1Se1	0,213(3)	0,224(2)	4
	- 1Se4	0,260(3)	0,253(2)	
	- 1Se5	0,262(3)	0,293(3)	
	- 1Se3	0,285(3)	0,261(3)	
Si(Ge)1	- 1Se4	0,202(7)	0,220(3)	4
	- 1Se3	0,211(7)	0,219(3)	
	- 1Se2	0,244(6)	0,235(3)	
	- 1Se6	0,248(6)	0,262(3)	
Si(Ge)2	- 1Se5	0,221(10)	0,229(4)	4
	- 1Se6	0,231(9)	0,216(4)	
	- 1Se8	0,236(5)	0,251(3)	
	- 1Se7	0,263(4)	0,279(2)	
Si(Ge)3	- 1Se2	0,209(8)	0,216(4)	4
	- 1Se1	0,227(8)	0,249(4)	
	- 1Se8	0,229(4)	0,243(2)	
	- 1Se7	0,250(6)	0,254(3)	

сполук $Tl_2CdSi_3Se_8$ та $Tl_2CdGe_3Se_8$

5.6. Електронна структура

5.6.1. Електронна структура монокристалу Tl₂CdSnSe₄

Спектри РФС (XPS). Проведено вимірювання електронної структури вирощеного монокристала Tl₂CdSnSe₄ [156]. Спектр XPS зображено на рис. 5.13. Він містить спектральні особливості усіх атомів, що утворюють досліджуваний кристал. Винятком є криві XPS, пов'язані з киснем і вуглецем (O 1s і C 1s), які викликані адсорбцією вуглеводневих і кисневмісних форм в результаті впливу на поверхню кристала Tl₂CdSnSe₄ лабораторного повітря до початку експериментів XPS. Крім того, як показано на рис. 5.13, обробка іонами Ar⁺³ кВ протягом 5 хв істотно знижує відносні інтенсивності спектрів O 1s і C 1s. Помічено, що така поверхнева обробка практично виключає присутність кисневмісних форм. Отже, поверхня кристала Tl₂CdSnSe₄ має досить низьку гігроскопічну здатність. Ця властивість може мати корисне значення при використанні кристалів Tl₂CdSnSe₄ в оптоелектронних пристроях, що працюють в умовах вологості навколишнього повітря.

Рис. 5.13. Оглядовий XPS-спектр для кристалу $Tl_2CdSnSe_4$: (1) поверхня вирощеного кристалу та (2) поверхня кристалу після обробки іонами Ar⁺

Детальні спектри XPS рівня ядра для утворюючих атомів, представлені на рис. 5.14, тоді як на рис. 5.15 представлені спектри XPS валентних електронів для обох поверхонь, необроблених та для оброблених іонами Ar^{+3} кВ. Спектр XPS основного рівня Cd $3d_{5/2}$ накладається на спектр Tl $4d_{3/2}$, а спектр Tl $5d_{5/2}$ – на Cd 4d. Як видно з рис. 5.14 і 5.15, опромінення іонами Ar^{+3} напругою 3 кВ не

викликає суттєвих змін валентної зони та зони провідності, а також у величинах зв'язку електронів остовного рівня (табл. 5.16). Ці факти свідчать про високу хімічну стабільність поверхні кристала $Tl_2CdSnSe_4$ відносно обробки іонами Ar^{+3} 3 кВ. Незначне зниження відносних інтенсивностей XPS ліній, пов'язаних з талієм після опромінення іонами Ar^+ , також виявляється в поточних експериментах XPS (рис. 5.14 та 5.15). Проте, не спостерігались зміни у формах спектрів XPS, як основних, так і валентних електронів, під час обробки кристала $Tl_2CdSnSe_4$ іонами Ar+.

Рис. 5.14. Детальні спектри XPS внутрішніх рівнів (a) Se 3d, (b) Tl 4f, (c) Cd 3d, та спектри кристалу $Tl_2CdSnSe_4$ (d) Sn 3d: вихідна поверхня (1) та поверхня після його опромінення іонами Ar+ (2)

Рис. 5.15. Детальні спектри XPS валентної зони кристалу Tl₂CdSnSe₄: (1) - вихідна поверхня та (2) - поверхня після обробки іонами Ar+

Внутрішній рівень	Вихідна поверхня	Поверхня, оброблена
		Ar ⁺ -іонами
Tl 5d _{5/2}	12.29	12.34
Tl 5d _{3/2}	14.44	14.47
Sn 4d	25.09	25.02
Se 3d	53.26	53.33
T1 4f _{7/2}	117.43	117.54
Tl 4f _{5/2}	121.86	121.99
Tl 4d5/2	384.62	384.74
Cd 3d _{5/2}	404.85	404.91
Cd 3d _{3/2}	411.53	411.60
Sn 3d _{5/2}	485.45	485.37
Sn 3d _{3/2}	493.93	493.84

Енергія зв'язку (eV), виміряна для кристалу Tl₂CdSnSe₄

Виходячи зі складу кристала Tl₂CdSnSe₄ та враховуючи вимоги балансу заряду в ньому можна очікувати, що номінальні валентності складових хімічних елементів мають значення Tl¹⁺, Cd²⁺, Sn⁴⁺ і Se⁻². Проте порівняння значень енергії зв'язку електронів основного рівня для складових хімічних елементів кристала Tl₂CdSnSe₄ (табл. 5.16), визначених XPS вимірюваннями (рис. 5.14 та 5.15) з літературними даними показує, що талій у даному кристалі має стан заряду трохи менший за +1, тоді як зарядовий стан кадмію та олова значно менший, ніж +2 та +4, відповідно, як мало би очікуватись. Це свідчить про те, що зв'язки M - Se (M = Cd, Sn) повинні давати значну ковалентну складову (крім іонної).

Таким чином, в кристалі $Tl_2CdSnSe_4$ існує прямий тип забороненої зони, а його поверхня, згідно спектрів РФС, є стійкою до впливу опромінення іонами Ar⁺.

5.6.2. Електронна структура сполуки Tl₂CdGeSe₄

Було проведено вимірювання електронної структури четверного селеніду $Tl_2CdGeSe_4$ [157], що кристалізується в тетрагональній нецентросиметричній сингонії *ПГ I-42m* та має такі параметри елементарної комірки: *a*=0,80490(6) *нм* та *c*=0,68573(8) *нм*. У такій структурі теоретично оптимізовані параметри ґратки та положення складових атомів талію, кадмію, германію та селену у порівнянні з експериментальними даними [155] займають ПСТ 4с, 2b, 2a та 8і відповідно, а їхні атомні позиції в елементарній комірці наведено в таблиці 5.17.

Теоретично оптимізовані параметри гратки в елементарній комірці Tl₂CdGeSe₄ (ПГ І-42*m*) у порівнянні з експериментальними даними [157]

Теоретичн	о оптимізов	ані параметр	Експериментальні дані [155]			
a	0,84502			0,80490		
С	0,67740			0,68573		
	x/a	y/a	z/a	x/a	y/a	z/a
	0	0,5	0	0	0,5	0
	0	0	0,5	0	0	0,5
	0	0	0	0	0	0
	0,16044	0,16044	0,21758	0,1641	0,1641	0,2819

Спектри РФС (XPS). Як видно з рис, 5.16, оглядовий XPS-спектр вихідної поверхні зразка Tl₂CdGeSe₄ виявляє спектральні особливості, які належать основним рівням або Оже-лініям його складових атомів. Спектральні характеристики XPS, описані для кисню та вуглецю, пов'язані з кисневмісними формами та вуглеводнями, адсорбованими на вихідній поверхні сполуки Tl₂CdGeSe₄ в результаті контакту з лабораторним повітрям протягом кількох днів до початку поточних вимірювань XPS. Однак, як показано на рис. 5.16, відносні інтенсивності спектральних особливостей, що приписуються адсорбованим кисневмісним формам та вуглеводням, відносно малі, а їх

Таблиця 5.17

інтенсивності суттєво зменшуються після обробки іонами Ar ⁺ протягом 5 хв. Тому, як і в олововмісному аналозі $Tl_2CdSnSe_4$ [156], поверхня $Tl_2CdGeSe_4$ також демонструє порівняно незначну гігроскопічність. Така особливість поверхні сполуки $Tl_2CdGeSe_4$ може бути корисною при роботі з нею в пристроях, що працюють в умовах вологості навколишньої атмосфери.

Рис. 5.16. Оглядові XPS-спектри досліджуваної поверхні кристала Tl₂CdGeSe₄: 1 – вихідної та 2 – підданої обробці іонами Ar⁺ [157]

На рис. 5.17 представлено результати вимірювань найбільш релевантних XPS-спектрів основного рівня для атомів, що утворюють кристал Tl₂CdGeSe₄, а спектр XPS, виміряний в області VB, зображено на рис. 5.18. Результати вимірювань XPS, представлені на рис. 5.17 і 5.18 показують, що найбільш інформативні лінії основного рівня, пов'язані з кадмієм, а саме спектри Cd 3d5/2 і Cd 4d, накладаються в кристалі Tl₂CdGeSe₄ на спектри Tl 4d3/2 і Tl 5d5/2 відповідно.

Спектри XPS, представлені на рис. 5.17, 5.18 та дані, наведені в табл. 5.18, чітко демонструють, що обробка сполуки Tl₂CdGeSe₄ іонами Ar⁺ середньої енергії (3 кВ) не вносить істотні зміни в XPS-спектр. Цей факт свідчить про досить високу хімічну стійкість сполуки Tl₂CdGeSe₄ щодо обробки його поверхні іонами Ar⁺. Подібна особливість є характерною для селеніду Tl₂CdSnSe₄ [156].

Як видно з таблиці 5.18, енергії зв'язків електронів остовного рівня, пов'язаних з талієм та кадмієм у сполуці $Tl_2CdGeSe_4$ близькі до виміряних для селеніду $Tl_2CdSnSe_4$ у роботі [156], оскільки Станум та Ґерманій відносяться до однієї групи періодичної системи та мають спільні властивості.

