Physical and chemical interaction at the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ section

O.V. Velychko, L.V. Piskach

Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, 13 Voli Ave., Lutsk, 43025, Ukraine, Velychko.Olha@vnu.edu.ua

Vertical section $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ of the $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{HgS}-\mathrm{GeS}_{2}$ system is of interest due to the formation of quaternary phase with semiconducting properties [1].

The two end compounds of this section belong to the argyrodite family of the general
 $=\mathrm{S}^{2-}, \mathrm{Se}^{2-}, \mathrm{Te}^{2-}$) which got its name from the argyrodite mineral $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ [2]. The compounds of argyrodite structure are solid-state semiconductor materials with mixed ionic and electrical conductivity and can be used as optical, superionic and thermoelectric materials.

A significant number of representatives of the $\mathrm{Ag}^{\mathrm{I}}{ }_{8} \mathrm{M}^{\mathrm{IV}} \mathrm{X}^{\mathrm{VI}}{ }_{6}$ type $(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn} ; \mathrm{X}=$ $\mathrm{S}, \mathrm{Se}, \mathrm{Te}$) is known. Their properties and method of formation were described first in [3, 4].

Synthetic argyrodite $\left(\mathrm{Ag}_{8} \mathrm{GeS}_{6}\right)$ is formed in the $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{GeS}_{2}$ system which has been researched repeatedly [5-13]. The results are unambiguous regarding the formation of the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ compound and are very different in number and composition of compounds in the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{GeS}_{2}$ part. $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ melts congruently within $1213-1228 \mathrm{~K}$ range and has a polymorphous transformation within 473-493 K [5-13]. The structure of HT-modification is face-centered cubic ($a=1.070 \mathrm{~nm}$) [4, 7], that of low-temperature modification is orthorhombic (space group Pna2 ${ }_{1}, a=1.5149, b=0.7476, c=1.0589 \mathrm{~nm}$ [6], space group Pna2 ${ }_{1}$, $a=1.5137, b=0.7483, c=1.0590 \mathrm{~nm})$ [12].

According to [114], $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ forms in the $\mathrm{HgS}-\mathrm{GeS}_{2}$ system that has another ternary compound $\mathrm{HgGe}_{2} \mathrm{~S}_{5}$. $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ forms in the peritectic reaction $\mathrm{L}+\mathrm{HgS} \Leftrightarrow \mathrm{Hg}_{4} \mathrm{GeS}_{6}$ at 993 K . Compound $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ undergoes polymorphous transformation at 668 K . LTM $-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ crystallizes in space group $C c$ with lattice parameters: $a=0.1234, b=0.7127, c=1.2360 \mathrm{~nm}$, $\beta=108^{\circ} 34^{\prime}$ [14].

The existence of the $\mathrm{Ag}_{6} \mathrm{Hg}_{0.82} \mathrm{GeS}_{5.82}$ compound and another compound was found according to the results of X-ray phase and microstructural analyses at the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ section in the investigation of the isothermal section of the quasi-ternary system $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{HgS}$ GeS_{2} at 670 K (Fig. 1) [1]. The existence of the quaternary compound $\mathrm{Ag}_{6} \mathrm{Hg}_{0.82} \mathrm{GeS}_{5.82}$ which crystallizes in its own structural type, space group $P 2_{1} 3$ with cell parameter $a=1.05547 \mathrm{~nm}$, was reported in [15]. This phase has a significant homogeneity region that is localized along the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ section in the range of $22-31 \mathrm{~mol} . \% \mathrm{Hg}_{4} \mathrm{GeS}_{6}$. Tetragonal structure with a relatively large unit cell ($a=1.4619, c=2,0796 \mathrm{~nm}$) was established for another compound $\mathrm{Ag}_{2} \mathrm{Hg}_{3} \mathrm{GeS}_{6}$ [1].

According to DTA (weak effects of solid-phase transformations) and additional studies involving high-temperature X-ray diffraction (DORIS III synchrotron, Hasylab, Hamburg), it was established that two intermediate phases, γ and δ, are stable above room temperature
between the end compounds of the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ section (rather, their solid solution ranges α and β, respectively). They exist to $\sim 500 \mathrm{~K}(\gamma)$ and $\sim 400 \mathrm{~K}(\delta)$. Monoclinic structure of the $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ compound is stable to $\sim 680 \mathrm{~K}$. Unlimited solid solubility (ε-solid solution) between HT-modifications of the original argydrodites $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ and $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ is established. Equilibria in the subsolidus area are shown in Fig. 2.

1 - single-phase - continuous ε-solid solution series of $\mathrm{HT}-\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ and $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$, cubic space group F-43m;

2 - single-phase ternary phases: orthorhombic α-phase (LT- $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$), space group $P n a 2_{1}$, and monoclinic β-phase (LT- $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$), space group $C c$;

3 - single-phase quaternary phases: cubic γ-phase $\left(\mathrm{Ag}_{6} \mathrm{Hg}_{0.82} \mathrm{GeS}_{5.82}\right)$, space group $P 2_{1} 3$, and tetragonal δ-phase $\left(\mathrm{Ag}_{2} \mathrm{Hg}_{3} \mathrm{GeS}_{6}\right)$;

4 - two-phase samples.
Two-phase regions are situated between single-phase areas within these temperatures. Solid-phase interaction between α - and γ-, γ - and δ-, δ - and β-phases has eutectoid nature. ε solid solution decomposes at the following temperatures and compositions: $\varepsilon_{1} \leftrightarrow \alpha+\gamma$ (first process: $405 \mathrm{~K}, 12 \mathrm{~mol} . \% \mathrm{Hg}_{4} \mathrm{GeS}_{6}$), $\varepsilon_{2} \leftrightarrow \gamma+\delta$ (second process: $325 \mathrm{~K}, 67 \mathrm{~mol} . \% \mathrm{Hg}_{4} \mathrm{GeS}_{6}$), $\varepsilon_{3} \leftrightarrow \alpha+\gamma$ (third process: $360 \mathrm{~K}, 85 \mathrm{~mol} . \% \mathrm{Hg}_{4} \mathrm{GeS}_{6}$).

