Міністерство освіти і науки України Східноєвропейський національний університет імені Лесі Українки

О.В.Марчук О.В.Смітюх І.Д.Олексеюк

Квазіпотрійні халькогенідні системи R₂X₃ – R'₂X₃ – PbX (D^{IV}X₂) (R – Y, Er; R' – La, Pr; D^{IV} – Si, Ge, Sn; X – S, Se)

Монографія

Луцьк Вежа-Друк 2019 УДК 544.[022.52+344.015.3]:546.[28+81+64/66]'22/23 М 30

Рекомендовано вченою радою Східноєвропейського національного університету імені Лесі Українки (протокол № 13 від 26 вересня 2019 року)

Рецензенти:

Барчій І. Є. – доктор хімічних наук, професор, завідувач кафедри неорганічної хімії Ужгородського національного університету;

Федосов С. А. – доктор фізико-математичних наук, професор, завідувач кафедри експериментальної фізики та інформаційно-вимірювальних технологій Східноєвропейського національного університету імені Лесі Українки

Марчук О. В.

Квазіпотрійні халькогенідні системи $R_2X_3 - R'_2X_3 - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; D^{IV} - Si, Ge, Sn; X - PbX (D^{IV}X_2) (R - Y, Er; R' - La, Pr; Pr; Pr; R' -$

M 30 ГоХ (D' Х₂) (К – 1, Ег, К – La, FI, D' – SI, Се, SII, Х – S, Se) : монографія / О. В. Марчук, О. В. Смітюх, І. Д. Олексеюк – Вежа-Друк, 2019. – 124 с.

ISBN 978-966-940-265-3

У монографії охарактеризовано фазові рівноваги в системах $R_2X_3 - R'_2X_3 - PbX$ ($D^{IV}X_2$) (R - Y, Er; R' - La, Pr; $D^{IV} - Si$, Ge, Sn; X – S, Se) та описано кристалічну структуру тернарних та тетрарних фаз.

Рекомендовано студентам, аспірантам, викладачам та науковцям хімічних спеціальностей.

© Смітюх О. В., Марчук О. В., Олексеюк І.Д. 2019 ISBN 978-966-940-265-3 © Маліневська І. П. (обкладинка), 2019

	3MICT	ст.
ΠΕΡΙ	ЕЛІК УМОВНИХ СКОРОЧЕНЬ	5
ПЕРЕ	ЕДМОВА	6
РОЗ Д	ИЛ 1. КРИСТАЛІЧНА СТРУКТУРА	8
1.1.	Загальні відомості про структуру речовини	8
1.2.	Рентгенофазовий та рентгеноструктурний аналіз	8
1.3.	Рентгенівський метод монокристалу	12
РОЗ Д	ПЛ 2. КРИСТАЛОГРАФІЧНІ	
XAPA	АКТЕРИСТИКИ БІНАРНИХ ТА ТЕРНАРНИХ	
СПО.	ЛУК	15
2.1.	Кристалографічні характеристики бінарних	
	сполук	15
2.2.	Кристалографічні характеристики тернарних	
	сполук	21
РОЗ Д	[IЛ 3. СИСТЕМИ $R_2X_3 - R'_2X_3 - Ge(Si)X_2$ (R – Y,	
Tb, D	y, Ho, Er; R' – La, Pr; X – S, Se)	31
3.1.	Ізотермічні перерізи	31
3.1.1	• Системи R ₂ S ₃ – R' ₂ S ₃ – PbS	31
3.1.2	• Системи R ₂ Se ₃ – R' ₂ Se ₃ – PbSe	35
3.1.3	• Системи $R_2S_3 - R'_2S_3 - SiS_2$	39
3.1.4	• Системи $R_2Se_3 - R'_2Se_3 - SiSe_2$	42
3.1.5	• Системи $R_2S_3 - R'_2S_3 - GeS_2$	47
3.1.6	• Системи $R_2Se_3 - R'_2Se_3 - GeSe_2$	52
3.1.7	• Системи $R_2S_3 - R'_2S_3 - SnS_2$	56
3.2.	Тверді розчини La _{4-4x} R _{4x} Ge ₃ S ₁₂ (R –Tb, Dy, Y, Ho,	
	Er)	61
РОЗД	ИЛ 4. СТРУКТУРНІ ТИПИ, В ЯКИХ	
КРИС	СТАЛІЗУЮТЬСЯ ТЕТРАРНІ ФАЗИ В	
СИС	$\Gamma EMAX R_2X_3 - R'_2X_3 - Ge(Si)X_2 (R - Y, Tb, Dy,$	
Ho, E	r; R' – La, Pr; X – S, Se)	64
4.1.	Структурний тип Dy ₃ Ge _{1,25} S ₇	64
4.2.	Структурний тип La4Ge3S12	66
РОЗД	ЦЛ 5. КРИСТАЛІЧНА СТРУКТУРА	
TETP	РАРНИХ ФАЗ	69

5.1.	Тетрарні фази систем $R_2X_3 - R'_2X_3 - PbX$ і R_2X_3	
	$-R'_2X_3 - D^{IV}X_2$ (R, R' – Y, La, Ce, Pr, Tb, Dy, Ho,	
	Er; D^{IV} – Si, Ge, Sn; X – S, Se)	69
5.1.1.	Кристалічна структура Y _{1,5} La _{1,5} Si _{1,75} Se ₇	69
5.1.2.	Кристалічна структура Y _{1,5} Pr _{1,5} Si _{1,75} Se ₇	72
5.1.3.	Кристалічна структура Dy _{1,5} La _{1,5} Si _{1,66} Se ₇	75
5.1.4.	Кристалічна структура Er _{1,5} La _{1,5} Si _{1,67} Se ₇	78
5.1.5.	Кристалічна структура Er1,5Pr1,5Si1,67Se7	81
5.1.6.	Особливості кристалічної структури тетрарних	
	ϕ a3 R _{1,5} R' _{1,5} Si _x Se ₇ (R – Y, Er, Dy; R' – La, Pr)	84
5.2.	Тетрарні фази систем $Er_2S_3 - La(Ce, Pr)_2S_3 - GeS_2$	88
5.2.1.	Кристалічна структура Er _{2,34} La _{0,66} Ge _{1,28} S7	88
5.2.2.	Кристалічна структура Er _{2,34} Ce _{0,66} Ge _{1,28} S ₇	90
5.2.3.	Кристалічна структура Er _{2,34} Pr _{0,66} Ge _{1,28} S ₇	93
5.2.4.	Особливості кристалічної структури тетрарних	
	фаз Er _{2,34} La(Ce, Pr) _{0,66} Ge _{1,28} S	96
5.3.	Тетрарні фази систем $La_2S_3 - Y(Tb, Dy, Ho, Er)_2S_3$	
	$-\operatorname{GeS}_2$	99
5.3.1.	Кристалічна структура Y2La2Ge3S12	99
5.3.2.	Кристалічна структура La _{2,02} Tb _{1,98} Ge ₃ S ₁₂	102
5.3.3.	Кристалічна структура La _{2,64} Dy _{1,36} Ge ₃ S ₁₂	105
5.3.4.	Кристалічна структура La _{2,25} Ho _{1,75} Ge ₃ S ₁₂	107
5.3.5.	Кристалічна структура La _{2,16} Er _{1,84} Ge ₃ S ₁₂	109
5.3.6.	Особливості кристалічної структури тетрарних	
	фаз $La_x R_y Ge_3 S_{12}$ (R – Y, Tb, Dy, Ho, Er)	111
СПИС	СОК ВИКОРИСТАНИХ ДЖЕРЕЛ	114

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

- Літ. – літературні джерела;
- ПГ просторова група;
 ПСТ правильна система точок;
 РСА рентгеноструктурний аналіз;
- РФА рентгенофазовий аналіз;
- Рис. рисунок; РЗМ рідкісноземельний метал;
 - СТ структурний тип;
- Табл. таблиця;
- x/a, y/b, z/c координати атомів у частках ребра елементарної комірки;
- $a, b, c, \alpha, \beta, \gamma$ параметри елементарної комірки;
 - G коефіцієнт заповнення правильної системи точок.

ПЕРЕДМОВА

Халькогенідні системи одним із об'єктів € дослідження сучасних матеріалознавців. Вони являють досить широке поле для пошуку собою нових перспективних матеріалів. Адже, на сьогодні розвиток науки та техніки досяг такої межі, коли класичні матеріали не спроможні повноцінно задовольнити потреби і виклики сучасної електроніки та електротехніки. Тому ускладнення досліджуваних систем розширює можливість отримання багатокомпонентних фаз із якісно-новими властивостями. Звичайно, що найперше розглядаються тернарні та тетрарні халькогенідні системи.