Рис. 5.17. XPS-спектри глибинних рівнів (a) Se 3d, (b) Tl 4f, (c) Cd 3d та поверхні Tl 4d досліджуваної сполуки Tl₂CdGeSe₄: 1 – початкова поверхня та 2 -оброблена іонами Ar⁺

Рис. 5.18. XPS-спектри, виміряні в VB-області досліджуваної поверхні кристала Tl2CdGeSe4: 1 – початкової та 2 – підданої обробці іонами Ar⁺

Енергії	зв'язку	(в	eB*)	складових	атомних	внутнішніх	рівнів	вихідної	та
обробле	еної іонам	ИИ А	$4r^+$ по	верхні сполу	уки Tl ₂ CdC	GeSe ₄			

1	1 2 -	I
Внутрішній рівень	Tl ₂ CdGeSe ₄ / вихідна	$Tl_2CdGeSe_4 / 1.5 \text{ keV},$
	поверхня	оброблена іонами Ar ⁺
T1 4d _{5/2}	12,32	12,37
T1 5d _{3/2}	14,36	14,41
Ge 3d	30,19	30,15
Se 3d	53,29	53,42
Ge L ₃ M ₄₅ M ₄₅	109,29	109,35
Tl 4f _{7/2}	117,56	117,52
T1 4f _{5/2}	122,07	122,01
Tl 4d _{5/2}	384,70	384,78
Cd 3d _{5/2}	404,63	404,56
Cd 3d _{3/2}	411,23	411,20

Припускаючи вимогу зарядової рівноваги атомів сполуки Tl₂CdGeSe₄, можна запропонувати номінальні валентності елементів: Tl¹⁺, Cd²⁺, Ge⁴⁺ та Se²⁻. Однак результати XPS-вимірів енергій зв'язку на базовому рівні атомів, що утворюють сполуку Tl₂CdGeSe₄ (табл. 5.18), з літературними даними [158, 159] показують, що Tl має заряд, трохи менший, ніж +1, тоді як заряд Ge є значно меншим, ніж +4, як очікується, виходячи з рівноваги атомного заряду сполуки Tl₂CdGeSe₄. Крім того, незважаючи на те, що лінія Cd 3d_{5/2} у сполуці Tl₂CdGeSe₄ накладає широкий спектр Tl 4d_{3/2}, зазначається, що зарядовий стан Cd також менший за +2, як очікується. Вимірювання XPS дозволяють припустити, що хімічні зв'язки (Cd,Ge)–Se в сполуці Tl₂CdGeSe₄, крім іонної складової, також повинні мати значну ковалентну складову.

Загалом наведені експериментальні дані дозволяють зробити висновок, що селенід $Tl_2CdGeSe_4$ є непрямозонним напівпровідником. Вимірювання коефіцієнта термо-ЕРС вказують на те, що $Tl_2CdGeSe_4$ виявляє електропровідність p-типу, як і його олововмісний аналог $Tl_2CdSnSe_4$ [156].

5.6.3. Електронна структура сполук Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈

Спектри РФС (XPS). Оглядові спектри XPS, виміряні для чистих і оброблених ioнaми Ar⁺ 1,5 кеВ поверхонь сполук Tl₂CdSi₃Se₈ i Tl₂CdGe₃Se₈ представлено на рис. 5.19. Ці дані показують присутність атомів, що складають досліджувані сполуки. Виняток становлять функції XPS, пов'язані з вуглецем і Ϊx киснем. походження пояснюється вуглеводнями кисневмісними та частинками, адсорбованими на поверхні сполук у результаті їх контакту з повітрям лабораторії до початку вимірювань XPS. Зокрема, у випадку обох сполук відносні інтенсивності спектрів С 1s досить низькі, тоді як у випадку кристала Tl₂CdSi₃Se₈ відносна інтенсивність лінії О 1s явно вища, ніж у випадку Tl₂CdGe₃Se₈, ця лінія є досить низькою за інтенсивністю.

Рис. 5.19. Оглядові XPS-спектри кристалів $Tl_2CdSi_3Se_8$ і $Tl_2CdGe_3Se_8$, виміряні для їх чистих (1) та оброблених (2) іонами Ar⁺ поверхонь з енергією 1,5 кеВ

Причина вищої відносної інтенсивності лінії О 1s у випадку Tl₂CdSi₃Se₈ полягає в тому, що поверхневі атоми кремнію утворюють дуже слабкі зв'язки Si–O за навколишніх умов, оскільки енергія зв'язку станів електронів Si 2p у такому випадку рівна 102,78±0,08 eB (рис. 5.20 в; табл. 5.19), що відповідає Si⁴⁺. Додатково з рис. 5.19 видно, що 5-хвилинна обробка сполук Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈ іонами Ar⁺ з енергією 1,5 кеВ призводить до майже повного усунення на кривих XPS ліній, пов'язаних з вуглецем і киснем. В останньому випадку енергія зв'язку станів електронів Si 2p дорівнює 100,72±0,08 eB (рис. 5.20; табл. 5.19). Таким чином, сполука Tl₂CdGe₃Se₈ є негігроскопічна, а сполука Tl₂CdSi₃Se₈ має деяку гігроскопічність.

Детальні спектри рівня ядра XPS, пов'язані з атомами, що складають досліджувані сполуки, представлені на рис. 5.20, а їх енергії зв'язку наведені в табл. 5.19.

Рис. 5.20. XPS-спектри рівня ядра кристалів $Tl_2CdSi_3Se_8$ і $Tl_2CdGe_3Se_8$, виміряні для їх чистих (1) та оброблених (2) іонами Ar⁺ 1,5 кеВ поверхонь: (a) Cd 3d, (b) Tl 4f, (c) Si 2p i Ge 3d, i (d) Se 3d
Як видно з рис. 5.20, обробка сполук $Tl_2CdSi_3Se_8$ і $Tl_2CdGe_3Se_8$ іонами Ar⁺ з енергією 1,5 кеВ не викликає зсувів або змін форми XPS-спектрів, асоційованих з талієм, кадмієм, селеном і германієм. Зміни в спектрах рівня ядра XPS Si 2p пов'язані з видаленням частинок, що містять оксид

Таким чином, поверхні сполук $Tl_2CdSi_3Se_8$ і $Tl_2CdGe_3Se_8$ досить стійкі до обробки іонами Ar⁺ з енергією 1,5 кеВ.

Відповідно до вимог нейтральності зарядового стану сполук, що розглядаються, їх склади можна вважати такими $(Tl^+)_2Cd^{2+}(Si^{4+})_3(Se^{2-})_8$ та $(Tl^+)_2Cd^{2+}(Ge^{4+})_3(Se^{2-})_8$. Тим не менш, порівняння енергій зв'язку, наведених у таблиці 5.19, з літературними даними [160] показує, що зарядові стани атомів Tl у сполуках Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈ є трохи менші, ніж +1, як очікувалося. Тоді як зарядові стани атомів Si і Ge значно менші, ніж +4. Ці результати свідчать про існування досить істотних ковалентних складових (крім іонних) для хімічних зв'язків Tl–Se та Si(Ge)–Se у даних сполуках. Можна очікувати, що значна ковалентна складова характерна також для хімічного зв'язку Cd-Se в цих сполуках. Але оцінити зарядові стани атомів Cd у сполуках Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈ не вийшло через суперпозицію спектрів Cd 3d_{5/2} та Tl 4d_{3/2} (рис. 5.20 a), а спектр Cd 4d накладається на спектр Tl 5d_{5/2} (рис. 5.21).

Рис. 5.21. Спектри валентної зони XPS кристалів Tl₂CdSi₃Se₈ і Tl₂CdGe₃Se₈, виміряні для їх первинної (1) та обробленої (2) іонами Ar+ поверхні 1,5 кеВ

Така суперпозиція спектрів не дозволяє оцінити відносний вміст складових атомів у сполуках Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈. Однак поточні вимірювання XPS показують, що істотних змін в енергіях зв'язку електронів основного рівня, пов'язаних з атомами талію, кадмію та селену в послідовності Tl₂CdSi₃Se₈ \rightarrow Tl₂CdGe₃Se₈ не виявлено (рис. 5.20, табл. 5.19). Ці особливості XPS можна пояснити тим, що атоми Si та Ge належать до однієї групи періодичної системи. Крім того, експерименти XPS демонструють, що відносна інтенсивність валентної смуги в порівнянні зі спектрами Tl 5d і Cd 4d збільшується при переході Tl₂CdSi₃Se₈ \rightarrow Tl₂CdGe₃Se₈ (рис. 5.21). Це можна пояснити меншими ефектами фотоіонізації валентних s, p-станів Si порівняно з валентними s, p, d-станами Ge [161].

Таблиця 5.19

Енергії	зв'язку	(В	eB*)	складових	атомних	внутнішніх	рівнів	чистих	i		
бомбардованих іонами Ar+ поверхонь сполук $Tl_2CdSi_3Se_8$ і $Tl_2CdGe_3Se_8$											

Внутрішній	$Tl_2CdSi_3Se_8 \hspace{0.1in}/$	$Tl_2CdSi_3Se_8 / $	$Tl_2CdGe_3Se_8 \ /$	$Tl_2CdGe_3Se_8$ /
рівень	вихідна	1.5 keV,	вихідна	1.5 keV,
	поверхня	оброблена	поверхня	оброблена
		іонами Ar ⁺		іонами Ar ⁺
Ge 3d	-	-	30.13	30.07
Se 3d	53.34	53.29	53.44	53.32
Si 2p	102.78	100.72		
Tl 4f _{7/2}	117.58	117.55	117.63	117.56
Cd 3d _{5/2} **	404.24	404.12	404.39	404.32

^{*} Точність вимірювання ± 0.08 eV.

** Суперпозиція зі спектром Tl 4d_{3/2}.

Таким чином, поверхні сполук Tl₂CdSi₃Se₈ та Tl₂CdGe₃Se₈ є досить стійкі, при дії на них жорстких умов, як, наприклад, обробки іонами Ar⁺ з енергією 1,5 кеВ. Це дозволяє застосовувати дані тетрарні халькогеніди в умовах підвищених вологостей навколишнього середовища.

5.7. Спектри оптичного поглинання сполук $Tl_2CdGe(Sn)Se_4$ та $Tl_2CdSi(Ge)_3Se_8$

Оптичні властивості монокристалу Tl₂CdSnSe₄. Спектральна залежність коефіцієнта поглинання α на краю області фундаментального поглинання при 300 К монокристалу Tl₂CdSnSe₄ зображена на рис. 5.22 а. Енергія забороненої зони була оцінена за методикою Таука [138], відповідно до якої в області краю фундаментального поглинання при $\alpha \ge 10^3$ см⁻¹ вона описується виразом $(\alpha hv)^{1/N} = f(hv)$, де N – показник, який дорівнює 1/2, 3/2, 2 або 3, залежно від виду електронних переходів, що відповідає за поглинання (N = 1/2 для прямих дозволених переходів, N = 3/2 для прямих заборонених переходів, N = 2 для непрямих дозволених переходів і N = 3 для випадку непрямих заборонених переходів). З виразу випливає, що екстраполяція лінійної частини графіка на вісь енергії дозволяє визначити ширину досліджуваного матеріалу. Оцінка забороненої зони забороненої зони характеризує прямі дозволені переходи для даного матеріалу (рис. 5.22 b). Визначено, що ширина забороненої зони становить 1,32 eB.

