
Journal «ScienceRise: Pedagogical Education» №4(49)2022

24

UDC: 004.72.056.52:003.27:004.438

DOI: 10.15587/2519-4984.2022.261051

EDUCATIONAL EXAMPLE OF MASKING TEXTUAL INFORMATION IN A

PHOTOGRAPHIC SIGNAL

Mykola Holovin, Nina Holovina

The paper presents a steganographic method of masking textual information in photo files. Concealment is implemented

in Python. The introduction of individual letters of the text into the image is carried out by the method of "least signifi-

cant bit". The program can be used for both educational and practical purposes. The Pillow graphics library was used

to implement the program. This is not a specialized library for steganographic needs. The use of this library makes it

possible to visualize the mechanism of hiding information in the lessons, while the conciseness of the program code

gives the possibility to demonstrate it in the classroom setting. It is also important for educational purposes, that work-

ing within the Pillow library allows you to see the state of an empty and filled container at the level of individual bits.

To assess the practical value of the program, it was tested with texts of different lengths and with containers (photo-

graphs) of various kinds. The experiment showed the correct reproduction of texts. Careful visual examination of the

empty and correspondingly filled containers (photographs) revealed no differences or suspicions of text bookmarks. Of

course, if the party who intercepted the masked message has guesses about how the text is hidden, then this text is easily

revealed. Therefore, it is obvious, that the use of the program for practical purposes requires additional manipulations

in the code, in particular related to the order of implementation of the text and the choice of location.

It is also desirable to additionally encrypt the text with at least a simple method. Such encryption is possible with the

usage of a separate program. Analysis of photographs and manipulation with them at the level of individual bits also

has educational value in terms of disclosing a method of capturing the corresponding physical signal. The latter gives

an explanation of the methods of encoding static images, noise level, the magnitude of the useful physical signal, and

the limits of sensitivity of human vision

Keywords: Python, Pillow, steganography, hiding, masking information in file, educational example

How to cite:

Holovin, M., Holovina, N. (2022). Educational example of masking textual information in a photographic signal. ScienceRise: Pedagogical Educa-

tion, 4 (49), 24–28. doi: http://doi.org/10.15587/2519-4984.2022.261051

© The Author(s) 2022
This is an open access article under the Creative Commons CC BY license hydrate

1. Introduction

The Internet, as a global information network,

makes information easy to transmit through open com-

munication channels. This transfer can take place any-

where in the world. However, unfortunately, there is a

wide range of possibilities for intercepting messages.

Therefore, there is a need to transmit important infor-

mation in encrypted or hidden form, and preferably in

both versions.

The research of original steganographic meth-

ods of hiding information in media files has high theo-

retical and practical importance. The development of

such subjects as programming, steganography, cryp-

tography should be based on current topics. This in-

creases students' motivation to study. When studying

programming, in particular, when mastering work with

arrays, files, terms, it is interesting to work in the

direction of encoding, encryption and hiding infor-

mation. On the other hand, when studying physics and

steganography, it is interesting to have concise, trans-

parent applications of software codes of mechanisms

for introducing acoustic and visual physical signals

into the relevant media files. It is also useful to have

simple applications of software codes for coding, en-

cryption and hiding mechanisms.

2. Literature Review

A brief history of steganography, its scope and its

relationship with cryptography are considered in [1].

Here, the most popular steganography algorithms are

discussed and some of the tools and software used are

demonstrated.

Good systematic publications in the field of ste-

ganography are works [2, 3]. The basic steganographic

methods of hiding confidential data in audio and graphic

computer files are considered here, the problems of sta-

bility, bandwidth and reliability of the hidden data ex-

change channel are systematically considered. Also there

it is possible to find the results of information-theoretical

research on the problems of concealment of information.

The analysis of estimates of the level of popularity of

steganography is interesting. By analyzing a large set of

data, such an analysis was performed [4]. The prospects of

this approach to information protection are shown.

Journal «ScienceRise: Pedagogical Education» №4(49)2022

25

High-quality research papers [5, 6], written by lead-

ers in the field of steganography of digital media, in a sim-

ple way give an idea of the latest trends in digital steganog-

raphy, principles, algorithms, fundamental theories, meth-

odologies of practical design of modern steganographic

tools. A somewhat restored and modified approach to the

known methods of cryptography and steganography in

accordance with the new dangers can be found in [7].