Протягом останніх десяти років дослідникам вдалося отримати і застосувати халькогенідні матеріали на основі рідкісноземельних металів (РЗМ). Присутність РЗМ в складі багатокомпонентних фаз викликає значне покращення магнітних та електричних властивостей матеріалу.

Напівпровідникові властивості халькогенідних матеріалів обумовлюють їх використання в інтерференційній оптиці в спектральному діапазоні, який відповідає енергіям менших значень ширини забороненої зони.

Аналіз проведених досліджень та літературних даних про характер утворення тернарних РЗМ-вмісних сполук у системах R – Si(Ge, Sn, Pb) – S(Se) дозволяє констатувати закономірності: найбільша кількість сполук певні 3 кристалічними структурами утворюється за різними участю Силіцію та Германію; на кристалічну структуру сполук в ряду Si-Ge-Sn-Pb суттєво впливає природа компонентів та радіус атомів РЗМ. Сполуки R₃Si(Ge)_{1,25}S₇ та $R_4Ge_3S_{12}$ є стабільними, коли $0.90 \le r_{P3M} \le 1.04$ нм, тому в структурних типах R₃Si_{1.25}S₇ та R₄Ge₃S₁₂ нові сполуки можна отримувати шляхом заповнення деяких ПСТ

атомами різних рідкісноземельних металів (двома-, трьома- і більше).

Представлена монографія присвячена опису фазових рівноваг у квазіпотрійних системах $R_2X_3 - R'_2X_3 - PbX$ ($D^{IV}X_2$) (R - Y, Er; R'-, La, Pr; D^{IV} - Si, Ge, Sn; X - S, Se) за температури 770 К та кристалічної структури бінарних, тернарних та тетрарних сполук.

У першому розділі подано методики проведення рентгенофазового і рентгеноструктурного аналізу та вивчення кристалічної структури речовини рентгенівським методом монокристалу.

Другий розділ містить інформацію про кристалічну структуру бінарних сполук PbX, SiX₂, GeX₂, SnX₂, Y₂X₃, Er₂X₃, La₂X₃ і Pr₂X₃ (X – S, Se), що є вихідними компонентами квазіпотрійних систем R₂X₃ – R'₂X₃ – PbX і R₂X₃ – R'₂X₃ – D^{IV}X₂ (R – Y, Er; R' – La, Pr).

У третьому розділі представлено результати дослідження фазових рівноваг квазіпотрійних систем R₂X₃ – R'₂X₃ – PbX (D^{IV}X₂) за температури 770 К.

Четвертий розділ присвячено опису кристалічної структури структурних типів Dy₃Ge_{1,25}S₇ та La₄Ge₃S₁₂.

У п'ятому розділі описано кристалічну структуру тетрарних фаз, що утворюються у системах $R_2X_3 - R'_2X_3 - PbX$ ($D^{IV}X_2$).

РОЗДІЛ 1 КРИСТАЛІЧНА СТРУКТУРА

1.1. Загальні відомості про структуру речовини

Увесь навколишній світ побудований всього лише з трьох видів частинок: електронів, протонів і нейтронів, і можна лише дивуватися тому різноманіттю речовин, які з них виникають. Залежно від складу, температури і тиску речовина може перебувати в газоподібному, рідкому або твердому стані. В твердому стані речовина може мати аморфну або кристалічну структуру.

Основними параметрами кристалічної структури є тип кристалічної гратки (сингонія), просторова група, число формульних одиниць, лінійні розміри та кути елементарної гратки, координати атомів (заповненість правильних систем точок), координаційні числа та координаційні многогранники для усіх атомів.

Для ідентифікації та розшифрування кристалічної структури найчастіше використовують методи рентгенофазового і рентгеноструктурного аналізу або рентгенівський метод монокристалу.

1.2. Рентгенофазовий та рентгеноструктурний аналіз

Відкриття в 1912 році німецькими фізиками Максом фон Лауе, Вільямом Фридріхом і Паулем Кніппінгом дифракції рентгенівських променів привело до розробки найдосконаліших прямих методів одного з опису кристалічної структури – рентгеноструктурного аналізу. Завданням останнього ідентифікація кристалічної € речовини, тобто отримання експериментальних даних, за якими можна побудувати просторову модель кристалічної сингонію речовини: визначити та параметри елементарного паралелепіпеда, тип решітки Браве, точкову

8

та просторовоу групу, число формульних одиниць в елементарному паралелепіпеді, координати атомів.

Проходження рентгенівського випромінювання через речовину супроводжується взаємодією рентгенівських променів з речовиною. Відомо три типи взаємодії: розсіювання рентгенівського випромінювання (зі зміною і без зміни довжини хвилі), фотоелектричний ефект і утворення електронно-позитронних пар. Речовина, яка піддається дії рентгенівського випромінювання, випускає вторинне випромінювання, довжина хвилі якого або дорівнює довжині падаючих променів, або незначно відрізняється. При розсіянні без довжини хвилі змінне електромагнітне поле, яке створюється пучком ренттенівських променів, викликає коливання електронів опромінюваної речовини, і вони стають джерелами когерентного випромінювання. Внаслідок когерентності промені, які розсіюються різними атомами, можуть інтерферувати. Відстані між атомними площинами в кристалах співрозмірні з довжинами хвиль рентгенівських променів. Відомо, що кристал є дифракційною решіткою для рентгенівського випромінювання. При попаданні рентгенівських променів кристалічну решітку на спостерігається явище їх дифракції.

Дифракція рентгенівських променів – розсіювання рентгенівських променів кристалічними об'єктами, при якому у певних напрямках з'являються дифраговані пучки, як результат інтерференції вторинного рентгенівського випромінювання, що виникає при взаємодії первинного випромінювання з електронними оболонками атомів (рис. 1.1).

Рентгенівський фазовий аналіз базується на тому, що кожна фаза має свою кристалічну решітку з певними параметрами і, отже, характеризується індивідуальним набором міжплощинних відстаней d_1 , d_2 , d_3 , ...

9

Відповідно до закону Вульфа-Брегга (1.1) на дифрактограмі кожній системі площин (hkl) з певною міжплощинною відстанню d відповідає дифракційний максимум з певним кутом Θ .

Рис. 1.1. Схема утворення вторинного рентгенівського випромінювання на кристалічній решітці досліджуваного зразка: І і ІІ – первинні промені; ІІІ – інтерференційний промінь Θ – кут Вульфа-Бреггів; d – міжплощинна відстань.

$$\frac{d_i}{n} = \frac{\lambda}{2 \cdot \sin \Theta_i},$$
 (1.1)

де λ – довжина хвилі характеристичного рентгенівського випромінювання, в якому проведено зйомку; Θ_i – кут *i* -го максимуму на дифрактограмі.

Для ідентифікації фази, присутньої у зразку, необхідно за значеннями кутів дифракційних максимумів визначити значення міжплощинних відстаней d_i/n .

Отриманий набір експериментальних значень d/n порівнюють з табличними (довідковими) значеннями d/n передбачуваних фаз. Порівняння починають з найбільш інтенсивних максимумів. Якщо експериментальні значення d/n збігаються зі значеннями d/n, наведеними в довіднику, для чотирьох найбільш інтенсивних

максимумів передбачуваної фази, то її присутність у досліджуваному зразку можна вважати доведеною.

Якшо досліджується порошкова проба, шо складається з однієї фази, то в межах похибки експерименту (0,002 нм) з табличними значеннями d/nзбігатися значення d/n мають ycix максимумів дифрактограми. Крім збігатися того. мають експериментальні ловілкові значення i вілносної інтенсивності (I) порівнюваних максимумів з однаковими індексами (hkl). При дослідженні монолітних зразків можливі відхилення *I(експ.)* від *I(таб.)* через наявність текстури (переважної орієнтації кристалічних решіток зерен матеріалу) та інших факторів.