Рис. 5.22. Спектральний розподіл коефіцієнта поглинання при 300 К (*a*), залежність оцінки забороненої зони (*b*) та енергія Урбаха (*c*) для кристалу Tl₂CdSnSe₄

Спектральна поведінка розширеного експоненціального "хвоста" нижче області сильного поглинання підкоряється правилу Урбаха [144]. Енергію Урбаха $E_U = \Delta (hv) / \Delta (\ln \alpha)$ було визначено з експериментальних результатів, представлених на рис. 5.22 с. Значення $E_U = 64$ *меВ* характерне для багатокомпонентних напівпровідникових сполук [162].

Кристал Tl₂CdSnSe₄ є світлочутливим напівпровідником, а спектральний розподіл фотопровідності представлений на рис. 5.23. Максимум фотопровідності при λ = 960 нм лежить в діапазоні фундаментальної смуги поглинання, а відповідна енергія 1,29 еВ при T = 300 К добре узгоджується з шириною забороненої зони, визначеною за спектральною залежністю коефіцієнта поглинання. Також дана сполука виявляє провідність р-типу. Тип електропровідності визначали шляхом вимірювання знака коефіцієнта термо-ЕРС.

Рис. 5.23. Спектральна заленість фотопровідності для кристалу Tl₂CdSnSe₄

Оптичні властивості сполуки Tl₂CdGeSe₄. Результати визначення величини забороненої зони за допомогою методу Таука [138] з коефіцієнта поглинання α , виміряного при 300 K, представлено на рис. 5.24. З цих результатів очевидно, що край поглинання справедливо зображено за допомогою виразу $(\alpha hv)^{1/N} = f(hv)$ з N = 2. Це говорить про те, що заборонена зона сполуки Tl₂CdGeSe₄ характеризується непрямими дозволеними переходами. Значення забороненої зони було визначено при кімнатній температурі та становить 1,52 eB.

Рис. 5.24. Крива коефіцієнта поглинання, виміряного при 300 К та графік Таука виразу $(\alpha hv)^{1/N} = f(hv)$ з N = 2 для сполуки Tl₂CdGeSe₄ [155]

Оптичні властивості сполук $Tl_2CdGe(Sn)Se_4$ та $Tl_2CdSi(Ge)_3Se_8$. Спектральну залежність коефіцієнта поглинання α на краю області основного поглинання сполук $Tl_2CdSi_3Se_8$ та $Tl_2CdGe_3Se_8$ наведено на рис. 5.25.

Рис. 5.25. Спектральний розподіл коефіцієнта поглинання кристалів Tl₂CdSi₃Se₈ (*a*) та Tl₂CdGe₃Se₈ (*b*) при 100 і 300 К

Результати оцінки E_g на рівні $\alpha = 300 \text{ см}^{-1}$ дорівнюють 2,10 еВ при 300 К та 2,21 еВ при 100 К для Tl₂CdSi₃Se₈; 1,86 еВ при 300 К та 1,97 еВ при 100 К для Tl₂CdGe₃Se₈. Як видно з отриманих результатів (Рис. 5.25) додаткове введення до матриці Tl₂Se+CdSe диселеніду германію (GeSe₂) сприяє збільшенню ширини забороненої зони досліджуваних кристалів, оскільки Eg GeSe₂ становить 2,74 eV [163], що є більше, ніж значення Eg для вихідних матриць [156-157]. Аналогічний результат був отриманий при додавання дисульфіду та диселеніду кремнію та германію до вихідних матриць в роботах [164-165]. Разом з тим, згідно рентгеноструктурного аналізу при переході від кристалів Si до кристалів з Ge параметри гратки збільшуються, що призводить до зменшення Eg. Дане твердження добре узгоджується з експериментами по гідростатичному стиску кристалів, а саме, об'ємний гідростатичний тиск призводить до зменшення міжатомної відстані та збільшення Eg [166-167].

Важливою характеристикою напівпровідників, яка визначає основну мету їх практичного застосування, є температурна зміна забороненої зони [139]. Зміна енергії забороненої зони з температурою пов'язана зі змінами частоти фононів, які стимулюють різні ефекти, такі як теплове розширення решітки, збільшення електрон-фононного зв'язку і, отже, взаємне відштовхування внутрішньозонних електронних станів [143]. Встановлено, що з підвищенням температури краї зони провідності і валентної зони починають помітно проникати в заборонену зону, що в кінцевому підсумку призводить до її зменшення.

5.8. Висновки до розділу 5

Вперше розшифровано кристалічну структуру десяти нових тетрарних халькогенідів: методом монокристалу для $Tl_2CdGe_3S_8$ ($\Pi\Gamma P2_12_12_1$) та методом порошку ще для 9 нових сполук, з яких п'ять складу 2:1:1:4 ($Tl_2CdSiSe_4$, Tl_2CdSe_4

*R*3) та гексагональної Tl₂CdSn₂S₆ ($\Pi\Gamma P6_3/mmc$) сингоній, ще два складу 2:1:3:8 Tl₂CdSi(Ge)₃Se₈ кристалізуються в ромбічній сингонії, $\Pi\Gamma P2_12_12_1$.

Розчин-розплавним методом одержано монокристал сполуки $Tl_2CdSnSe_4$ методом Бріджмена-Стокбаргера та полікристали сполук $Tl_2CdGeSe_4$, $Tl_2CdSi(Ge)_3Se_8$.

Проведено дослідження електронної структури чотирьох вищезгаданих халькогенідів та встановлено, що домінуючим для них є ковалентний полярний зв'язок. Експериментальні XPS-вимірювання, проведені для сполук Tl₂CdSn(Ge)Se₄ та Tl₂CdSi(Ge)₃Se₈, оброблені іонами Ar+ середньої енергії, показують, що їх поверхні є досить стабільні.

Досліджено фотоелектричні оптичні властивості сполук та $Tl_2CdSn(Ge)Se_4$ та $Tl_2CdSi(Ge)_3Se_8$. Енергія забороненої зони (E_g) монокристалу Tl₂CdSnSe₄, оцінена за коефіцієнтом оптичного поглинання при 300 К, становить 1,32 еВ, що добре узгоджується зі значенням 1,29 еВ, розрахованим за результатами вимірювань фоточутливості. Значення коефіцієнта адсорбції для Tl₂CdGeSe₄ було визначено при кімнатній температурі та дорівнює 1,52 еВ. Для сполуки Tl₂CdSi₃Se₈ значення коефіцієнта оптичного поглинання становить 1.2 та 2.2 еВ при 100 та 300 К відповідно. Для селеніду Tl₂CdSi₃Se₈ результати оцінки E_{σ} на рівні $\alpha = 300$ см⁻¹ дорівнюють 2,10 еВ при 300 К та 2,21 еВ при 100 К. Для сполуки Tl₂CdGe₃Se₈ ці значення становлять 1,86 еВ при 300 К та 1,97 еВ при 100 К.

Ці властивості характеризують вищеописані тетрарні селеніди як перспективні матеріали для використання в тонкоплівкових сонячних елементах, оптоелектроніці, а також у високоефективних фотокаталітичних пристроях.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

[1] Kabre S. Sur le diagramme de phases du system thallium – soufre / S. Kabre, M.
 Guitlard, S. Fhahaut // C. R. Acad. Sci. Paris. – 1974. – № 16. – P. 1043–1046.

[2] Vassiliev V. P. Tl–S phase diagram, structure and thermodynamic properties / V.

P. Vassiliev, V. S. Minaev // J. Optoelectronics and Advanced Materials. – 2008. – V.
10, № 6. – P. 1299–1305.

[3] Tl₂S: Re-Determination of Crystal Structure and Stereochemical Discussion /
G. Giester, C. L. Lengauer, E. Tillmanns, J. Zemann // J. Solid State Chem. – 2002. –
V. 168. – P. 322–330.

[4] Васильев В. П. Термодинамические свойства металлических сплавов / Васильев В. П., Никольская А. В., Герасимов Я. И. ЭЛИ, 1975. – С. 40–46.

[5] Vasilyev V.P., Minaev V.S., Batyunya L.P. Thermodynamic properties, phase diagrams and glass-formation of thallium chalcogenides. Chalcogenide Letters, 2013, V. 10 (11), P. 485 - 507.

[6] Hansen H., Anderko K. Constitution of Binary Alloys. McGraw-Hill. New York. 1965.

[7] Абрикосов Н. Х. Полупроводниковые халькогениды и сплавы на их основе / Абрикосов Н. Х., Банкина В. Ф., Порецкая Л. В. и др. – М.: Наука, 1975. – 219 с.
[8] Vassiliev V.P., Nikoliskaja A.V., Gerassimov Ja.I. (1971) Thermodynamic investigation of thallium-selenium system by the electromotive force method. J. Phys. Chem. Vol.45, N. 8, P. 2061-2064.

[9] Morgant G., Legendre B., Maneglier Lacordaire S., Souleau C. Le diagramme d'equilibre entre phase du systeme thalium-selenium. Relation avec les domaines d'existence de verre. Anales de Chimie, 1981. V.6. P. 315-326.

[10] Römermann F., Feutelais Y., Fries S. G., Blachnik R.. Phase diagram experimental investigation and thermodynamic assessment of the thallium–selenium system. *Intermetallics*, *8*(*1*), *53–65* (2000) doi:10.1016/s0966-9795(99)00068-0.

[11] Асадов М.М., Бабанлы М.В., Кулиев А.А. Фазовые равновесия в системе TI-Te. Изв. Акад. Наук СССР, *Неорг. Матер.*, 13(8), 1407-1410 (1977).

[12] Oh C. S., Lee D. N. Assessment of the Te-Tl (tellurium-thallium) system. J. Phase Equilib. (1993). 14, P. 197–204. https://doi.org/10.1007/BF02667808

[13] Record M.C., Feutelais Y., Lukas H.L.. Phase diagram investigation and thermodynamic evaluation of the thallium-tellurium system *Z. Metallkd.* (1997) 88, P. 45–54.