Fig. 1. Phase diagram of the $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{HgS}-\mathrm{GeS}_{2}$ system at $670 \mathrm{~K}[1]$

Fig. 2. Phase diagram of the subsolidus area of the $\mathrm{Ag}_{8} \mathrm{GeS}_{6}-\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ system

Since HT-modifications of $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$ and $\mathrm{Hg}_{4} \mathrm{GeS}_{6}$ form a continuous solid solution series by substitution ($2 \mathrm{Ag}^{+} \leftrightarrow \mathrm{Hg}^{2+}$), they crystallize in the same cubic symmertry in the space group $F-43 m$.

References:

1. O. V. Parasyuk, L. D. Gulay, L. V. Piskach, O. P. Gagalovska. The $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{HgS}-\mathrm{GeS}_{2}$ system at 670 K and the crystal structure of the $\mathrm{Ag}_{2} \mathrm{HgGeS}_{4}$ compound // J. Alloys Comp. - 2002. - Vol. 336, No. 1-2. - P. 213-217.
2. W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of tetrahedrally close-packed structures // Mater. Res. Bull. - 1979. - Vol. 14, No. 2. - P. 241-248.
3. H. Hans, H. Schulze, L. Sechser. Uber einige ternare Chalkogenide vom ArgyroditTyp // Naturwissenschaften. - 1965. - Vol. 52, No. 15. - P. 451-452.
4. O. Gorochov, Les composes $\mathrm{Ag}_{8} \mathrm{MX}_{6}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ et $\mathrm{X}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}) / /$ Bull. Soc. Chim. France. - 1968. - Vol. 6. - P. 2263-2275.
5. L. Cambi, M. Elli. Sui solfogermanati: argirodite sintetica // Atti Accad. naz. LinceiRend. Cl. Sci. fis. mat. E natur. - 1961. - Vol. 30, No. 1. - P. 11-15.
6. G. Eulenberger, Die Kristallstruktur der Tieftemperaturmodifikation von $\mathrm{Ag}_{8} \mathrm{GeS}_{6}$, synthetischer Argyrodit // Monatsh. Chem. - 1977. - Vol. 108, No. 4. - P. 901-913.
7. G. H. Moh. Experimental and descriptive ore mineralogy. The $\mathrm{Ag}-\mathrm{Sn}-\mathrm{S}$ system. The Ag-Ge-S system // N. Jb. Miner. Abh. - 1976. - Vol. 128, No. 2. - P. 146-152.
8. A. Nagel. Verbindungsbildung im system $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{GeS}_{2}-\mathrm{AgI} / / \mathrm{Z}$. Naturforsch. B. 1978. - Vol. 33. - P. 1461-1464.
9. Z.Yu. Salayeva, A.A. Movsun-Zade, A.I. Bagirov, A.S. Skoropanov, Ternary system $\mathrm{Ag}_{2} \mathrm{~S}_{-}-\mathrm{GeS}_{2}-\mathrm{S} / /$ Izv. Acad. Nauk SSSR. Neorgan. Mater. - 1988. - V. 33, № 5. - P. 1262-1267.
10. A.A. Movsun-Zade, Z.Yu. Salayeva, M.R. Allazov. Ternary system Ag-Ge-S // Zhurn. Neorg. Khim. - 1989. - V. 34, № 9. - P. 2324-2330.
11. N. Chbani, X. Cai, A. M. Loireau-Lozac'h, M. Guittard. Ternaire argent-germaniumsulfure. quasibinaire disulfure de germanium - sulfure d'argent. conductivite electrique du verre le plus riche en argent // Mater. Res. Bull. - 1992. - Vol. 27, No. 11. - P. 1355-1361.
12. O.P. Kokhan, Interaction in the $\mathrm{Ag}_{2} \mathrm{X}-\mathrm{B}^{\mathrm{IV}} \mathrm{X}_{2}$ systems ($\left.\mathrm{B}^{\mathrm{IV}}-\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn} ; \mathrm{X}-\mathrm{S}, \mathrm{Se}\right)$ and properties of compounds. Ph.D. (Chemistry) thesis. Uzhgorod, Uzhgorod State Univ. - 1996.
13. I.D. Olekseyuk, Yu.M. Kogut, A.O. Fedorchuk et al. The $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{GeS}_{2}$ system and crystal structure of $\mathrm{Ag}_{2} \mathrm{GeS}_{3} / /$ Lesya Ukrainka Volyn Nat'l Univ. Sci. Bull. Inorganic Chemistry series. - 2010. - V. 16. - P. 25-33.
14. Yu.V. Voroshilov, S.F. Motrya, Ye.E. Semrad, Physico-chemical investigation of the Hg-Ge-S system // Ukr. Khim. Zhurn. - 1994. - Vol. 60, No. 1. - P. 27-31.
15. L.D. Gulay, O.V. Parasyuk, Crystal structure of the $\mathrm{Ag}_{6} \mathrm{Hg}_{0.82} \mathrm{GeS}_{5.82}$ compound. // J. Alloys Comp. - 2001. - V. 327, No. 1-2. - P. 100-103.