На дифрактограмах твердих розчинів, на відмінність від чистих елементів, усі максимуми зміщуються у напрямку більших або менших кутів Θ. Напрямок зсуву обумовлюється не тільки типом твердого розчину, але і співвідношенням розмірів атомів матриці і розчиненої речовини у твердих розчинах заміщення. Тому всі експериментальні значення d/n твердих розчинів також будуть відрізнятися на деяку постійну величину від табличних, бо в довідниках наведені значення d/n для чистих речовин. Якщо в досліджуваному зразку присутні кілька фаз, то дифрактограма є результатом накладення дифракційних картин від кожної фази. Причому інтенсивність максимумів кожної фази залежить від її об'ємної частки (у випадку порошкових зразків). У разі дослідження монолітних зразків на інтенсивність дифракційних максимумів можуть впливати додатково текстура, анізотропія субструктури та інші фактори.

Чутливість фазового аналізу, тобто мінімальна кількість фази, яку можна визначити в багатофазних композиціях залежить від ряду факторів:

1. Від співвідношення коефіцієнтів поглинання фази,

що досліджується, і всієї суміші.

2. Від симетрії решітки досліджуваної фази: чим вища симетрія, тим при меншому вмісті фаза може бути виявленою.

3. Від відбивної здатності атомних площин: чим вища відбивна здатність, тим вища чутливість.

4. Від наявності напружень і дефектів кристалічної будови: чутливість методу помітно знижується при наявності в досліджуваному зразку залишкових мікронапружень.

5. Від величини кристалітів: чутливість методу знижується у випадку малих розмірів кристалітів (менш ніж 0,01 мкм).

Чутливість фазового аналізу може бути підвищена шляхом зменшення загального фону на дифрактограмі в результаті застосування монохроматорів, підбором рентгенівської трубки й ретельним приготуванням зразка. При зйомці багатофазових систем бажано використовувати більш м'яке випромінювання, що дозволяє збільшити кутову відстань між максимумами на дифрактограмі. Чутливість методу складає близько 5 % [1].

1.3. Рентгенівський метод монокристалу

У методі монокристалу для дослідження відбирається з маси зразка за допомогою мікроскопу монокристал необхідного розміру, який наклеюють на скляну нитку, що закріплена на гоніометричній головці.

Дифрактометричне вивчення монокристалів можна виконувати на автоматичному монокристальному дифрактометрі КМ-4, що обладнаний камерою ССD (МоК_α-випромінювання, графітовий монохроматор). Отриманий набір експериментальних даних записується на жорсткий диск у вигляді окремого файлу.

Поглинання рентгенівських променів у кристалі

враховується емпірично за допомогою алгоритмів, запропонованих в програмі SHELXL-2014 [2].

Під час дослідження кристалічної структури методом монокристалу на першому етапі вивчаються монокристали з метою встановлення якості кристалу, дифракційного класу та періодів кристалічної гратки. Дифракційний клас та можливі просторові групи визначаються врезультаті аналізу систематичних погасань відбить. На другому етапі з допомогою методу Патерсона отримується модель кристалічної структури, яка уточнюється за допомогою повноматричного методу найменших квадратів 3 використанням програми SHELX-2014. На основі аналізу функції Патерсона локалізуються атоми важких елементів (РЗМ). Після кількох циклів розрахунку електронної густини основі різницевого синтезу Φνρ'ε на локалізуються атоми легших елементів. Координати та теплові параметри всіх атомів в анізотропному наближенні уточнюються методом найменших квадратів. Критеріями достовірності моделі структури служать відсутність додаткових максимумів на різницевих синтезах Фур'є та значення факторів розбіжності *R*:

$$R1 = \frac{\sum \left\| F_{cnocm.} - |F_{posp.} \right\|}{\sum \left| F_{cnocm.} \right|} , \qquad (1.2)$$

$$wR2 = \left\{ \frac{\sum [w(F_{cnocm.}^2 - F_{po3p.}^2)^2]}{\sum [w(F_{cnocm.}^2)^2]} \right\}^{\frac{1}{2}},$$
 (1.3)

$$Goof = S = \left\{ \frac{\sum [w(F_{cnocm.}^2 - F_{po3p.}^2)^2]}{n - p} \right\}^{\frac{1}{2}}, \qquad (1.4)$$

де *F_{спост}*. та *F_{розр}*. – спостережувані та розраховані структурні фактори; *w* – ваговий коефіцієнт; *n* – число відбить; *p* – кількість уточнюваних параметрів.

Модель структури вважається задовільною за значення фактора розбіжності менше 0,08 (для I>2σ(I)) і задовільних теплових поправках. Склад статистичних сумішей та дефектних положень зафіксовується як близький до обрахованого з метою збереження електронейтральності формули.

РОЗДІЛ 2 КРИСТАЛОГРАФІЧНІ ХАРАКТЕРИСТИКИ БІНАРНИХ ТА ТЕРНАРНИХ СПОЛУК

2.1. Кристалографічні характеристики бінарних сполук

У таблицях 2.1. – 2.16. зібрано інформацію про кристалічну структуру бінарних сполук PbX, SiX₂, GeX₂, SnX₂, Y₂X₃, Er₂X₃, La₂X₃ і Pr₂X₃ (X – S, Se), що є вихідними компонентами квазіпотрійних систем R₂X₃ – R'₂X₃ – PbX і R₂X₃ – R'₂X₃ – D^{IV}X₂ (R – Y, Er; R' – La, Pr).

Таблиця 2.1.

Параметри гратки		a = 0,5940	нм;		
ПГ		Fm3m			
Сингонія		кубічна			
Атом	ПСТ	x/a	y/b	z/c	G
Pb	4(<i>a</i>)	0	0	0	1,0
S	4(b)	1/2	1/2	1/2	1,0

Структурні дані для сполуки PbS [3]

Таблиця 2.2.

Структурні дані для сполук PbSe [3]

		F F100 F1			
Параметри гратки		<i>a</i> = 0,6130) нм;		
ПГ		Fm3m			
Сингонія		кубічна			
Атом	ПСТ	x/a	y/b	z/c	G
Pb	4(<i>a</i>)	0	0	0	1,0
S	4(b)	1/2	1/2	1/2	1,0

Таблиця 2.3.

Структурні дані для сполуки SiS₂ [4]

Параметри гратки		a = 0,9545	б нм; $b = 0.5$	564 нм; <i>с</i> =	0,5552 нм.
ПГ		Ibam			
Сингонія		ромбічна			
Атом	ПСТ	x/a	y/b	z/c	G

Si	4(<i>a</i>)	0	0	0,25	1,0
S	8(j)	0,1182	0,2088	0	1,0

Таблиця 2.4.

Структурні дані для сполуки SiSe₂[4]

Параметри гратки		a = 0,9669	нм; $b = 0,5$	998 нм; с =	0,5851 нм.
ПΓ		Ibam			
Сингонія		ромбічна			
Атом	ПСТ	x/a	y/b	z/c	G
Si	4(a)	0	0	0,25	1,0
Se	8(j)	0,1234	0,2116	0	1,0

Таблиця 2.5.

Структурні дані для сполуки GeS₂ [5]

Параметри гратки		a = 0,6720 нм; $b = 1,6101$ нм; $\beta = 90.88^{\circ}$: $c = 1.1436$ нм.					
ПГ		$P2_1/c$	$\frac{P2_{1}}{c}$				
Син	гонія	моноклінн	a				
Атом	ПСТ	x/a	y/b	z/c	G		
Ge	4(<i>e</i>)	0,3430	0,1531	0,2213	1,0		
Ge	4(<i>e</i>)	0,1714	0,1514	0,7798	1,0		
Ge	4(<i>e</i>)	0,8396	0,0026	0,7057	1,0		
Ge	4(<i>e</i>)	0,6734	0,3073	0,2777	1,0		
S	4(<i>e</i>)	0,6687	0,1773	0,2141	1,0		
S	4(<i>e</i>)	0,2790	0,0370	0,1226	1,0		
S	4(<i>e</i>)	0,2292	0,1126	0,3933	1,0		
S	4(<i>e</i>)	0,1726	0,2564	0,1369	1,0		
S	4(<i>e</i>)	0,4272	0,3319	0,4000	1,0		
S	4(e)	0,9211	0,3316	0,4020	1,0		
S	4(e)	0,6767	0,3909	0,1236	1,0		
S	4(e)	0,1661	0,4745	0,2011	1,0		

Таблиця 2.6.

a ·	•			a a	F <7
('TOWTWOILL	TOTI1	ΠΠΠ	CHOHWKI	(to Sea	161
CIDVAIVUHI	дані	ДЛЯ	CHOJIVKN		101
	F 1	r 1.)		L - 1

Параметри гратки	<i>a</i> = 0,7016 нм; <i>b</i> = 1,6796 нм;
	$\beta = 90,88^{\circ}; \ c = 1,1831$ нм.