[14] Філеп М.Й., Сабов М.Ю., Погодін А.І., Малаховська Т.О. Стабільність фаз Tl₅Te₃ та Tl₂Te // Наук. вісник Ужгородського ун-ту. Серія "Хімія".–2017.– 2 (38).– С. 14-17.

[15] Стасова М.М. Электронографическое определение структуры Tl₂Se / М.М. Стасова, Б.К. Вайнштейн // *Кристаллография* – 1958. – Т. 3, № 2. – С. 141–147.

[16] Cerny R., Joubert J.M., Filinchuk Ya., Feutelais Y.. Tl₂Te and its relationship with Tl₅Te₃. *Acta Crystallographica, Section C: Crystal Structure Communications*, 2002, 58, i63. Режим доступу: <u>https://doi.org/10.1107/S0108270102005085</u>

[17] Касанджан Б.И., Лобанов А.А., Селин Ю.И., Цуриков А.А. Электропроводность и термо-е.д.с. халькогенидов таллия состава Tl₂B^{VI} в жидком состоянии. Изв. АН СССР. Неорган. материалы. 1971. 6. 1061–1062.

[18] The Materials Project. Materials Data on Tl₂Te by Materials Project. United States: N. p., 2020. Режим доступу: <u>https://doi.org/10.17188/1277004</u>

[19] Woodbury H.H. Measurment of the Cd – CdS liquidus. J. Phys. Chem. Solids.1963 (24) 881-884.

[20] Хансен М., Андерко К. Структуры двойных сплавов. – М. Металлургия, 1962. Т.1. – 608 с.

[21] Addamiano A. The melting point of cadmium sulfide // J.Phys.Chem/ – 1957.
61(9) 1253–1254.

[22] Ohata K., Sataie J., Tanaka T. Phase diagram of CdS-CdTe pseudobinary system. – Jap. J. Appl. Phys. – 1973. – V. 12(8).– P. 1198–1204.

[23] Буденная Л.Д., Мизецкая И.Б., Лужная Н.П. и др. Образование твердых растворов при взаимодействии теллурида и сульфида кадмия // *Квантовая* електроника. – К.: Наукова думка.– 1978. В.15.– С. 97–106.

[24] Marble C.B., O'Connor S.P., Nodurft D.T. *and other*., "Zinc selenide: an extraordinarily nonlinear material," Proc. SPIE 10528, Optical Components and

Materiaйls XV, 105281X (22 February 2018); Режим доступу: <u>https://doi.org/10.1117/12.2291305</u>.

[25] Herring C. Effect of change of scale on sintering phenomena/ C. Herring // J. Appl. Phys. 1950. Vol. 21. P. 301-303.

[26] Акчурин М.Ш., Гайнутдинов Р.В., Закалюкин Р.М., Каминский А.А. Модель залечивания пор при получении оптических керамик // Доклады академии наук, 2007, том 415, № 3, с. 322-324.

[27] Lange F.F. Sinterability of Agglomerated Powders / F.F. Lange // J. Am. Ceram. Soc. 1984. Vol. 67. P. 83-89.

[28] Hankare P.P., Chate P.A., Sathe D.J., Patil A.A. Effect of air annealing on structural, optical, microscopic, electrical properties of cadmium selenide thin films. J Mater Sci: Mater Electron (2009) 20:776–781; Режим доступу: https://doi.org/10.1007/s10854-008-9801-3

[29] Махній О. В. Структурні та люмінесцентні властивості гетерошарів α–CdSe / О. В. Махній, М. М. Сльотов, І. М. Фодчук // Науковий вісник Чернівецького університету. Фізика. - 1998. - Вип. 29. - С. 98-104. - Режим доступу: http://nbuv.gov.ua/UJRN/Nvchnufe_1998_29_18

[30] Photovoltaics Report. Fraunhofer institute for solar energy systems ISE. Freiburg, 22 June 2012. Режим доступу: https://web.archive.org/web/20121105154721/http://www.ise.fraunhofer.de/de/downl oads/pdf-files/aktuelles/photovoltaics-report.pdf.

[31] Baker I.M., Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10 (1994) 323.

[32] McCandless B.E., Youm I., Birkmire R.W. Optimization of vapor postdeposition processing for evaporated CdS/CdTe solar cells. Progress in Photovoltaics: Research and Applications, 7, 21–30 (1999).

[33] Cunningham D., Ribcich M., Skinner D., Cadmium telluride PV module manufacturing at BP Solar, Prog. Photovolt. 10 (2002) 159–168.

[34] Britt J., Ferekides C., Thin film CdS/CdTe solar cell with 15.8% efficiency, Appl. Phys. Lett. 62 (1993) 2851–2852.

[35] Basol B.M., High efficiency electrodeposited heterojunction solar cell, J. Appl. Phys. 55 (1984) 601–603.

[36] Sordo S.D., Abbene L., Caroli E., Mancini A.M., Zappettini A., Ubertini P., Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9 (2006) 3491–3526.

[37] Okamoto T., Yamada A., Konagai M., Optical and electrical characterisation of highly efficient CdTe thin film solar cells, Thin Solid Films 387 (2001) 6–10.

[38] Lalitha S., Sathymoorthy R., Senthilarasu S., Subbarayan A., Natarajan K., Characterisation of CdTe thin film—dependence of structural and optical properties on temperature and thickness, Sol. Energy Mater. Sol. Cells 82 (2004) 187–199.

[39] A. Brown, B. Lewis. J. Phys. Chem. Sol. 1962, 23 (11).

[40] Блецкан Д. И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе.– Ужгород: Закарпаття, 2004. – 290 с.

[41] Conroy Z. Electrical Properties of the Group IV Disulfides TiS_2 , ZrS_2 , HfS_2 and SnS_2 / Z . Conroy, K. Park // Inorgan. Chem. – 1968. – V. 7, No 3. – P. 459–463.

[42] Okamoto H. Se-Si (Selenium-Silicon) // Journal of Phase Equilibria. — 2000. —
T. 21. — C. 499. — doi:10.1361/105497100770339815.

[43] Абрикосов Н. Х., Банкина В. Ф., Порецкая Л. В. [и др.]. Полупроводниковые соединения, их получение и свойства. – Москва: Наука, 1967. 219 с.

[44] Караханова М.И. О диаграмме плавкости системы олово-селен / М. И. Караханова, А. С. Пашинкин, А. В. Новоселова // Изв. АН СССР. Неорган. материалы – 1966. – Т. 2. – С. 1186–1189.

[45] Dembovskii S.A., Vinogradova G.Z., Pashhinkin A.S., Crystallization of Glasses of the Ge-Se System. Russ. J. Inorganic Chem., 10(7), 903-905 (1965).

[46] Mishra R., Mishra P.K., Phapale S., Babu P.D., Sastry P.U., Ravikumar G., Yadav A.K.. Evidences of the existence of SiTe₂ crystalline phase and a proposed new Si–Te phase diagram. Journal of Solid State Chemistry 237 (2016) 234–241.

[47] Davey T.G., Baker E.H., A note on the Si-Te phase diagram. J. Mater. Sci. Lett., 15, 1601-1602 (1980). https://doi.org/10.1007/bf00752149.

[48] Bailey L.G. Preparation and properties of silicon telluride.Journal of Physics and Chemistry of Solids. 1966, 27 (10), 1593-1598. https://doi.org/10.1016/0022-3697(66)90237-X.

[49] Domingo G. Itoga R.S., Kannewurf C.R. Fundamental optical absorption in SnS_2 and $SnSe_2$ // Phys. Rev. B. – 1966. – V. 143(2). – P. 536–541.

[50] Wang J., Marple M., Lee K., Sen S., Kovnir K. Synthesis, crystal structure, and advanced NMR characterization of a low temperature polymorph of SiSe₂. J. Mater. Chem. A, 2016, 4, 11276-11283. DOI: 10.1039/C6TA04085C.

[51] Один И.Н. Р_{общ}-Т-х-диаграмма состояния системы Si-Se и тензиметрическое определение границ областей гомогенности халькогенидов кремния // И. Н. Один, В. А. Иванов // Журн. неорг. химии. – 2000. – Т. 45, № 1. – С. 102–104.

[52] Блецкан Д.И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе. – Ужгород: Закарпаття, 2004. – 290 с.

[53] Weiss A., Weiss A., Zur Kenntnis von Siliciumditellurid. Z. Anorg. Allg. Chem.
273 (1953) 124–128. <u>doi.org/10.1002/zaac.19532730303.</u>

[54] Rau J.W., Kannewurf C.R. Intrinsic absorption and photoconductivity in single crystal SiTe₂. *J. Phys. Chem. Solids.* 1966. Vol. 27, pp. 1097-1101.

[55] Dittmar G. Die Kristallstruktur von germanium diselenid / G. Dittmar, H. Schafer // Acta Cryst. B. – 1976. – V. 32. – P. 2726–2728.

[56] Busch G. Structur, elektrische und thermoelektrische Eigenschaften von SnSe₂ / G. Busch, C. Frohlich, F. Hulliger, E. Steimeier // Helv. Phys. Acta. – 1961. – V. 34, № 4. – P. 359–368.

[57] Babanly M.B. *et al.* The Tl₂S–CdS phase diagram. *Zhurn. neorgan. khimii*, 1986 31(10) 2634.

[58] Guseinov F.H. Phase equilibria and intermolecular interaction in the TlSe (Tl₂Se)–CdSe systems (in Russian) / F. H. Guseinov, M. B. Babanly, A. A. Kuliev // Zhu'rn, neorgan, khimii. – 1981.– N_{2} 26(1). – P. 215–217.

[59] Mucha I. Phase studies on the quasi-binary thallium(I) selenide–cadmium selenide system / I. Mucha, K. Wiglusz // Thermochimica Acta. – 2011. – № 526(1).
– P. 107–110.

[60] Лазарев В. Б. Фазовые равновесия в системах Tl₂S(Se)–SiS₂(Se₂) /В. Б. Лазарев, Е. Ю. Переш, В. И. Староста // Журн. неорг. химии. – 1983. – Т. 28, № 8. – С. 2097–2099.