3. Goal and Objectives of the Research

The goal of this work is to implement a simple soft-

ware code for hiding textual information in graphic files by

means of the Pillow library of the Python language for using

this code for practical and educational purposes.

To achieve this goal, the following objectives were

set:

1. Create a training program that could hide in-

formation in electronic images. Use the Python language,

the Pillow graphics library.

2. Optimize and test it with texts of different lengths

and with containers (photographs) of different types.

3. Analyze the possibilities of using the program

for educational and practical purposes.

4. Materials and methods of research

In this work, hiding "secret" text in an image file

(photo) is implemented using the popular algorithm LSB

(Least Significant Bit). The "least significant bit" is the

bit of the smallest bit in the binary representation of the

number.

The essence of this steganographic method is to

replace the last significant bits of the byte, container

(image, audio or video) with the bits of the hidden mes-

sage. The difference between an empty and a filled con-

tainer should not be noticeable to the human senses. This

idea was tested by the authors when implementing the

concealment of textual information in the sound file in

Python using the wav library [8].

The idea of the method of hiding the text of the

message in the electronic picture, which is implemented

in this work, is as follows. The letter codes of the text of

the secret message are converted into a bit array. Next,

the individual values of this bit array are implemented

sequentially in the individual base colors (red, green,

blue or RGB) of each pixel of the container in the order

they follow.

Each base color (one of three) of an individual

pixel is encoded by a byte cell (a number between 0 and

255). Then it is clear, that one pixel of the container can

be filled with three bits from the just mentioned bit text

array. Note that the base colors are three (RGB) and it is

possible to use only the lower bit of each color. Table 1

shows how some of the commonly used colors are en-

coded.

Table 1

Coding of colors

R G В Color Name R G В Color Name

0 0 0 Black 80 208 255 Light Blue

255 255 255 White 0 32 255 Blue

224 224 224 Light Gray 96 255 128 Yellow-Green

128 128 128 Gray 0 192 0 Green

64 64 64 Dark Gray 255 224 32 Yellow

255 0 0 Red 255 160 16 Orange

255 96 208 Pink 160 128 96 Brown

160 32 255 Purple 255 208 160 Pale Pink

The Python Pillow graphics library [9, 10] is in-

teresting for steganography because it allows to access

individual pixels of the image. In particular, the library

allows to change the base colors of individual pixels. It is

clear, that this library was created to work with graphics

in Python, not for steganography. However, access to

individual pixels can be used successfully to hide infor-

mation.

5. Results of the research

Actions of formal logics of concealment of in-

formation

Suppose, for example, the decimal number 130 is

the value of the level of redness of the color of a pixel.

The binary code of this number looks like 10000010. The

smallest significant bit is 0. When the next bit from the

bit text array of the bookmark is inserted into the con-

tainer, this bit either changes to 1 or remains 0. After all,

the LSB algorithm replaces the lower bit of each byte of

image with one byte of “secret” message. Table 2 shows

a scheme of hiding of information.

Manipulation of bits in LSB, shown in the figure,

is quite simple, but has two stages.

In the first stage, between each byte of the

graphics container and the bit mask 11111110 there is a

bitwise logical action "AND", which in Python is denot-

ed by "&". It resets to 0 all the least significant bits of the

graphics container bytes.

In the second stage, a logical bit operation "OR" is

performed between each modified byte of the container

and the bit mask 0000000 [0/1]. Where the least signifi-

cant bit of the container byte can take the value 0 or 1

from the secret message. Bitwise logical action "OR" is

denoted in Python "|". Below, it is possible to see the

code for embedding a text message in a graphic file

(photo).