ПГ		P2 ₁ /c				
Син	гонія	моноклінн	a			
Атом	ПСТ	x/a	y/b	z/c	G	
Ge	4(<i>e</i>)	0,3442	0,1537	0,2209	1,0	
Ge	4(<i>e</i>)	0,1717	0,1494	0,7773	1,0	
Ge	4(<i>e</i>)	0,8414	0,0008	0,7017	1,0	
Ge	4(<i>e</i>)	0,6752	0,3090	0,2734	1,0	
Se	4(<i>e</i>)	0,6757	0,1770	0,2095	1,0	
Se	4(<i>e</i>)	0,2778	0,0357	0,1191	1,0	
Se	4(<i>e</i>)	0,2305	0,1156	0,4002	1,0	
Se	4(<i>e</i>)	0,1647	0,2559	0,1326	1,0	
Se	4(<i>e</i>)	0,4278	0,3302	0,4028	1,0	
Se	4(e)	0,9199	0,3373	0,4048	1,0	
Se	4(e)	0,6751	0,3926	0,1145	1,0	
Se	4(e)	0,1738	0,4779	0,1939	1,0	

Таблиця 2.7.

Структурні дані для сполуки SnS₂ [7]

Параметри гратки		a = b = 0,3643 нм; $c = 0,5894$ нм.				
ПГ		$\bar{P3m1}$				
Сингонія		тригональна				
Атом	ПСТ	x/a	y/b	z/c	G	
Sn	1(<i>a</i>)	0	0	0	1,0	
S	2(d)	1/3	2/3	0,250	1,0	

Таблиця 2.8.

Структурні дані для сполуки SnSe₂ [8]

Парамет	ри гратки	<i>a</i> = <i>b</i> = 0,3811 нм; <i>c</i> = 0,6136 нм.				
П	Г	$P\overline{3}m1$				
Син	гонія	тригональна				
Атом	ПСТ	x/a	<i>y/b z/c</i> G			
Sn	1(<i>a</i>)	0	0	0	1,0	
Se	2(<i>d</i>)	1/3	2/3	0,249	1,0	

Таблиця 2.9.

Параметри гратки		a = 1,75234 нм; $b = 0,40107$ нм; $\beta = 98,60^{\circ}; c = 1,01736$ нм.				
П	Г	$P2_1 / m$				
Син	гонія	моноклінн	а			
Атом	ПСТ	x/a	y/b	z/c	G	
Y	2(e)	0,0203	1/4	0,1889	1,0	
Y	2(e)	0,4301	1/4	0,1250	1,0	
Y	2(e)	0,7810	1/4	0,8289	1,0	
Y	2(e)	0,7202	1/4	0,1869	1,0	
S	2(e)	0,3980	1/4	0,4868	1,0	
S	2(e)	0,1153	1/4	0,5493	1,0	
S	2(e)	0,5757	1/4	0,0514	1,0	
S	2(<i>e</i>)	0,8731	1/4	0,2674	1,0	
S	2(<i>e</i>)	0,9667	1/4	0,6153	1,0	
S	2(e)	0,2817	1/4	0,6371	1,0	
S	2(e)	0,2680	1/4	0,0077	1,0	
S	2(e)	0,6302	1/4	0,7109	1,0	
S	2(<i>e</i>)	0,9242	1/4	0,9505	1,0	
S	2(<i>e</i>)	0,1845	1/4	0,3206	1,0	
S	2(e)	0,5317	1/4	0,3663	1,0	

Структурні дані для сполуки Y₂S₃[9]

Таблиця 2.10.

Структурні дані для сполуки У2Se3 [10]

Парамет	ри гратки	a = 8,170 m	HM; $b = 1,14$	55 нм; с = 2	,4380 нм.	
П	Г	Fdddz				
Син	гонія	ромбічна				
Атом	ПСТ	x/a	y/b	z/c	G	
Y	16(<i>g</i>)	0,125	0,125	0,0439	1,0	
Y	16(g)	0,125	0,125	0,0408	1,0	
Se	32(<i>h</i>)	0,125	0,125	0,3761	1,0	
Se	32(<i>h</i>)	0,3697	0,125	0,125	1,0	

Таблиця 2.11.

Структурні дані для сполуки Ег ₂ S ₃ [11]						
Параметри гратки		a = 1,0072 нм; $b = 0,3976$ нм; $\beta = 98,66^{\circ}; c = 1,7389$ нм.				
П	Г	P2 ₁ / m				
Син	гонія	моноклінн	a			
Атом	ПСТ	x/a	y/b	z/c	G	
Er	2(e)	0,8130	1/4	0,2796	1,0	
Er	2(e)	0,1705	1/4	0,2188	1,0	
Er	2(e)	0,5132	1/4	0,6014	1,0	
Er	2(e)	0,8110	1/4	0,9794	1,0	
S	2(e)	0,4508	1/4	0,8849	1,0	
S	2(e)	0,8755	1/4	0,5700	1,0	
S	2(e)	0,0481	1/4	0,0762	1,0	
S	2(e)	0,9474	1/4	0,4244	1,0	
S	2(e)	0,6795	1/4	0,8171	1,0	
S	2(e)	0,7321	1/4	0,1269	1,0	
S	2(e)	0,3630	1/4	0,7176	1,0	
S	2(e)	0,6331	1/4	0,4685	1,0	
S	2(<i>e</i>)	0,9925	1/4	0,7323	1,0	
S	2(<i>e</i>)	0,2892	1/4	0,3688	1,0	
S	2(e)	0,3847	1/4	0,0335	1,0	

Структурні дані для сполуки Er₂S₃ [11]

Таблиця 2.12.

Структурні дані для сполуки Er₂Se₃ [12]

Парамет	ри гратки	<i>a</i> = 0,8085 нм; <i>b</i> = 1,1346 нм; <i>c</i> = 2,4140 нм.				
Π	Г	Fdddz				
Син	гонія	ромбічна				
Атом	ПСТ	x/a	y/b	z/c	G	
Er	16(<i>g</i>)	0	0	0,9160	1,0	
Er	16(<i>g</i>)	0	0	0,2527	1,0	
Se	16(<i>f</i>)	0	0,2442	0	1,0	
Se	32(h)	0,2480	0,5068	0,5813	1,0	

Таблиця 2.13.

cipykiypin dani din chonyki Eu203 [15]							
Парамет	ри гратки	a = 0,7660	<i>a</i> = 0,7660 нм; <i>b</i> = 0,4220 нм; <i>c</i> = 1,5950 нм.				
П	Г	Pnma					
Син	гонія	ромбічна					
Атом	ПСТ	x/a	y/b	z/c	G		
La	4(<i>c</i>)	0,7650	1/4	0,9450	1,0		
La	4(<i>c</i>)	0,1460	1/4	0,2040	1,0		
S	4(<i>c</i>)	0,0090	1/4	0,3910	1,0		
S	4(<i>c</i>)	0,1440	1/4	0,7790	1,0		
S	4(<i>c</i>)	0,9710	1/4	0,5660	1,0		

Структурні дані для сполуки La₂S₃ [13]

Таблиця 2.14.

Структурні дані для сполуки La₂Se₃ [13]

Параметр	ри гратки	<i>a</i> = 0,7493 нм; <i>b</i> = 0,4055 нм; <i>c</i> = 1,5616 нм.				
П	Г	Pnma				
Сингонія		ромбічна				
Атом	ПСТ	x/a	y/b	z/c	G	
La	12(<i>a</i>)	0,3750	0	1/4	0,904	
Se	16(<i>c</i>)	0,5739	0,5739	0,5739	1,0	

Таблиця 2.15.

Структурні дані для сполуки Pr₂S₃ [14]

Парамет	ри гратки	a = 0,89117 нм.					
ПГ		I43d	I43d				
Сингонія		кубічна	кубічна				
Атом	ПСТ	x/a	y/b	z/c	G		
Pr	4(<i>c</i>)	0,1415	1/4	0,2046	1,0		
Pr	4(<i>c</i>)	0,2642	1/4	0,9560	1,0		
S	4(<i>c</i>)	0,0084	1/4	0,3909	1,0		
S	4(<i>c</i>)	0,3723	1/4	0,5672	1,0		
S	4(c)	0,1472	1/4	0,7804	1,0		

Таблиця 2.16.