[61] Лазарев В. Б. Фазовые равновесия в системах Tl₂S(Se)–SiS₂(Se₂) /
В. Б. Лазарев, Е. Ю. Переш, В. И. Староста // Журн. неорг. химии. – 1983. – Т.
28, № 8. – С. 2097–2099.

[62] Eulenberger G. Structures of Tetrathallium(I) Tetrathiosilicate(IV) and Tetrathallium(I) Tetraselenosilicate(IV) / G. Eulenberger // Acta Cryst. C. – 1986. – V. 42. – P. 528–534.

[63] Староста В.И. Фазовые равновесия и свойства соединений системы Tl₂S-GeS₂ / В. И. Староста, В. Б. Лазарев, Е. Ю. Переш, В. В. Мудрый // Журн. неорг. химии. – 1984. – Т. 29, № 12. – С. 3131–3136.

[64] Глух О. С. Фазові рівноваги та властивості проміжних сполук у системі Tl₂Se–GeSe₂–SnSe₂ : автореф. дис. на здобуття наук. ступеня канд. хім. наук : спец. 02.00.01 «Неорганічна хімія» / О. С. Глух. – Ужгород, 2007. – 18 с.

[65] Туркина Е.Ю. Взаимодействие компонентов в тройной системе TI–Ge–Se по разрезам Tl₂Se–GeSe₂ и TlSe–Ge / Е. Ю. Туркина, И. И. Кожина, Г. М. Орлова, А. А. Образцов // Журн. неорг. химии. – 1978. – Т. 23, № 2. – С. 497–501.

[66] Староста В. И. Взаимодействие в системах Tl₂S(Se)–Si(Ge,Sn)S₂(Se₂) и получение монокристаллов образующихся сложных халькогенидов: автореф. дис. на соиск. науч. степеня канд. хим. наук: спец. 02.00.01 «Неорганическая химия» / В. И. Староста. – Ужгород, 1984. – 22 с.

[67] Бабанлы М. Б. Системы Tl₂Se-GeSe₂ и TlSe-GeSe(GeSe₂) / М. Б. Бабанлы,

Н. А. Кулиева // Журн. неорг. химии. – 1983. – Т. 28, № 6. – С. 1557–1560.

[68] Eulenberger G. Kristallstruktur des Thallium(I)thiogermanats $Tl_4Ge_4S_{10}$ / Eulenberger G. // Acta Cryst. B. – 1976. – No 32. – P. 3059–3063.

[69] Eulenberger G. Tetrathallium(I)-di-mue-thio-tetrathiodigermanate / G. Eulenberger // Acta Cryst. B. $-1978. - N_{2} 34. - P. 2614-2616.$

[70] Eulenberger G. Die Kristallstruktur des Thallium(I)thiogermanats Tl_4GeS_4 / G . Eulenberger // Z. Krist. – 1977. – No 145. – P. 427–436. [71] Eulenberger G. $Tl_4Ge_4Se_{10}$, ein Thallium(1)selenogermanat mit adamantanalogem Anion $(Ge_4Se_{10})^{(4-)}$ / G. Eulenberger // Z. Naturforsch. B. – 1981. – V. 36. – P. 521–523.

[72] Eulenberger G. Ternaere Thallium chalkogenide mit $Tl_4Ge_2S_6$ -Struktur / G. Eulenberger // Monatsh. Chem. – 1982. – V. 113. – P. 859–867.

[73] Glukh O.S. Crystal structure of the Tl_4GeSe_4 / O. S. Glukh, M. Yu. Sabov, I. E. Barchij, V. V. Pavlyuk, B. Marciniak // Chem. Met. Alloys. – No 2. – 2009. – P. 10– 14.

[74] Готук А. А. Исследование фазовых равновесий и термодинамических свойств систем, образованных халькогенидами таллия и олова (свинца) : автореф. дис. на соиск. науч. степеня канд. хим. наук : спец. 02.00.01 «Неорганическая химия» / А. А. Готук. – Баку, 1978. – 18 с.

[75] Ajavon A. Section SnS_2 -Tl₂S du systeme ternaire Thallium – Etain – Soufre / A. Ajavon, R. Eholie, Y. Piffard, M. Tornoux // Rev. Chim. Miner. – 1983. – V. 20. – N_2 3. – P. 421–425.

[76] Houenou P. Etude du systeme $SnSe_2-Tl_2Se / P.$ Houenou, R. Eholie // C. R. Acad. Sc. Paris. – 1976. – V. 283. – Nº 16. – P. 731–733.

[77] Mucha I, Wiglusz K, Sztuba Z, Gaweł W. Solid-liquid equilibria in the quasibinary thallium(I) selenide-tin(IV) selenide system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry. (2009) 33, 545-549.

[78] Eulenberger G. $Tl_2Sn_2S_5$, ein Thallium(I)thiostannat(IV) mit fünffach koordiniertem Zinn / G. Eulenberger // Z. Naturforsch. B. – 1981. – V. 36. – P. 687–690.

[79] Klepp K. O. Tl_2SnS_3 – ein Thiostannat mit $(SnS_3^{(2-)})$ Ketten / K. O. Klepp // Monatsh. Chem. – 1984. – V. 115. – P. 1133–1142.

[80] Klepp K. O. Darstellung und Kristallstruktur von Tl₄TiS₄, Tl₄SnS₄ und Tl₄TiSe₄ / K. O. Klepp // Z. Naturforsch. B. – 1984. – V. 39. – P. 705–712.

[81] Jaulmes S. Structure crystalline du seleniure d'etain(IV) et de thallium(I) : Tl_2SnSe_3 / S . Jaulmes, P. Houenou // Mater. Res. Bull. – 1980. – V. 15. – P. 911–915.

[82] Akinocho G. Etude structurale de Tl_4SnSe_4 / G. Akinocho, P. Houenou, S. Oyetola, R. Eholie, J. C. Jumas, J. Olivier-Fourcade, M. Maurin // J. Solid State Chem. – 1991. – V. 93. – P. 336–340.

[83] Пат. 43564 Україна МПК Н 01 L 35/12. Термоелектричний матеріал / Малаховська Т. О., Сабов М. Ю., Переш Є. Ю., Галаговець І. В., Беца В. В.; заявник і власник патенту ДВНЗ «УжНУ». – № 43564, заявл. 04.03.09.; опубл. 25.08.09., Бюл. № 16.

[84] Радауцан С.И., Иванова Р.А. Образование твердых растворов на основе сложных соединений типа $A^{II}B^{IV}C^{IV}{}_3$ // Изв. АН МССР. 1961, 10(88) С. 64-69.

[85] Hahn H., Lorent C. Untersuchungen über ternare Chalkogenige. Über ternare Sulfide und Selenide des Germaniums mit Zink, Cadmium und Quecksilber // Naturwis.- 1958. H. 24.- S/ 621-622.

[86] Корень Н.Н., Матяс Э.Е., Шрубова Э.Ф. и др. О синтезе тройных соединений Zn₂GeSe₄ и ZnGeSe₃ // Изв.АН СССР. Неорган. материалы.-1984, 20 (11), С. 1924-1925.

[87] Олексеюк І.Д., Парасюк О.В., Піскач Л.В. та ін. Квазіпотрійні халькогенідні системи. Т.1. – Луцьк: "Вежа" ВДУ ім. Лесі Українки, 1999. – 168 с.

[88] Galliulin E.A., Odin I.N., Novoselova A.V., ZnSe-SnSe, ZnSe-SnSe₂, CdSe-SnSe₂ systems. Zh. Neorg. Khim. (1982) v. 27(1); p. 266-268.

[89] Dudchak, I.V., Piskach, L.V. (2003). Phase equilibria in the $Cu_2SnSe_3-SnSe_2-ZnSe$ system. Journal of Alloys and Compounds, 351(1-2), 145-150. doi:10.1016/s0925-8388(02)01024-1

[90] Один И.Н., Галиулин Э.А., Новоселова А.В. Исследование взаимодейств сульфида кадмия с сульфидами германия // Журн. неорган. химии.- 1983.- Т. 28: N. 9.- С. 2362-2365.

[91] Мовсум-заде А.А., Алиева Ш.Б., Аллазов М.Р. и др. Фазовая диаграмма системи Cd – Ge – S // Журн. неорган. химии.- 1987.- Т. 32.: N. 4.- С. 1025-1029. [92] Susa K., Steinfink H. GeCd₄S₆, a new defect tetrahedral structure type // Inorg. Chem.- 1971.- V. 10 N.8.- P. 1754-1756. [93] Один И.Н., Гринько В.В. Тензиметрическое определение границ области гомогенности соединения Cd₄GeS₆// Журн. неорган. химии.- 1991.- Т. 36.: N. 5.- С. 1332-1338.

[94] Заргарова М.И., Алиева Ш.Б., Аллазов М.Р. и др. Проекция поверхности ликвидуса системы Cd-Sn-S // Журн. неорган. Химии.-1985.-Т.30. N5.- C.1279-1284.

[95] I.N. Odin, V.A. Ivanov. Zhurn. neorgan. khimii, 36 (11), 2937, 1991.

[96] O.V. Parasyuk, I.D. Olekseyuk, L.D. Gulay, L.V. Piskach. Phase diagrams of the Ag₂Se–Zn(Cd)Se–SiSe₂ systems and crystal structure of the Cd₄SiSe₆ compound. JAAC. Volume 354, Issues 1–2, 12 May 2003, Pages 138-142 https://doi.org/10.1016/S0925-8388(02)01358-0

[97] Quenez P., Khododad P., Etude du systeme GeSe₂–CdSe. Identification compose Cd₄GeSe₆ // C. r. Acad. Sci. C.- 1969.-V.268. N26.- P. 2294-2297.

[98] Галиулин Э.А., Один И.Н., Астафьев С.А. Физико-химическое исследование систем CdSe–GeSe₂, CdSe–Ge // Журн. Неорган. Химии.- 1983.-T.28. N5.- C. 1281-1283.

[99] Barnier S., Guittard M., Julien C. Glassformation and structural studies chalcogenide glasses in the CdS-Ga₂S₃-GeS₂ system // Mater. Sci. and Eng. 1990.-V.7. N3.- P.209-214.

[100] Мотря С.Ф., Ткаченко В.И., Черешня В.М. и др. Физико-химические фотоэлектрические свойства кристаллов гексатио- и гексаселеногерманатов кадмия и твердых растворов на их основе // Изв. АН СССР. Неорг. материалы.-1986.- Т.22. N10.- С. 1705-1708.