Journal «ScienceRise: Pedagogical Education» №4(49)2022

26

Table 2

Scheme of hiding of information

co
lo

r RGB values for

adjacent pixels ac
ti

o
n

254 in binary form
Result of bitwise

OR ac
ti

o
n

Bitcode of letter N

in LSB column

Result of bitwise

AND

R 1 0 0 0 0 0 1 0 & 1 1 1 1 1 1 1 0 = 1 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0 0 = 1 0 0 0 0 0 1 0

G 1 0 0 0 0 0 1 1 & 1 1 1 1 1 1 1 0 = 1 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0 1 = 1 0 0 0 0 0 1 1

B 1 0 0 0 0 1 0 0 & 1 1 1 1 1 1 1 0 = 1 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 0 = 1 0 0 0 0 1 0 0

R 1 0 0 0 0 1 0 1 & 1 1 1 1 1 1 1 0 = 1 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 0 = 1 0 0 0 0 1 0 0

G 1 0 0 0 0 1 1 0 & 1 1 1 1 1 1 1 0 = 1 0 0 0 0 1 1 0 | 0 0 0 0 0 0 0 1 = 1 0 0 0 0 1 1 1

B 1 0 0 0 0 1 1 1 & 1 1 1 1 1 1 1 0 = 1 0 0 0 0 1 1 0 | 0 0 0 0 0 0 0 1 = 1 0 0 0 0 1 1 1

Program for hiding text and mechanism of its

functioning. The program starts with connecting the PIL

library to work with graphic files.

Then the graphic file container and the text itself,

which should be further hidden in the graphic file, are

loaded.

from PIL import Image,ImageDraw #adding the library PIL and import from it Image,ImageDraw

image = Image.open("les-ish-.png") # uploading graphic file of the container

image.show() # extraction of the image on the screen

draw = ImageDraw.Draw(image) # preparing to transformation image image

file = open('secret_text.txt','r',encoding="utf-8") # opening text file

text=file.read() # uploading text into the row variable text

text=text+'#' # adding at the end of the text the sign #

print(text); # extraction of text from variable text on the screen

file.close() # closing the text file

After connecting the library and downloading the

necessary files in the program, the preparatory steps

necessary to mask the text in the image file take place.

There is a conversion of text into a bit array, determining

the width and height of the image (container frame), and

unloading the value of pixels in the pix array.

bits_text=list(map(int,''.join([bin(ord(i)).lstrip('0b').rjust(16,'0') for i in text])))

width = image.size[0] # defining the width of an image.

height = image.size[1] # defining the height of the image

pix = image.load() # defining the indicator of pixels in the massive pix

Next, scan the image for height and width, deter-

mine the degree of redness (R), green (G), blue (B) color

of each pixel. Embedding the next bits of text in the

corresponding bytes R, G, B of the next pixels.

N=0 # providing the variable N (text bits counter) indicator 0

for i in range(width): # scanning the image according to width

 for j in range(height): # scanning the image according to height

 R = pix[i,j][0] # defining the level of redness of the color of the pixel

 G = pix[i,j][1] # defining the level of greenness of the color of the pixel

 B = pix[i,j][2] # defining the level of blueness of the color of the pixel

 if len(bits_text)>N: # if the amount of bits of text does not exceed N

 R=(R&254)|bits_text[N] # implementation of next bit of text in LSB R

 N=N+1 # number of the next bit

 if len(bits_text)>N: # if the number of text bits does not exceed N

 G=(G&254)|bits_text[N] # implementation of the next bit of text in LSB G

 N=N+1 # number of the following bit

 if len(bits_text)>N: # implementation of the next bit of the text

 B=(B&254)|bits_text[N] # implementation of the next bit of the text in LSB B

 N=N+1 # number of the following bit

 draw.point((i,j),(R,G,B)) # implementation of the current R,G,B in the image

At the end of the program, the filled graphic container is displayed and saved together with the text.

image.show() # display image image on the screen

image.save("les-3-.png", "PNG") # saving the container along with the text

Journal «ScienceRise: Pedagogical Education» №4(49)2022

27

Direct implementation of the text, as a set of bits, in

the graphic file occurs bit by bit in each individual current

graphic byte. It is clear, that algorithmically it is organized

in the form of two nested cycles. Stopping the introduction

of bits of text in the image file after their completion is

realized by the appropriate branching. Below, there is an

arithmetic expression that realizes the implementation of the

next bit of text in the red color of the next pixel.