Структурні дані для сполуки Pr₂Se₃ [15]

10 01	
Параметри гратки	a = 0,89117 нм.
ПГ	$I\overline{4}3d$

Сингонія		кубічна			
Атом	ПСТ	x/a	y/b	z/c	G
Pr	12(<i>a</i>)	0,3750	0	1/4	0,9
Se	16(<i>c</i>)	0,3234	0,3234	0,3234	1,0

2.2. Кристалографічні характеристики тернарних сполук

У таблицях 2.17. – 2.38. зібрано інформацію про кристалічну структуру тернарних сполук, що утворюються у системах Y_2X_3 – PbX, Er_2X_3 – PbX, La_2X_3 – PbX, Pr_2X_3 – PbX, Y_2X_3 – SiX₂, Er_2X_3 – SiX₂, La_2X_3 – SiX₂, Pr_2X_3 – SiX₂, Y_2X_3 – GeX₂, Er_2X_3 – GeX₂, La_2X_3 – GeX₂, Pr_2X_3 – GeX₂, Y_2X_3 – SnX₂, Er_2X_3 – GeX₂, La_2X_3 – GeX₂, Pr_2X_3 – GeX₂, Y_2X_3 – SnX₂, Er_2X_3 – SnX₂, La_2X_3 – SnX₂ i Pr_2X_3 – SnX₂ (X – S, Se). Ці системи є обмежуючими сторонами квазіпотрійних систем R_2X_3 – R'₂X₃ – PbX i R_2X_3 – R'₂X₃ – D^{IV}X₂ (R – Y, Er; R' – La, Pr).

Таблиця 2.17.

Параметри гратки		<i>а</i> = 0,7930 нм; <i>b</i> = 2,8698 м; <i>c</i> = 1,20511 нм.				
П	Г	Cmc2 ₁				
Син	гонія	ромбічна				
Атом	ПСТ	x/a	y/b	z/c	G	
Y	8(<i>b</i>)	0,2490	0,0762	0,2670	1,0	
Y	4(<i>a</i>)	0	0,0694	0,9111	1,0	
Y	4(<i>a</i>)	0	0,5713	0,9336	1,0	
Y	8(<i>b</i>)	0,2570	0,1796	0,7864	1,0	
Y	4(<i>a</i>)	0	0,6738	0,4359	1,0	
Y	4(<i>a</i>)	0	0,1772	0,4261	1,0	
Pb	4(<i>a</i>)	0	0,0477	0,5596	1,0	
Pb	4(<i>a</i>)	0	0,5375	0,6271	1,0	
Pb	8(<i>b</i>)	0,2351	0,2062	0,1323	1,0	
Pb	8(<i>b</i>)	0,2480	0,2093	0,0918	1,0	
S	8(<i>b</i>)	0,2490	0,0374	0,0608	1,0	
S	4(<i>a</i>)	0	0,6426	0,2270	1,0	
S	4(a)	0	0,1649	0,9380	1,0	

Структурні дані для сполуки Y₂PbS₄ [16]

S	4(<i>a</i>)	0	0,6630	0,9520	1,0
S	8(<i>b</i>)	0,2520	0,0870	0,7589	1,0
S	4(<i>a</i>)	0	0,0187	0,3370	1,0
S	4(<i>a</i>)	0	0,5163	0,3110	1,0
S	8(<i>b</i>)	0,2610	0,2365	0,3720	1,0
S	4(<i>a</i>)	0	0,1338	0,2290	1,0
S	8(<i>b</i>)	0,2310	0,1161	0,4776	1,0
S	4(a)	0	0,7056	0,6580	1,0
S	4(<i>a</i>)	0	0,2162	0,6450	1,0

Таблиця 2.18.

Структурні дані для сполуки Y₆Pb₂Se₁₁ [17]

Параметр	ои гратки	a = 0,4062	<i>a</i> = 0,4062 нм; <i>b</i> = 1,3467 нм; <i>c</i> = 3,7624 нм			
П	Г	Стст				
Син	гонія	ромбічна				
Атом	ПСТ	x/a	y/b	z/c	G	
Y	8(f)	0	0,0257	0,6333	1,0	
Y	8(<i>f</i>)	0	0,2462	0,1814	1,0	
Y	4(<i>a</i>)	0	0	0	1,0	
Y	8(<i>f</i>)	0	0,2761	0,5571	0,5	
Pb	8(<i>f</i>)	0	0,2761	0,5571	0,5	
Pb	4(<i>c</i>)	0	0,5148	0,2500	1,0	
Se	8(<i>f</i>)	0	0,0810	0,0690	1,0	
Se	8(<i>f</i>)	0	0,1203	0,7007	1,0	
Se	8(<i>f</i>)	0	0,3394	0,1123	1,0	
Se	8(f)	0	0,3575	0,0152	1,0	
Se	8(f)	0	0,6047	0,1622	1,0	
Se	4(c)	0	0,1629	0,2500	1,0	

Таблиця 2.19.

Структурні дані для сполуки Er ₂ PbS ₄ [16]						
Параметри гратки		<i>a</i> = 0,7863 нм; <i>b</i> = 2,8525 нм; <i>c</i> = 1,1995 нм.				
ΠΓ		Cmc2 ₁				
Син	гонія	ромбічна	ромбічна			
Атом	ПСТ	x/a	y/b	z/c	G	
Er	8(<i>b</i>)	0,2494	0,0758	0,2693	1,0	
Er	4(a)	0	0,0694	0,9122	1,0	
Er	4(a)	0	0,5701	0,9217	1,0	

Структурні дані для сполуки Er₂PbS₄ [16]

Er	8(<i>b</i>)	0,2503	0,1801	0,7869	1,0
Er	4(<i>a</i>)	0	0,6741	0,4369	1,0
Er	4(<i>a</i>)	0	0,1752	0,4343	1,0
Pb	4(<i>a</i>)	0	0,0463	0,5653	1,0
Pb	4(<i>a</i>)	0	0,5380	0,6213	1,0
Pb	8(<i>b</i>)	1/4	0,2068	0,1260	1,0
Pb	8(<i>b</i>)	1/4	0,2079	0,0949	1,0
S	8(<i>b</i>)	1/4	0,0392	0,0593	1,0
S	4(<i>a</i>)	0	0,6396	0,2273	1,0
S	4(<i>a</i>)	0	0,1640	0,9384	1,0
S	4(<i>a</i>)	0	0,6650	0,9406	1,0
S	8(<i>b</i>)	0,2523	0,0881	0,7655	1,0
S	4(<i>a</i>)	0	0,0191	0,3389	1,0
S	4(<i>a</i>)	0	0,5151	0,3137	1,0
S	8(<i>b</i>)	0,2520	0,2332	0,3776	1,0
S	4(<i>a</i>)	0	0,1391	0,2224	1,0
S	8(<i>b</i>)	0,2483	0,1118	0,4793	1,0
S	4(<i>a</i>)	0	0,7077	0,6471	1,0
S	4(a)	0	0,2080	0,6486	1,0

Таблиця 2.20.

				1 au.	лицл 2.20		
С	труктурні	дані для с	сполуки Е	r ₂ PbSe ₄ [18	8]		
Парамет	ри гратки	<i>a</i> = 1,2541	<i>a</i> = 1,2541 нм; <i>b</i> = 0,4081 нм; <i>c</i> = 1,4865 н				
Π	Г	Pnma					
Син	гонія	ромбічна					
Атом	ПСТ	x/a	y/b	z/c	G		
Er	4(<i>c</i>)	0,4381	1/4	0,3905	1,0		
Er	4(<i>c</i>)	0,4160	1/4	0,9041	1,0		
Pb	4(<i>c</i>)	0,7904	1/4	0,3369	0,5		
Pb	4(<i>c</i>)	0,7312	1/4	0,3213	0,5		
Se	4(<i>c</i>)	0,2061	1/4	0,8316	1,0		
Se	4(<i>c</i>)	0,1286	1/4	0,5305	1,0		
Se	4(<i>c</i>)	0,5259	1/4	0,2150	1,0		
Se	4(<i>c</i>)	0,4099	1/4	0,5766	1,0		

Таблиця 2.21.

		0.05.65			-	
Парамет	ри гратки	a = 0.8767 нм.				
Π	Г	I43d				
Син	гонія	кубічна				
Атом	ПСТ	x/a	y/b	z/c	G	
La	12(<i>a</i>)	0,3750	0	1/4	0,667	
Pb	12(<i>a</i>)	0,3750	0	1/4	0,333	
S	16(<i>c</i>)	0,5830	0,5830	0,5830	1,0	

Структурні дані для сполуки La₂PbS₄ [19]

Таблиця 2.22.