[101] Мозолюк М.Ю. Фазові рівноваги та властивості фаз у системах $Tl_2X-B^{II}X-D^{IV}X_2$ і $TlC^{III}X_2-D^{IV}X_2$ ($B^{II}-Hg$, Pb; $C^{III}-Ga$, In; $D^{IV}-Si$, Ge, Sn; X-S, Se) : дис. ... канд. хім. наук : 01.02.04. Ужгород, 2013. 169 с.

[102] Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. Phase equilibria in the Tl_2S –PbS–GeS₂ system and crystal structure of $Tl_{0.5}Pb_{1.75}GeS_4$. Chem. Met. Alloys 5 (2012) 37-41.

[103] Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. The Tl₂Se–HgSe–GeSe₂ system and the crystal structure of Tl₂HgGeSe₄. Chem.

Met. Alloys 6 (2013) 55-62.

[104] Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. The Tl_2S –PbS–SiS₂ system and the crystal and electronic structure of quaternary chalcogenide Tl2PbSiS4. Materials Chemistry and Physics, Volume 195, 2017, Pages 132-142.

[105] Олексеюк I. Д., Мозолюк М.Ю., Піскач Л.В., Літвінчук М.Б., Парасюк О.В. Взаємодія компонентів у системах, утворених халькогенідами Tl(I), Hg(II), Pb(II), Si(IV). Науковий вісник Волинського національного університету імені Лесі Українки.

[106] Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. Phase equilibria in the Tl_2S –HgS–SnS₂ system at 520 K and crystal structure of Tl_2HgSnS_4 . Chem. Met. Alloys 10 (2017) 136-141.

[107] McGuire M.A., Scheidemantel T.J., Badding J.V., DiSalvo F.J. Tl_2AXTe_4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure and Thermoelectric Properties. *Chem. Mater.* 2005, *17*, 6186–6191.

[108] Sharma, S.; Kumar, P. Quaternary semiconductors Cu_2MgSnS_4 and $Cu_2MgSnSe_4$ as potential thermoelectric materials. *J. Phys. Commun.* 2017, *1*, 045014.

[109] Brik, M.G.; Parasyuk, O.V.; Myronchuk, G.L.; Kityk, I.V. Specific features of band structure and optical anisotropy of Cu₂CdGeSe₄ quaternary compounds. *Mater. Chem. Phys.* 2014, *147*, 155–161.

[110] $Ag_2FeSnS_4Caye R.$, Laurent Y., Picot P., Pierrot R., Levy C. La hocartite, Ag2 SnFeS4, une nouvelle espece minerale // Bull. Soc. Fr. Mineral. Cristallogr. – 1968. – 91. – P. 383– 387.

[111] Li₂CdGe(Sn)Se₄ J.H. Zhang, D. J. Clark, A. Weiland, S.S. Stoyko, Y. S. Kim, J. I. Jang, J.A. Aitken. Li₂CdGeSe₄ and Li₂CdSnSe₄: biaxial nonlinear optical materials with strong infrared second-order responses and laser-induced damage thresholds influenced by photoluminescence. DOI https://doi.org/10.1039/C7QI00004A

[112] G. Li, Q. Liu, K. Wu, Zh. Yang, S. Pan. $Na_2CdGe_2Se_6$ (Q = S, Se): two metalmixed chalcogenides with phase-matching abilities and large second-harmonic generation responses. *Dalton Trans.*, 2017, 46, 2778-2784 DOI https://doi.org/10.1039/C7DT00087A

[113] Zh. Li, Y. Liu, S. Zhang, W. Xing, W. Yin, Zh. Lin, J. Yao, Y. Wu. Functional Chalcogenide Na₂HgSn₂Se₆ and K₂MnGe₂Se₆ Exhibiting Flexible Chain Structure and Intriguing Birefringence Tunability. *Inorg. Chem.* 2020, 59, 11, 7614–7621 https://doi.org/10.1021/acs.inorgchem.0c00490

[114] Morris, C.D.; Li, H.; Jin, H.; Malliakas, C.D.; Peters, J.A.; Trikalitis, P.N.; Kanatzidis, M. G. $Cs_2M^{II}M^{IV}_{3}Q_8$ (Q = S, Se, Te): An Extensive Family of Layered Semiconductors with Diverse Band Gaps. *Chem. Mater.* 2013, *25*, 3344–3356. http://dx.doi.org/10.1021/cm401817r

[115] Fard Z.H., Kanatzidis M.G. Phase-Change Materials Exhibiting Tristability: Interconverting Forms of Crystalline α -, β -, and Glassy K₂ZnSn₃S₈. *Inorg. Chem.* 2012, *51*, 7963–7965.

[116] Pogu A., Vidyasagar K. Syntheses, structural variants and characterization of A_2 ZnSn₃S₈ (A = Cs, Rb) and A_2 CdSn₃S₈ (A = Cs, Rb, K, Na) compounds. *J. Solid State Chem.* 2020, *291*, 121647.

[117] Chykhrij S.I., Sysa L.V., Parasyuk O.V., Piskach L.V. Crystal structure of the Cu₂CdSn₃S₈ compound. *J. Alloys Compd.* 2000, *307*, 124–126.

[118] Yajima J., Ohta E., Kanazawa Y. Toyohaite, $Ag_2FeSn_3S_8$, a new mineral // Mineral. J. – 1991. – 15. – P. 222–232. (https://doi.org/10.2465/minerj.15.222)

[119] Garg G., Gupta S., Maddanimath T., Gascoin F., Ganguli A. K. Single crystal structure, electrical and electrochemical properties of the quaternary thiospinel: $Ag_2FeSn_3S_8$. *Solid State Ionics.* – 2003. – 164. – P. 205–209. (https://doi. org/10.1016/j.ssi.2003.08.002)

[120] Вильке К.Т. Выращивание кристаллов - Л.: Недра, 1977. - 600 с.

[121] Рентгеновский дифрактометр ДРОН-4-13. Инструкция по эксплуатации. Л. 1994.

[122] Pecharsky V.K. Fundamentals of powder diffraction and structural characterization of materials / V.K.Pecharsky, P.Y. Zavalij. Springer. USA. 2005 - P. 731.

[123] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic

calculations (Version 4), J. Appl. Cryst. 47(2), 803 (2014).

[124] Sheldrick, G.M. Crystal structure refinement with SHELXL. *Acta Crystallogr*. *Sect. C Struct. Chem.* 2015, *71*, 3–8.

[125] Leica VMHT AUTO. Operation instructions. Vienna, Austria. 1998.

[126] Берг Л.Г., Бурмистрова Л.Н., Озеров М.И. Практическое руководство по термографии. – Казань: КГУ, 1967. – 162 с.

[127] Богомолов И.А. Практическая металлография. - К.: Высшая школа, 1976. - 286 с.

[128] Олексеюк И.Д., Шульга В.Г. Механическая и химическая обработка полупроводниковых материалов. - Ужгород: 1978. - 52 с.

[129] Берг Л.Г. Введение в термографию. М.: Наука, 1969. С. 395

[130] F. Paulik, J. Paulik, L. Erdey. Derivatography: A complex method in thermal analysis. Talanta.(1966) V. 13 (10) 1405-1430. <u>https://doi.org/10.1016/0039-9140(66)80083-8</u>

[131]УстановкаТермодент-04.Режимдоступу:https://www.progret.org/catalog/t04t05?l=uk

[132] SEM/EDS. Tescan Brno s.r.o., Brno, Czech Republic. Режим доступу: https://www.tescan.com/product/sem-for-materials-science-tescan-vega/

[133] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Technical Universit. Wien, Austria, 2001, ISBN 3- 9501031-1-2. [134] S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Djaoued Yahia, Jacques Robichaud, Chang-Koo Kim, Controlled synthesis of MoO3 microcrystals by subsequent calcination of hydrothermally grown pyrazine-MoO₃ nanorod hybrids and their photodecomposition properties, Mater. Chem. Phys. 141 (2013) 383–392.

[135] C.R. Brundle, A.D. Baker, in: C.R. Brundle, A.D. Baker (Eds.), Electron Spectroscopy: Theory, Techniques and Applications, vol. 1, Academic Press, London/New-York/San Francisco, 1997.

[136] O.Y. Khyzhun, V.L. Bekenev, V.A. Ocheretova, A.O. Fedorchuk, O.V. Parasyuk, Electronic structure of $Cu_2ZnGeSe_4$ single crystal: ab initio FP-LAPW calculations and X-ray spectroscopy measurements, Phys. B 461 (2015) 75–84.

[137] V.A. Ocheretova, O.V. Parasyuk, A.O. Fedorchuk, O.Y. Khyzhun, Electronic structure of Cu₂CdGeSe₄ single crystal as determined from X-ray spectroscopy data, Mater. Chem. Phys. 160 (2015) 345–351.

[138] Tauc J. Amorphous and Liquid Semiconductors. New York : Plenum, 1974. P.441.

[139] Pankove J. I. Optical Process in Semiconductors. Dover, New York, 1975. P.35.

[140] Morigaki K., Ogihara C. Amorphous semiconductors: structure, optical and electrical properties. Springer Handbook of Electronic and Photonic Materials. 2007.P. 565

[141] Kodolbas Alp Osman. Empirical calibration of the optical gap in $a-Si_{1-x}C_x$:H (x<0.20) alloys. Materials Science and Engineering. 2003. Vol. 98. P. 161–166.

[142] Disorder and the optical-absorption edge of hydrogenated amorphous silicon /

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Golstein. *Phys. Rev. Lett.* 1981. Vol. 47, No. 20. P. 1480.

[143] Гулямов Г., Шарибаев Н. Ю. Влияние температуры на ширину запрещенной зоны полупроводника. ФІП ФИП PSE. 2011. Т. 9, № 1. С. 40–43.

[144] Urbach F. The Long-Wavelength Edge of Photographie Sensitivity and of the Electronic Absorption of Solids // Phys. Rev. 1953. Vol. 92. N 5. P. 1324–1334.

[145] Селезень А.О., Піскач Л.В. Фізико-хімічна взаємодія в системах Tl₂Se– Zn(Cd)Se. VII Всеукраїнська наукова конференція «актуальні задачі хімії: дослідження та перспективи. Житомир, 19 квітня 2023. С.137-138.

[146] Селезень А., Піскач Л. Взаємодія по перерізах Tl₄Si(Ge,Sn)Se₄–CdSe. *Актуальні проблеми хімії, матеріалознавства та екології*: тези доповідей III Міжнародної наукової конференції (м. Луцьк, 1-3 червня 2023 р.) / м. Луцьк: Терен, С. 105-106.