R =(R&254)|bits_text[N] # introducing the next bit of text into the red color of the next pixel

You can see the use of bitwise operation "&",

which performs the role of logical operation "AND" but

in the bit information dimension. The operator "|" works

similarly in bit space. Its meaning is the logical action of

"OR". In the expression, the number 25410 plays the role

of the bit mask 111111102, which was mentioned above,

since 25410= 111111102.

The ability to observe the process of hiding the

text is opened bit by bit, if directly behind each of the

branches if len (bits_text)> N:

display a text bit, a numeric color value (either R

or G or B);

color & 254;

(color & 254) | bit.

This feature is quite valuable if you use the pro-

gram as an application in a lecture when demonstrating

its work live through a projector when visualizing the

process of hiding information in an image file.

The program for removing the hidden text and

the mechanism of its work. To extract a text from an

image file, run the code below. Like the previous one,

this program starts with connecting the Python Pillow

library to work with the image file. Next the direct down-

load of the image file happens, which is then correlated

with the variable image. This is where the text is hidden in

the image file. To select this text, transform it into an array

of pix pixels and start the extracted list to accumulate bits

of text that will be extracted from the container image.

from PIL import Image, ImageDraw # adding PIL library and import from it Image,ImageDraw

image = Image.open("les-3-.png") # uploading graphic file in the image

image.show(); # showing image on the screen

width = image.size[0] # defining width of the image.

height = image.size[1] # defining height of the image

pix = image.load() # transformation of file to list of pixels pix

extract=[] # opening the list extract

Next, all the least significant bits from the graphic

bytes are directly extracted into the extracted variable,

with the prospect of combining them into letter codes in

the text variable. It is clear, that this process is imple-

mented by two cycles of scanning the image in width and

height.

for i in range(width): # scanning width of the image

 for j in range(height): # scanning height of the image

 R = pix[i,j][0] # defining redness of the color pixel

 G = pix[i,j][1] # defining greenness of the color of the pixel

 B = pix[i,j][2] # defining blueness of the color of the pixel

extracting from R,G,B and connecting to an end of variable extract of the current bit

 extract+=[R&1] # extraction from R current LSB bit and attaching it to extract

 extract+=[G&1] # extraction from G current LSB bit and attaching it to extract

 extract+=[B&1] # extraction from B current LSB bit and attaching it to extract

transformation of bit massive extract to text

text = ""

for i in range(0,len(extract),16)

 text = text+"".join(chr(int("".join(map(str,extract[i:i+16])),2)))

decoded = text.split("#")[0] # cutting the text to the delimiting character

print("successfully decoded: "+decoded) # printing the extracted text

sound.close()

Practical significance of hiding information

Tests of programs with texts of different lengths

and with graphic containers of different kinds were real-

ized. The experiment showed the correct reproduction of

texts, written in both Latin and Cyrillic. The authors did

not see any visual differences between empty and filled

containers. An experiment was also conducted with the

introduction of text into a picture, which was a blank

white sheet. Signs of text attachments in the form of any

color anomalies are not seen.

However, it should be noted, that if the party who in-

tercepted the masked message has guesses about the fact of

bookmarking and the method of bookmarking, the text that

was hidden in the manner, described above, is easily re-

moved. Therefore, the use of the program for practical pur-

poses requires additional manipulations in the code, includ-

ing those related to the order, density of text implementation

and the choice of location. It is also desirable to additionally

encrypt the text at least with a simple method. Such encryp-

tion is possible with a separate program.

Journal «ScienceRise: Pedagogical Education» №4(49)2022

28

Educational significance of the presented program.

During creation of the program, a commonly used library

was used to work with graphic files. The conciseness of the

program code and the use of the Pillow library make it

possible to contrast the mechanism of hiding information in

the classroom. Thus, in classes on cryptography and ste-

ganography, such a demonstration is possible, both in the

relevant lecture session and in the process of laboratory

work. In programming classes, the mechanism of conceal-

ment is well demonstrated live in the process of creating a

program, its debugging and testing. It is also important for

educational purposes, that working within the Pillow library

allows you to see the status of an empty and filled graphics

container at the level of individual bytes of pixel colors.

Analysis of the graphic file and its manipulation

at the level of individual bits also has educational value

in the sense that it gives an idea of the noise level and the

magnitude of the useful physical signal as well as the

limits of sensitivity of human vision.