Структурні дані для сполуки La₂PbSe₄ [19]

Парамет	ри гратки	<i>а</i> = 0,9106 нм.				
Π	Г	1 4 3 <i>d</i>				
Син	гонія	кубічна	убічна			
Атом	ПСТ	x/a	y/b	z/c	G	
La	12(<i>a</i>)	0,3750	0	1/4	0,667	

Таблиця 2.23.

Структурні дані для сполуки Pr₂PbS₄ [19]

	17 71		5		1		
Парамет	ри гратки	a = 0,8675	<i>а</i> = 0,8675 нм.				
П	Г	I43d	1 4 3 <i>d</i>				
Син	гонія	кубічна					
Атом	ПСТ	x/a	y/b	z/c	G		
Pr	12(<i>a</i>)	0,3750	0	1/4	0,667		
Pb	12(<i>a</i>)	0,3750	0	1/4	0,333		
Se	16(<i>c</i>)	0,5830	0,5830	0,5830	1,0		

Таблиця 2.24.

Структурні дані для сполуки Pr₂PbSe₄ [19]

Парамет	ри гратки	<i>а</i> = 0,89916 нм.					
П	Г	I43d					
Син	гонія	кубічна	убічна				
Атом	ПСТ	x/a	y/b	z/c	G		
Pr	12(<i>a</i>)	0,3750	0	1/4	0,667		
Pb	12(<i>a</i>)	0,3750	0	1/4	0,333		

Se 16(c) 0,5830 0,5830 0,5830 1,0

Таблиця 2.25.

Структурні дані для сполуки Y₃Si_{1,25}S₇ [20]

Парамет	ри гратки	a = b = 0,9750 нм; $c = 0,5700$ нм.				
П	Г	P6 ₃	P6 ₃			
Син	гонія	гексагональна				
Атом	ПСТ	x/a	y/b	z/c	G	
Y	6(<i>c</i>)	0,1320	0,3590	0,2500	1,0	
Si	2(<i>a</i>)	0	0	0,9990	0,25	
Si	2(<i>b</i>)	1/3	2/3	0,6560	1,0	
S	6(<i>c</i>)	0,0970	0,2470	0,7850	1,0	
S	6(<i>c</i>)	0,4220	0,5350	0,5350	1,0	
S	2(<i>b</i>)	1/3	2/3	0,0140	1,0	

Таблиця 2.26.

Структурні дані для сполуки Y₃Ge_{1,25}S₇ [21]

Парамет	ри гратки	a = b = 0,9	a = b = 0,9730 нм; $c = 0,5826$ нм.				
П	Г	<i>P</i> 6 ₃					
Син	гонія	гексагональна					
Атом	ПСТ	x/a	y/b	z/c	G		
Y	6(<i>c</i>)	0,2184	0,3580	0,7572	1,0		
Ge	2(<i>a</i>)	0	0	0,9433	0,25		
Ge	2(<i>b</i>)	1/3	2/3	0,3333	1,0		
S	6(<i>c</i>)	0,8991	0,1514	0,7091	1,0		
S	6(<i>c</i>)	0,4263	0,9042	0,4928	1,0		
S	2(b)	1/3	2/3	0,9583	1,0		

Таблиця 2.27.

С	TNVKTVNH	і лані п	ки I а	SiS	[22]
U	ιργκιγρη	і дані д	$(\Lambda n La)$	20105	

F J J F Q Q						
Параметј	ри гратки	a = 0,76208 нм; $b = 1,26407$ нм; $\beta = 101,559^{\circ}; c = 0,78998$ нм.				
П	Г	P2 ₁ /c				
Син	гонія	моноклінн	а			
Атом	ПСТ	x/a	y/b	z/c	G	
La	4(e)	0,7405	0,0953	0,0456	1,0	

La	4(<i>e</i>)	0,6649	0,6652	0,1336	1,0
Si	4(<i>e</i>)	0,8303	0,3835	0,0962	1,0
S	4(<i>e</i>)	1,0231	0,2740	0,0506	1,0
S	4(<i>e</i>)	0,9213	0,5003	0,2816	1,0
S	4(<i>e</i>)	0,3608	0,1210	0,0020	1,0
S	4(e)	0,6756	0,4703	-0,1116	1,0
S	4(e)	0,6283	0,2981	0,1954	1,0

Таблиця 2.28.

Структурні дані для сполуки La ₆ Si ₄ Se ₇ [23]							
		$a = 0,94333$ нм; $\alpha = 81,906^{\circ}$;					
Парамет	ри гратки	b = 1,0448	2 нм; $\beta = 87$,475°;			
		$c = 1.49866$ нм: $\gamma = 89.499^{\circ}$.					
Γ	Г	PĪ					
Син	гонія	триклінна					
Атом	ПСТ	x/a	v/b	7/C	G		
La	4(i)	0.9515	0.2386	0.0015	1.0		
La	4(i)	0.3962	0.1154	0.1864	1,0		
La	4(<i>i</i>)	0.4887	0.7361	0.5336	1.0		
La	4(<i>i</i>)	0,1349	0,4397	0,3229	1.0		
La	4(<i>i</i>)	0,5862	0,5808	0,1642	1,0		
La	4(i)	0,1675	0,0877	0,6579	1,0		
Si	4(i)	0,2502	0,4415	0,0793	1,0		
Si	4(i)	0,2224	0,4451	0,6080	1,0		
Si	4(i)	0,2498	0,9941	0,4155	1,0		
Si	4(<i>i</i>)	0,7322	0,9410	0,0992	1,0		
Se	4(<i>i</i>)	0,1781	0,0157	0,0461	1,0		
Se	4(<i>i</i>)	0,3179	0,5223	0,4678	1,0		
Se	4(<i>i</i>)	0,8436	0,5003	0,0584	1,0		
Se	4(<i>i</i>)	0,4373	0,3581	0,2808	1,0		
Se	4(<i>i</i>)	0,4638	0,3495	0,0487	1,0		
Se	4(<i>i</i>)	0,3943	0,2975	0,6585	1,0		
Se	4(<i>i</i>)	0,1963	0,1911	0,4578	1,0		
Se	4(<i>i</i>)	0,1179	0,2835	0,1654	1,0		
Se	4(<i>i</i>)	0,7502	0,1212	0,1704	1,0		
Se	4(<i>i</i>)	0,1272	0,2199	0,8308	1,0		
Se	4(<i>i</i>)	0,4900	0,0048	0,3791	1,0		
Se	4(<i>i</i>)	0,5069	0,8739	0,1130	1,0		
Se	4(<i>i</i>)	0,1926	0,8579	0,5418	1,0		

Se	4(<i>i</i>)	0,2452	0,6240	0,1496	1,0
Se	4(<i>i</i>)	0,8135	0,4113	0,2941	1,0
Se	4(<i>i</i>)	0,1472	0,9578	0,2884	1,0
Se	4(<i>i</i>)	0,0121	0,3454	0,5981	1,0

Таблиця 2.29.

Структурні дані для сполуки La₃Ge_{1,25}S₇ [24]

Парамет	ри гратки	a = b = 1,0297 нм; $c = 0,5812$ нм.				
ПГ		<i>P</i> 6 ₃				
Син	гонія	гексагональна				
Атом	ПСТ	x/a	y/b	z/c	G	
La	6(<i>c</i>)	0,3570	0,1269	0,2350	1,0	
Ge	2(<i>a</i>)	0	0	1,0000	0,25	
Ge	2(<i>b</i>)	1/3	2/3	0,1530	1,0	
S	6(<i>c</i>)	0,1570	0,2429	0,2510	1,0	
S	6(<i>c</i>)	0,1071	0,5216	0,0060	1,0	
S	2(<i>b</i>)	1/3	2/3	0,5270	1,0	

Таблиця 2.30.

Структурні дані для сполуки La₂GeS₅ [25]

Параметр	ои гратки	a = 0,7887 нм; $b = 1,2720$ нм; $\beta = 101,4^{\circ}; c = 0,7675$ нм.				
П	Г	P2 ₁ /c				
Син	гонія	моноклінн	a			
Атом	ПСТ	x/a	y/b	z/c	G	
La	4(e)	0,0419	0,2395	0,0935	1,0	
La	4(e)	0,3649	0,8401	0,1667	1,0	
Ge	4(e)	0,5912	0,3380	0,1165	1,0	
S	4(e)	0,3815	0,1706	0,0259	1,0	
S	4(e)	0,5004	0,8613	0,3790	1,0	
S	4(e)	0,2163	0,5784	0,0061	1,0	
S	4(e)	0,6977	0,1287	0,2051	1,0	
S	4(e)	0,5474	0,5349	0,2326	1,0	

Таблиця 2.31.