[147] Selezen A., Piskach L., Gulay L. The Tl₂Se–CdSe–SiSe₂ system. XV *international conference on crystal chemistry of intermetallic compounds (IMC-XV)*: тези доповідей міжнародної конференції **IMC-XV** (м. Львів, 25-27 вересня 2023 р.) / м. Львів: : Вид-во ЛНУ ім. І.Франка, С. 69.

[148] Selezen A., Kogut Y., Piskach L., Gulay L. New Quaternary Chalcogenides $Tl_2M^{II}M^{IV}_{3}Se_8$ and $Tl_2M^{II}M^{IV}X_4$. 2020. *MPDI: Proceedings*. V. 62. P. 3. (doi: <u>https://doi.org/10.3390/proceedings2020062003</u>)

[149] Selezen A.O., Piskach L.V., Parasyuk O.V. et al. The Tl₂SnSe₃-CdSe System and the Crystal Structure of the Tl₂CdSnSe₄ Compound. J. Phase Equilib. Diffus. 2019. V. 40. P. 797–801 (doi: https://doi.org/10.1007/s11669-019-00770-8).

[150] Selezen A., Olekseyuk I., Kogut Y., Piskach L. Interaction in the quasi-ternary system Tl₂Se–CdSe–SnSe₂. *XV international conference on crystal chemistry of intermetallic compounds* (IMC-XV): тези доповідей міжнародної конференції IMC-XV (м. Львів, 25-27 вересня 2023 р.) / м. Львів: : Вид-во ЛНУ ім. І.Франка, С. 62.

[151] Селезень А.О., Піскач Л.В. Фізико-хімічна взаємодія в системах Tl₂Ge(Sn)Se₃–Zn(Cd)Se при 570 К. *Сучасні тенденції розвитку науки» (частина III): тези доповідей* IV міжнародної науково-практичної конференції (м. Київ, 25-26 квітня 2020 р.) / м. Київ: МЦНіД, 2020. С. 28-30.

[152] Селезень А., Піскач Л. Фазові рівноваги по перерізу Tl₂Te–SiTe₂ при 470 К. *Актуальні проблеми розвитку природничих та гуманітарних наук:* тези доповідей IV Міжнародної науково-практичної конференції (м. Луцьк, 15 грудня 2020 р.) / м. Луцьк: вид-во ВНУ, 2020. С. 137-138.

[153] Селезень А.О., Олексеюк І.Д., Піскач Л.В. Система Tl₂SiTe₃–CdTe. *Актуальні проблеми фундаментальних наук*: тези доповідей IV міжнародної наукової конференції (м. Луцьк-Світязь, 01–05 червня 2021 р.) / м. Луцьк: Вежа – Друк, 2021. С. 115-116.

[154] Селезень А.О., Олексеюк І.Д., Піскач Л.В. Система Tl₂SiTe₃–HgTe. *Current problems of chemistry, materials science and ecology*: тези доповідей І Міжнародної наукової конференції (м. Луцьк, 12-14 травня 2021 р.) / м. Луцьк: Вежа – Друк, 2021. С. 113

[155] Selezen A. O., Olekseyuk I. D., Myronchuk G. L., Smitiukh O. V., Piskach L. V. Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} – Cd, Hg; D^{IV} – Si, Ge; X–Se, Te) and isothermal sections of the Tl_2 Se–CdSe-

Ge(Sn)Se₂ systems at 570 K. *Journal of Solid State Chemistry*. 289, 121422 (2020). (https://doi.org/10.1016/j.jssc.2020.121422)

[156] Tuan V.Vu, Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Phamh Kh.D., Khyzhun O.Y. Crystal growth, electronic and optical properties of Tl₂CdSnSe₄, a recently discovered semiconductor for application in thin film solar cells prospective and 2021. V. 111. P. optoelectronics. *Optical* Materials. 110656. (doi: https://doi.org/10.1016/j.optmat.2020.110656)

[157] Vu T.V., Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Olekseyuk I.D., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Hieu N.N., Pham Kh.D., Khyzhun O.Y. Quaternary Tl₂CdGeSe₄ selenide: Electronic structure and optical properties of a novel semiconductor for potential application in optoelectronics. *Journal of Solid and State Chemistry*. 2021. V. 302. P. 122453. (doi: https://doi.org/10.1016/j.jssc.2021.122453)

[158] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Perkin-(Eds.), Handbook of X-Ray Photoelectron Spectroscopy, Elmer Corporation, Minnesota, 1979.

[159] Practical surface analysis, in: second ed., in: D. Briggs, P.M. Seach (Eds.), Auger and X-Ray Photoelectron Spectroscopy, vol. 1, John Willey & Sons Ltd., Chichester, 1990.

[160] D. Briggs, P.M. Seach . Practical Surface Analysis (2nd Ed.): Vol. 1: Auger and X-Ray Photoelectron Spectroscopy. *John Willey & Sons Ltd.*, Chichester, 1990).

[161] J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: $1 \le Z \le 103$, Atomic Data and Nuclear Data Tables 32 (1985) 1-155.

[162] A.A. Lavrentyev, B.V. Gabrelian, T.V. Vu, L.N. Ananchenko, G.L. Myronchuk, O. V. Parasyuk, V.A. Tkach, K.I. Kopylova, O.Y. Khyzhun, Electronic and optical properties of quaternary sulfide Tl2HgSnS4, a promising optoelectronic semiconductor: a combined experimental and theoretical study, Opt. Mater. 92 (2019) 294–302.

[163] Zongbao Li, Xia Wang, Wei Shi, Xiaobo Xing, Ding-Jiang Xue and Jin-Song

Hu S train-engineering the electronic properties and anisotropy of GeSe2 monolayers RSC Adv., 2018, 8, 33445 DOI: 10.1039/c8ra06606j

[164] O.V.Zamurueva, G.L.Myronchuk, G.Lakshminarayana, O.V.Parasyuk, L.V.Piskach, A.O.Fedorchuk, N.S.AlZayed, A.M.El-Naggar, I.V.Kityk Structural and optical features of novel Tl1–xIn1–xGexSe2 chalcogenide crystals Optical Materials Vol 37, 2014, P. 614-620 https://doi.org/10.1016/j.optmat.2014.08.004

[165] Myronchuk, G.L., Zamurueva, O.V., Parasyuk, O.V. et al. Structural and optical properties of novel optoelectronic $Tl_{1-x}In_{1-x}Si_xSe_2$ single crystals. J Mater Sci: Mater Electron 25, 3226–3232 (2014). https://doi.org/10.1007/s10854-014-2007-y

[166] Specific features of band structure and optical anisotropy of Cu₂CdGeSe₄ quaternary compounds. M. G. Brik, O. V. Parasyuk, G. L. Myronchuk, I. V. Kityk. *Mater. Chem. Phys.* 2014. Vol. 147, № 1–2. P. 155–161

[167] Photoinduced features of energy band gap in quaternary Cu₂CdGeS₄ crystals /
M. G. Brik, I. V. Kityk, O. V. Parasyuk, G. Myronchuk. J. Phys.: Condens. Matter.
2013. Vol. 25. P. 505802 (11pp).

додатки

Список наукових публікацій здобувача за темою дисертації

– статті в наукових фахових виданнях:

1. Олексеюк I., Селезень А., Смітюх О., Гулай Л., Піскач Л. Тетрарні халькогеніди систем $Tl_2X-B^{II}X-D^{IV}X_2$ (B^{II} – Cd, Hg, D^{IV} – Si, Ge; X – Se, Te). *Проблеми хімії та сталого розвитку*. 2021. Вип. 2. С. 26–37 (doi: <u>https://doi.org/10.32782/pcsd-2021-2-5</u>). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного та диференційно-термічного аналізів, участь в обговоренні результатів та написанні статті.

– статті в наукових виданнях, що включені у міжнародну базу Scopus:

2. Selezen A.O., Piskach L.V., Parasyuk O.V. et al. The Tl_2SnSe_3 -CdSe System and the Crystal Structure of the $Tl_2CdSnSe_4$ Compound. J. Phase Equilib. Diffus. 2019. V. 40. P. 797–801 (doi: https://doi.org/10.1007/s11669-019-00770-8). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні статті.

3. Selezen A.O., Olekseyuk I.D., Myronchuk G.L., Smitiukh O.V., Piskach L.V. Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ (B^{II} -Cd, Hg; D^{IV}- Si, Ge; X-Se, Te) and isothermal sections of the Tl₂Se-CdSe-Ge(Sn)Se₂ systems at 570 K. 2020. Journal of Solid State Chemistry. V. 289. P. https://doi.org/10.1016/j.jssc.2020.121422). Особистий 121422 (doi: внесок здобувача – проведення синтезу та дослідження зразків методами ренттенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в дослідженні спектрів поглинання, обговоренні результатів та написанні статті.

4. Tuan V.Vu, Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Phamh Kh.D., Khyzhun O.Y. Crystal growth, electronic and optical properties of Tl₂CdSnSe₄, a recently discovered prospective semiconductor for application in thin film solar cells and optoelectronics. *Optical Materials*. 2021. V. 111. P. 110656. (doi: https://doi.org/10.1016/j.optmat.2020.110656) Особистий внесок здобувача – проведення синтезу та дослідження зразка методами рентгенофазового, рентгеноструктурного та мікро-структурного аналізів, участь в дослідженні фізичних властивостей, обговоренні результатів та написанні статті.

5. Vu T.V., Lavrentyev A.A., Gabrelian B.V., Selezen A.O., Olekseyuk I.D., Piskach L.V., Myronchuk G.L., Denysyuk M., Tkach V.A., Hieu N.N., Pham Kh.D., Khyzhun O.Y. Quaternary Tl₂CdGeSe₄ selenide: Electronic structure and optical properties of a novel semiconductor for potential application in optoelectronics. *Journal of Solid and State Chemistry*. 2021. V. 302. P. 122453. (doi: https://doi.org/10.1016/j.jssc.2021.122453) Особистий внесок здобувача – проведення синтезу та дослідження зразка методами рентгенофазового, рентгеноструктурного та мікро-структурного аналізів, участь в дослідженні фізичних властивостей, обговоренні результатів та написанні статті.