The authors argue that the improvement of meth-

odological approaches to practical learning activities in

programming is impossible without a real immersion in

programming itself. On the other hand, the mechanisms

of hiding information are best learned in their direct

software implementation.

Research limitations. Research is limited to edu-

cational goals, although it illustrates the mechanisms of

professional programs.

Prospects for future research. The forerunners of

this work were study [8], which considered the conceal-

ment of information in the sound signal and study [9],

which considered the concealment of information in the

electronic picture in another way. In the near future it is

planned to develop a concise program for hiding infor-

mation in video files. This program, like the others just

mentioned, will be used for educational purposes in cours-

es of programming, steganography and cryptography.

6. Conclusions

1. Implemented a simple program that allows to

hide text information in an image file. Control of the

filled and not filled graphic container does not reveal

differences. Filled and empty containers are of the same

size. The program is interesting for educational purposes

due to the accuracy and transparency of the program

code. The mechanisms for hiding information in an im-

age file are easily visualized here. The program can be

used as an application in a lecture session to demonstrate

its work live through a projector. This task is also useful

in its implementation in the practical lessons.

2. Analysis of the picture as a physical signal at

the level of individual bits, which opens when using the

program, also has significant educational value. Manipu-

lations with graphics at such a low level give an idea of

the noise level of the sensor when recording the signal,

the amplitude and frequency of the useful physical sig-

nal, the limits of sensitivity of human vision and the

resources to hide in the signal extraneous information.

3. The use of the program for practical purposes

requires additional manipulation of the code, in particu-

lar, related to the order and density of text implementa-

tion, with the choice of its location in the file. It is also

desirable to additionally encrypt the text at least with a

simple method.

Conflicts of interest
The authors declare that they have no conflicts of

interest.

References

1. Bailey, K., Curran, K. (2014). Steganography: The Art of Hiding Information. CreateSpace Independent Publishing Platform.

2. Riabko, B. Ia., Fionov, A. N. (2013). Osnovy sovremennoi kriptografii i steganografii. Moscow: Goriachaia liniia Telekom, 232.

3. Konakhovych, H. F., Prohonov, D. O., Puzyrenko, O. Yu. (2018). Komp’iuterna stehanohrafichna obrobka y analiz

multymediinykh danykh. Kyiv: Tsentr navchalnoi literatury, 558.

4. Hegarty, M., Keane, A. (2018). Steganography. The World of Secret Communications, 88.

5. Hassabalah, M. (2020). Digital Media Steganography: Principles, Algorithms, and Advances. Academic Press. doi:

http://doi.org/10.1016/c2018-0-04865-3

6. Tanna, S. (2020). Codes, Ciphers, Steganography & Secret Messages. Answers Limited, 263.

7. Wyner, P. (2022). Disappearing Cryptography. Morgan Kaufmann, 295.

8. Holovin, M. B., Holovina, N. A. (2021). Navchalnyi pryklad maskuvannia informatsii v akustychnomu syhnali. Naukovi

zapysky Berdianskoho derzhavnoho pedahohichnoho universytetu. Seriia: Pedahohichni nauky, 2, 203–211. Available at:

https://evnuir.vnu.edu.ua/handle/123456789/19745

9. Holovin, N., Holovina, N., Yatsiuk, S., Sachuk, Y. (2020). Protection of information steganographically in python by

means of the pillow graphic library. Computer-integrated technologies: education, science, production, 40, 110–115. doi:

http://doi.org/10.36910/6775-2524-0560-2020-40-17

10. Pillow. Available at: https://pillow.readthedocs.io/en/stable/

Received date 06.06.2022

Accepted date 05.07.2022

Published date 29.07.2022

Nina Holovina*, PhD, Associate Professor, Department of Experimental Physics, Information and Educational

Technologies, Lesya Ukrainka Volyn National University, Voli ave., 13, Lutsk, Ukraine, 43025

Mykola Holovin, PhD, Associate Professor, Department of Computer Science and Cybersecurity, Lesya

Ukrainka Volyn National University, Voli ave., 13, Lutsk, Ukraine, 43025

*Corresponding author: Nina Holovina, e-mail: ninaholovina@gmail.com