Структурні дані для сполуки La4Oe3S12 [20]							
Парамет	ри гратки	a = b = 1,9400 нм; $c = 0,8100$ нм.					
П	Г	R3c					
Син	гонія	тригоналы	на				
Атом	ПСТ	x/a	y/b	z/c	G		
La	6(<i>a</i>)	0	0	1,0000	1,0		
La	18(<i>b</i>)	0,0030	0,2307	0,2028	1,0		
Ge	18(<i>b</i>)	0,2000	0,1875	0,1523	1,0		
S	18(<i>b</i>)	0,1549	0,3789	0,1618	1,0		
S	18(<i>b</i>)	0,1246	0,0643	0,2511	1,0		
S	18(<i>b</i>)	0,1145	0,2005	0,9974	1,0		
S	18(<i>b</i>)	0,3960	0,0593	0,1817	1,0		

Структурні дані для сполуки La4Ge3S12 [26]

Таблиця 2.32.

1 aujinun 2.526								
Структурні дані для сполуки La ₃ Ge _{1,25} Se ₇ [27]								
Параметр	Параметри гратки $a = b = 1,0670$ нм; $c = 0,6100$ нм.							
ΠΓ		P6 ₃						
Син	гонія	гексагональна						
Атом	ПСТ	x/a	y/b	z/c	G			
La	6(<i>c</i>)	0,1230	0,3570	0,2500	1,0			
Ge	2(<i>a</i>)	0	0	0,2780	0,625			
Ge	2(<i>b</i>)	1/3	2/3	0,6640	0,625			
Se	6(<i>c</i>)	0,0850	0,2500	0,7610	1,0			
Se	6(<i>c</i>)	0,4100	0,5260	0,5230	1,0			
Se	2(b)	1/3	2/3	0,0240	1,0			

Таблиця 2.33.

Структурні дані для сполуки La₃Sn_{1.25}S₇ [24]

Параметри гратки		a = b = 1,0277 нм; $c = 0,6003$ нм.				
ПГ		P63				
Сингонія		гексагональна				
Атом	ПСТ	x/a	y/b	z/c	G	
La	6(<i>c</i>)	0,3573	0,2222	0,2220	1,0	
Sn	2(a)	0	0	1,0000	0,25	
Sn	2(<i>b</i>)	1/3	2/3	0,6640	1,0	
Se	6(<i>c</i>)	0,0945	0,2457	0,2487	1,0	

Se	6(<i>c</i>)	0,5161	0,0903	0,4845	1,0
Se	2(<i>b</i>)	1/3	2/3	0,5373	1,0

Таблиця 2.34.

Структурні дані для сполуки La₂SnS₅ [28]

Параметр	ри гратки	a = 0,1122 нм; $b = 0,7915$ нм; $c = 0,3960$ нм.				
ΠГ		Pbam	Pbam			
Сингонія		ромбічна	чна			
Атом	ПСТ	x/a	y/b	z/c	G	
La	4(<i>h</i>)	0,3311	0,0743	1/2	1,0	
Sn	2(a)	0	0	0	1,0	
S	2(<i>c</i>)	0	1/2	0	1,0	
S	4(g)	0,2984	0,3571	0	1,0	
S	4(<i>h</i>)	0,0694	0,1869	1/2	1,0	

Таблиця 2.35.

Структурні дані для сполуки Pr₄Si₃S₁₂ [29]

	15 51							
Парамет	ри гратки	a = b = 1,9110 нм; $c = 0,7930$ нм.						
Π	Г	R3c						
Син	гонія	тригоналы	на					
Атом	ПСТ	x/a	x/a y/b z/c G					
Si	18(<i>b</i>)	0,2010	0,1860	0,1530	1,0			
Pr	6(<i>a</i>)	0	0	1,0000	1,0			
Pr	18(<i>b</i>)	0,0020	0,2310	0,2030	1,0			
S	18(<i>b</i>)	0,1540	0,3810	0,1650	1,0			
S	18(<i>b</i>)	0,1260	0,0670	0,2470	1,0			
S	18(<i>b</i>)	0,1180	0,2020	0,0060	1,0			
S	18(<i>b</i>)	0,3980	0,0660	0,1770	1,0			

Таблиця 2.36.

Структурні дані для сполуки Pr₃Si_{1,25}Se₇ [30]

Параметри гратки		a = h = 1.05268 HM; c = 0.60396 HM				
парамстритратки		u = v = 1,05200 HM, $c = 0,00570$ HM.				
ПГ		<i>P</i> 6 ₃				
Сингонія		гексагональна				
Атом	ПСТ	x/a	y/b	z/c	G	
Pr	6(<i>c</i>)	0,2296	0,3565	0,7390	1,0	
Si	2(a)	0	0	0,9900	0,25	

Si	2(<i>b</i>)	1/3	2/3	0,3330	1,0
Se	6(<i>c</i>)	0,9081	0,1558	0,7280	1,0
Se	6(<i>c</i>)	0,4188	0,8975	0,4800	1,0
Se	2(b)	1/3	2/3	0,9510	1,0

Таблиця 2.37.

Структурні дані для сполуки Pr ₄ Ge ₃ S ₁₂ [31]						
Параметри гратки		<i>a</i> = <i>b</i> = 1,92856 нм; <i>c</i> = 0,79805 нм.				
ПГ		R3c				
Сингонія		тригональна				
Атом	ПСТ	x/a	y/b	z/c	G	
Pr	6(<i>a</i>)	0	0	1,0000	1,0	
Pr	18(<i>b</i>)	0,0038	0,2316	0,2033	1,0	
Ge	18(<i>b</i>)	0,1991	0,1862	0,1553	1,0	
S	18(<i>b</i>)	0,1536	0,3788	0,1601	1,0	
S	18(<i>b</i>)	0,1228	0,0643	0,2452	1,0	
S	18(<i>b</i>)	0,1177	0,2032	0,9923	1,0	
S	18(<i>b</i>)	0,3954	0,0592	0,1843	1,0	

Таблиця 2.38.

Структурні дані для сполуки Pr₃Ge_{1,25}Se₇ [32]

Параметри гратки		a = b = 1,0590 нм; $c = 0,6060$ нм.				
ПГ		<i>P</i> 6 ₃				
Сингонія		гексагональна				
Атом	ПСТ	x/a	y/b	z/c	G	
Pr	6(<i>c</i>)	0,1340	0,3650	0,2500	1,0	
Ge	2(<i>a</i>)	0	0	0,0160	0,5	
Ge	2(<i>b</i>)	1/3	2/3	0,6640	1,0	
Se	6(<i>c</i>)	0,0900	0,2460	0,7680	1,0	
Se	6(<i>c</i>)	0,4180	0,5210	0,5230	1,0	
Se	2(<i>b</i>)	1/3	2/3	0,0370	1,0	

РОЗДІЛ З Системи R₂X₃ – R'₂X₃ – Ge(Si)X₂ (R – Y, Tb, Dy, Ho, Er; R' – La, Pr; X – S, Se)

3.1. Ізотермічні перерізи 3.1.1. Системи R₂S₃ – R'₂S₃ – PbS [33 - 36]

Фазові рівноваги в квазіпотрійних системах $R_2S_3 - R'_2S_3 - PbS$ (R – La, Pr; R' – Y, Er) за температури 770 К представлено на рисунках 3.1-3.4.

Фазові поля досліджених систем зазначені у таблицях 3.1.-3.4.

Рис. 3.1. Ізотермічний переріз системи Y₂S₃ – La₂S₃ – PbS за температури 770 К.

Рис. 3.3. Ізотермічний переріз системи Er₂S₃ – La₂S₃ – PbS за температури 770 К.

Рис. 3.4. Ізотермічний переріз системи Er₂S₃ – Pr₂S₃ – PbS за температури 770 К.

Таблиця 3.1.