– публікації в інших наукових виданнях та збірниках матеріалів конференцій:

6. Selezen A., Kogut Y., Piskach L., Gulay L. New Quaternary Chalcogenides $Tl_2M^{II}M^{IV}_{3}Se_8$ and $Tl_2M^{II}M^{IV}X_4$. 2020. *MPDI: Proceedings*. V. 62. P. 3. (doi: <u>https://doi.org/10.3390/proceedings2020062003</u>) Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в дослідженні спектрів поглинання, обговоренні результатів та написанні статті.

7. Селезень А.О., Небожук М.Б., Піскач Л.В. Фізико-хімічна взаємодія в системі Tl₂SnSe₃ – CdSe при 570 К. *Молода наука Волині: пріоритети та перспективи досліджень*: тези доповідей IX Міжнародної науково-практичної конференції студентів і аспірантів (м. Луцьк, 15-16 травня 2018 р.). С. 1040-1041. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного аналізів, участь в обговоренні результатів та написанні тез.

8. Селезень А.О., Небожук М.Б., Олексеюк І.Д., Парасюк О.В., Піскач Л.В. Квазіпотрійна система Tl₂Se–CdSe–SnSe₂ при 570 К. *Релаксаційно, нелінійно, акустооптичні процеси і матеріали*: тези доповідей IX Міжнародної наукової конференції (м. Луцьк – Світязь, 01-05 червня 2018 р.) / м. Луцьк: Вежа, С. 96-98. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

9. Селезень А.О., Лесік Ю.В., Піскач Л.В., Олексеюк І.Д. Ізотермічний переріз квазіпотрійної системи Tl₂Se-CdSe-GeSe₂ при 570 К. Інноваційний розвиток науки нового тисячоліття: тези доповідей III міжнародної науковопрактичної конференції (м. Чернівці, 25-26 травня 2018 р.) / м. Чернівці: Молодий вчений, 2018. С. 193-197. Особистий внесок здобувача – проведення дослідження зразків методами рентгенофазового, синтезу та рентгеноструктурного, диференційно-термічного мікро-структурного та аналізів, участь в обговоренні результатів та написанні тез.

10. Селезень А.О., Небожук М.Б., Піскач Л.В. Ізотермічний переріз квазіпотрійної системи Tl₂Se–CdSe–SnSe₂ при 570 К та структура сполуки Tl₂CdSnSe₄. *Актуальні задачі хімії: дослідження та перспективи*: тези доповідей III всеукраїнської наукової конференції (м. Житомир, 17 квітня 2019 р.) / м. Житомир: ЖДУ ім. І.Франка, 2019. С. 152-153. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

11. Селезень А.О., Небожук М.Б., Піскач Л.В., Олексеюк І.Д. Фазові рівноваги в системі Tl₂GeSe₃–CdSe при 570 К та структура сполуки Tl₂CdGeSe₄. *Хімічні Каразінські читання*: тези доповідей XI Всеукраїнської наукової конференції студентів та аспірантів (м. Харків, 22–24 квітня 2019 р.) / Харків: XHV імені В. Н. Каразіна, 2019. С. 33-34. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового,

рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

12. Піскач Л.В., Селезень А.О. Фазоутворення в системах Tl₂Se–CdSe–Ge(Sn)Se₂ *Львівські хімічні читання* – 2019: тези доповідей XVII наукової конференції (м. Львів, 2-5 червня 2019 р.) / м. Львів: вид. ЛНУ ім. І.Франка, С. 223-224. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного аналізів, участь в обговоренні результатів та написанні тез.

13. Piskach L.V., Selezen A.O., Smitiukh O.V., Olekseyuk I.D., Tl₂B^{II}D^{IV}X₄ Compounds with the tetragonal structure. International Conference on Crystal Chemistry of Intermetallic Compounds (IMC-XIV): mesu donobideŭ XIV міжнародної конференції (м. Львів, 22-25 вересня 2019 р.) / м. Львів: вид. ЛНУ ім. І.Франка, 2019. С. 114 (Р56). Особистий внесок здобувача - проведення дослідження зразків синтезу методами рентгенофазового, та рентгеноструктурного, диференційно-термічного мікро-структурного та аналізів, участь в обговоренні результатів та написанні тез.

14. Селезень А.О., Піскач Л.В. Фізико-хімічна взаємодія в системах Tl₂Ge(Sn)Se₃–Zn(Cd)Se при 570 К. *Сучасні тенденції розвитку науки» (частина III): тези доповідей* IV міжнародної науково-практичної конференції (м. Київ, 25-26 квітня 2020 р.) / м. Київ: МЦНіД, 2020. С. 28-30. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

15. Мирончук Г., Денисюк М., А Селезень., Піскач Л.В., Ріаsескі М., Богданюк М., Шаварова Г. Оптичні та фотоелектричні властивості кристалів Tl₂CdSnSe₄. *Релаксаційні, нелінійні, акустооптичні процеси і матеріали –2020*: тези доповідей Х міжнародної наукової конференції РНАОПМ-2020 (м. Луцьк–Світязь, 25-29 червня 2020 р.) / м. Луцьк: Вежа – Друк, 2020. С.35-36. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного

та мікро-структурного аналізів, участь в дослідженні спектрів поглинання, обговоренні результатів та написанні тез.

16. Selezen A.O., Olekseyuk I.D., Piskach L.V. Phase formation in the $Tl_2Se - CdSe - GeSe_2$ system. *Book of Abstracts of the XXII International Seminar on Physics and Chemistry of Solids*: тези доповідей XXII міжнародного семінару (м. Львів, 17-19 червня 2020 р.) / м. Львів: вид. ЛНУ ім. І.Франка, 2020. С. 60. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

17. Selezen A.O., Kogut Yu.M., Piskach L.V., Gulay L.D. Quaternary Chalcogenide Semiconductors $Tl_2M^{II}M^{IV}_3Se_8$ and $Tl_2M^{II}M^{IV}X_4$. *The 2^{-nd} International Online Conference on Crystals Crystals-2020*: proceedings of the 2^{-nd} International Online Conference (Basel, 10–20 November 2020). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

18. Селезень Андрій, Піскач Людмила. Фазові рівноваги по перерізу Tl₂Te–SiTe₂ при 470 К. *Актуальні проблеми розвитку природничих та гуманітарних наук:* тези доповідей IV Міжнародної науково-практичної конференції (м. Луцьк, 15 грудня 2020 р.) / м. Луцьк: вид-во ВНУ, 2020. С. 137-138. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

19. Селезень Андрій, Олексеюк Іван, Піскач Людмила, Гулай Любомир. Структура Талій (І) Кадмій Сіліцій (Ґерманій) селенідів. *Львівські хімічні читання* – 2021: збірник наукових праць: XVIII наукової конференції (м. Львів, 31 травня – 2 червня 2021 р.) / м. Львів: Видавнитво від А до Я, 2021. С. 360 (С. 214). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

20. Селезень А.О., Олексеюк І.Д., Піскач Л.В. Ліквідус системи Tl₂Se– CdSe–SnSe₂. *Актуальні задачі хімії: дослідження та перспективи*: тези доповідей Всеукраїнської наукової конференції (м. Житомир, 15 квітня 2021 року) / м. Житомир: Видавець О.О. Євенок, 2021. С. 114. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

21. Селезень А.О., Олексеюк І.Д., Піскач Л.В. Система Tl₂SiTe₃–HgTe. *Current problems of chemistry, materials science and ecology*: тези доповідей І Міжнародної наукової конференції (м. Луцьк, 12-14 травня 2021 р.) / м. Луцьк: Вежа – Друк, 2021. С. 113 *(усна доповідь)*. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

22. Селезень А.О., Олексеюк І.Д., Піскач Л.В. Система Tl₂SiTe₃–CdTe. *Актуальні проблеми фундаментальних наук*: тези доповідей IV міжнародної наукової конференції (м. Луцьк-Світязь, 01–05 червня 2021 р.) / м. Луцьк: Вежа – Друк, 2021. С. 115-116 (усна доповідь). Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

23. Селезень А.О., Піскач Л.В. Фізико-хімічна взаємодія в системах Tl₂Se–Zn(Cd)Se. *Актуальні задачі хімії: дослідження та перспективи*: тези доповідей VII Всеукраїнської наукової конференції (м. Житомир, 19 квітня 2023 р.). С.137-138. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні статті.

24. Мирончук Галина, Селезень Андрій, Когут Юрій, Піскач Людмила. Оптичні властивості кристалів Tl₂CdGe₃Se₈. *Актуальні проблеми фундаментальних наук (АПФН-2023)*: тези доповідей V Міжнародної наукової конференції (м. Луцьк – Світязь, 01-05 червня 2023 р.) / м. Луцьк: Вежа-Друк, С. 48-49. Особистий внесок здобувача – участь в синтезі, дослідженні спектрів поглинання, обговоренні результатів та написанні тез.

25. Селезень А., Піскач Л. Взаємодія по перерізах Tl₄Si(Ge,Sn)Se₄–CdSe. *Актуальні проблеми хімії, матеріалознавства та екології*: тези доповідей III Міжнародної наукової конференції (м. Луцьк, 1-3 червня 2023 р.) / м. Луцьк: Терен, С. 105-106. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

26. Selezen A., Olekseyuk I., Kogut Y., Piskach L. Interaction in the quasiternary system Tl₂Se–CdSe–SnSe₂. *XV international conference on crystal chemistry of intermetallic compounds (IMC-XV)*: тези доповідей міжнародної конференції **IMC-XV** (м. Львів, 25-27 вересня 2023 р.) / м. Львів: : Вид-во ЛНУ ім. І.Франка, С. 62. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентгенофазового, рентгеноструктурного, диференційнотермічного та мікроструктурного аналізів, участь в обговоренні результатів та написанні тез.

27. Selezen A., Piskach L., Gulay L. The Tl₂Se–CdSe–SiSe₂ system XV *international conference on crystal chemistry of intermetallic compounds (IMC-XV)*: тези доповідей міжнародної конференції **IMC-XV** (м. Львів, 25-27 вересня 2023 р.) / м. Львів: : Вид-во ЛНУ ім. І.Франка, С. 69. Особистий внесок здобувача – проведення синтезу та дослідження зразків методами рентґенофазового, рентгеноструктурного, диференційно-термічного та мікро-структурного аналізів, участь в обговоренні результатів та написанні тез.

Додаток Б

Типи та температури нонваріантних процесів системи $Tl_2Se-CdSe-SnSe_2$

