ФІЗИКО-ХІМІЧНА ВЗАЄМОДІЯ МІЖ ПЛЮМБУМ(ІІ) ҐАЛІЙ ҐЕРМАНІЙ СУЛЬФІДОМ ТА СЕЛЕНІДОМ

<u>Беллагра Н.</u>, *Піскач Л.* Волинський національний університет імені Лесі Українки, Луцьк, Україна hadj.bellagra@vnu.edu.ua

Недавно отримані тетрарні плюмбумо- та станумовмістні сульфіди і селеніди SnGa₂SiS₆, SnGa₂GeS₆, SnGa₂SiS₆, SnGa₂SiS₆, SnGa₂GeS₆, PbGa₂GeS₆, PbGa₂GeS₆, PbGa₂GeS₆, PbGa₂GeS₆, PbGa₂GeS₆, SnGa₂GeS₆, Chener i di antici di anti

Сполуки PbGa₂GeS(Se)₆ формуються на перерізах PbGa₂(S, Se)₄–Ge(S, Se)₂ квазіпотрійних систем PbS(Se)–Ga₂S(Se)₃–GeS(Se)₂. PbGa₂GeS₆ та PbGa₂GeSe₆ плавляться конгруентно при 998 і 960 К відповідно, володіють вузькими областями гомогенності. Структурні параметри обох сполук PbGa₂GeS₆ розраховані в ромбічній сингонії, просторовій групі *Fdd*2. Параметри комірки для цих сполук становлять: a = 4,5199(2), b = 0,72838(2), c = 1,16019(4) нм (для PbGa₂GeS₆); a = 4,7135(16), b =0,7578(3), c = 1,2161(4) нм (для PbGa₂GeS₆).

Для одержання сплавів досліджуваної системи PbGa₂GeS₆–PbGa₂GeSe₆ використовувалися прості речовини високої чистоти: свинець – 99.99 мас. %, галій – 99.9997 мас. %, германій – 99.9999 мас. %, сірку – 99.999 мас. %, селен – 99.999 мас. %. Свинець додатково очищався шляхом перекапування через битий кварц в статичних умовах.

Для встановлення фізико-хімічної взаємодії вивчали 11 зразків через 10 мол. %.

Синтез проводили однотемпературним методом, сплавляючи прості речовини в вакуумованих кварцових ампулах у шахтній печі. Максимальна температура синтезу становила 1250 К. Нагрівання проводили зі швидкістю 20 К/год. Після витримки при максимальній температурі протягом 2-4 год, проводили охолодження зі швидкістю 10 К/год до 670 К. З метою гомогенізації сполук та сплавів проводили відпал протягом 200 год. Процес синтезу завершувався загартовуванням на повітрі.

Ренгенофазовий аналіз отриманих сплавів перерізу PbGaGe₂S₆–PbGaGe₂Se₆ проводили на дифрактометрі ДРОН 4-13 з використанням CuK_α-випромінювання. Масиви рентгенівських дифракційних відбить отримали в інтервалі $10 \le 2\Theta \le 80$ з кроком 0.05° та експозицією 5 с в кожній точці. Обробку даних рентгенівської дифракції для визначення меж твердих розчинів на основі вихідних сполук виконано методом Рітвельда за допомогою пакету програм CSD [6].

Диференційно-термічний аналіз було проведено на на установці, яка складалася із печі регульованого нагріву «Термодент», двокоординатного самописця ПДА-01 та підсилювача сигналу термопари, виготовленого на основі блоку «И-102» високочастотного регулятора температури ВРТ-2 з комбінованою Pt-PtRh термопарою та Al₂O₃ як еталоном. Швидкість нагріву становила 10 К/хв. Як реперні матеріали використовували: Ag, Ge, NaCl, Sb, Te, Cd та Sn. Фазовий та хімічний склади досліджуваних зразків представлені на рис. 1.

Рис. 1. Дифрактограми сплавів перерізу PbGaGe₂S₆ – PbGaGe₂Se₆

Порівнюючи дифрактограми зразків можна зробити висновок, що через ізоструктурність тетрарних сполук (пр. гр. *Fdd*2) між ними може утворюєтися необмежений ряд твердих розчинів.

Однак, згідно з даними ДТА між тетрарними сполуками проходить ектектична взаємодія. Евтектична температура складає 937 К та знаходится при складі ~45 мол.% PbGa₂GeSe₆. На основі обох сполук є значні тверді розчини.

Обидві тетрарні сполуки володіють поліморфними перетвореннями, які протікають при 783 К на основі PbGaGe₂S₆ та при 759 К на основі PbGaGe₂Se₆.

Література

- 1. Luo Z.-Z., Lin C.-S., Cui H.-H., Zhang W.-L., Chen H., He Z.-Z., Cheng W.-D. PbGa₂MSe₆ (M = Si, Ge): Two Exceptional Infrared Nonlinear Optical Crystals // *Chem. Mater.* (2015), 27(3), 914-922. DOI: 10.1021/cm504195x.
- Huang Y.-Z., Zhang H., Lin C.-S., Cheng W.-D., Guo Z., Chai G.-L. PbGa₂GeS₆: An Infrared Nonlinear Optical Material Synthesized by an Intermediate-Temperature Self-Fluxing Method // Cryst. Growth Des. (2018), 18(2), 1162-1167. DOI: 10.1021/acs.cgd.7b01586.
- Yousaf N., Khan W., Khan S.H., Yaseen M., Laref A., Murtaza G., Electronic, optical and thermoelectric properties of SnGa₂GeX₆ (X = S, Se) compounds // J. Alloys Compds. (2018), 737, 637-645. DOI: 10.1016/j.jallcom.2017.12.033
- 4. Lin Z., Li C., Kang L., Lin Z., Yao J., Wu Y. SnGa₂GeS₆: synthesis, structure, linear and nonlinear optical properties *// Dalton Trans.* (2015), 44, 7404-7410. DOI: 10.1039/C5DT00186B.
- Fedorchuk A. O., Parasyuk O. V., Cherniushok O., Andriyevsky B., Myronchuk G. L., Khyzhun O. Y., Lakshminarayana G., Jedryka J., Kityk I. V., ElNaggar A. M., Albassam A. A., Piasecki M. PbGa₂GeS₆ crystal as a novel nonlinear optical material: Band structure aspects // J. Alloys Compds. (2018), 740, 294-304. DOI:10.1016/j.jallcom.2017.12.353.
- 6. Akselrud L., Grin Yu. M. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Cryst. (2014), 47, 803-805. DOI: <u>10.1107/S1600576714001058</u>.