Фазові поля системи У2	$_2S_3 - La_2S_3 - PbS$
за температури	и 770 К

№ п/п	D
поля	Фазові поля
1	PbS
2	Y_2PbS_4
3	Y_2S_3
4	La_2S_3
5	$La_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 \div 0,86)$
6	$PbS + Y_2PbS_4$
7	$Y_2S_3 + Y_2PbS_4$
8	$Y_2S_3 + La_2S_3$
9	$La_2S_3 + La_{2,57}Pb_{0,14}S_4$
10	$PbS + La_2PbS_4$
11	$Y_2PbS_4 + La_2PbS_4$
12	$Y_2S_3 + La_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 \div 0.86)$
13	$PbS + Y_2PbS_4 + La_2PbS_4$
14	$Y_2S_3 + Y_2PbS_4 + La_2PbS_4$
15	$Y_2S_3 + La_2S_3 + La_{2,57}Pb_{0,14}S_4$

Таблиця 3.2.

№ п/п поля	Фазові поля
1	PbS
2	Y ₂ PbS ₄
3	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0 \div 1)$
4	Pr_2S_3
5	$Pr_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 \div 0.78)$
6	$PbS + Y_2PbS_4$
7	$PbS + Pr_2PbS_4$
8	$Y_2PbS_4 + Pr_2PbS_4$
9	$Y_2S_3 + Y_2PbS_4$
10	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0 \div 1) + Pr_{2+2/3x}Pb_{1-x}S_4 (x = 0 \div 0,78)$
11	$Pr_2S_3 + Pr_{2+2/3x}Pb_{1-x}S_4 \ (x = 0,78)$
12	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0) + Pr_2S_3$
13	$PbS + Y_2PbS_4 + Pr_2PbS_4$
14	$Y_2S_3 + Y_2PbS_4 + Pr_2PbS_4$
15	$Y_{4+x}Pr_{1-x}S_{7,5}(x=0) + Pr_2S_3 + Pr_{2+2/3x}Pb_{1-x}S_4 (x=0,78)$

Фазові поля системи Y₂S₃ – Pr₂S₃ – PbS за температури 770 К

Таблиця 3.3.

Фазові поля системи Er₂S₃ – La₂S₃ – PbS за температури 770 К

№ п/п	Фазові поля	
поля	¥4,5001 11031X	
1	PbS	
2	α	
3	$Er_{3+x}La_{1-x}S_6(x=0\div 1)$	
4	La_2S_3	
5	$La_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 \div 0,86)$	
6	$PbS + \alpha$	
7	$PbS + La_2PbS_4$	
8	$\alpha + La_2PbS_4$	
9	$Er_2S_3 + \alpha$	
10	$Er_{3+x}La_{1-x}S_{6}(x = 0 \div 1) + La_{2+2/3x}Pb_{1-x}S_{4}(x = 0 \div 0.86)$	
11	$La_2S_3 + La_{2+2/3x}Pb_{1-x}S_4 \ (x = 0,86)$	
12	$Er_{3+x}La_{1-x}S_6 (x = 0) + La_2S_3$	

№ п/п поля	Фазові поля
13	$PbS + \alpha + La_2PbS_4$
14	$Er_2S_3 + \alpha + La_2PbS_4$
15	$Er_{3+x}La_{1-x}S_6(x=0) + La_{2+2/3x}Pb_{1-x}S_4(x=0,86) + La_2S_3$

Таблиця 3.4.

Фазові поля системи Er₂S₃ – Pr₂S₃ – PbS за температури 770 К

№ п/п поля	Фазові поля
1	PbS
2	$\mathrm{Er}_{2}\mathrm{PbS}_{4}$
3	$\operatorname{Er}_{3,5+x}\operatorname{Pr}_{1-x}\mathbf{S}_{6,8}\ (\mathbf{x}=0\div 1)$
4	Pr_2S_3
5	$Pr_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 \div 0.78)$
6	$PbS + Er_2PbS_4$
7	$PbS + Pr_2PbS_4$
8	$\operatorname{Er}_{2}\operatorname{PbS}_{4} + \operatorname{Pr}_{2}\operatorname{PbS}_{4}$
9	$\operatorname{Er}_{2}\mathbf{S}_{3} + \operatorname{Er}_{2}\mathbf{PbS}_{4}$
10	$\operatorname{Er}_{3,5+x}\operatorname{Pr}_{1-x}S_{6,8} (x = 0 \div 1) + \operatorname{Pr}_{2+2/3x}\operatorname{Pb}_{1-x}S_4 (x = 0 \div 0,78)$
11	$Pr_2S_3 + Pr_{2+2/3x}Pb_{1-x}S_4 \ (x = 0,78)$
12	$\mathrm{Er}_{3,5+x}\mathrm{Pr}_{1-x}\mathrm{S}_{6,8}\ (x=0) + \mathrm{Pr}_2\mathrm{S}_3$
13	$PbS + Er_2PbS_4 + Pr_2PbS_4$
14	$\operatorname{Er}_2S_3 + \operatorname{Er}_2PbS_4 + \operatorname{Pr}_2PbS_4$
15	$Er_{4+x}Pr_{1-x}S_{7,5}(x=0) + Pr_2S_3 + Pr_{2+2/3x}Pb_{1-x}S_4 (x=0,78)$

3.1.2. Системи R₂Se₃ – R'₂Se₃ – PbSe [37], [38]

Фазові рівноваги в квазіпотрійних системах $R_2Se_3 - R'_2Se_3 - PbSe$ (R – La, Pr; R' – Y, Er) за температури 770 К представлено на рисунках 3.5-3.8. Фазові поля досліджених систем зазначені у таблицях 3.5.-3.8.

Рис. 3.5. Ізотермічний переріз системи Y₂Se₃ – La₂Se₃ – PbSe за температури 770 К.

Рис. 3.6. Ізотермічний переріз системи $Y_2Se_3 - Pr_2Se_3$ PbSe за температури 770 К.

Рис. 3.8. Ізотермічний переріз системи Er₂Se₃ – Pr₂Se₃ – PbSe за температури 770 К.

Таблиця 3.5.

Фазові поля системи Y₂Se₃ – La₂Se₃ – PbSe за температури 770 К

№ п/п	Фазорі поля
поля	
1	PbSe
2	$Y_6Pb_2Se_{11}$
3	Y_2Se_3
4	α
5	$PbSe + Y_6Pb_2Se_{11}$
6	$Y_2Se_3 + Y_6Pb_2Se_{11}$
7	$\alpha + PbSe$
8	$Y_6Pb_2Se_{11}+\alpha$,
9	$Y_2Se_3 + \alpha$
10	$PbSe + Y_6Pb_2Se_{11} + \alpha$
11	$Y_2Se_3 + Y_6Pb_2Se_{11} + \alpha$

Таблиця 3.6.

Фазові поля системи Y₂Se₃ – Pr₂Se₃ – PbSe за температури 770 К

№ п/п поля	Фазові поля
1	PbSe
2	$Y_6Pb_2Se_{11}$
3	Y_2Se_3
4	α
5	$PbSe + Y_6Pb_2Se_{11}$
6	$Y_2Se_3 + Y_6Pb_2Se_{11}$
7	$\alpha + PbSe$
8	$Y_6Pb_2Se_{11}+\alpha$
9	$Y_2Se_3 + \alpha$
10	$PbSe + Y_6Pb_2Se_{11} + \alpha$
11	$Y_2Se_3 + Y_6Pb_2Se_{11} + \alpha$

Таблиця 3.7.

Фазові поля системи Er₂Se₃ – La₂Se₃ – PbSe за температури 770 К

№ п/п	
поля	
1	PbSe
2	Er_2PbSe_4
3	Er_2Se_3
4	$La_{2+2/3x}Pb_{1-x}Se_4 (x = 0 \div 1)$
5	$PbSe + Er_2PbSe_4$
6	$Er_2Se_3 + Er_2PbSe_4$
7	$PbSe + La_{2+2/3x}Pb_{1-x}Se_4 (x = 1)$
8	$Er_2PbSe_4 + La_{2+2/3x}Pb_{1-x}Se_4 (x = 1)$
9	$Er_2Se_3 + La_{2+2/3x}Pb_{1-x}Se_4 \ (x = 0 \div 1)$
10	$PbSe + Er_2PbSe_4 + La_{2+2/3x}Pb_{1-x}Se_4 (x = 1)$
11	$Er_2Se_3 + Er_2PbSe_4 + La_{2+2/3x}Pb_{1-x}Se_4$ (x = 1)

Таблиця 3.8.

Фазові поля системи Er₂Se₃ – Pr₂Se₃ – PbSe за температури 770 К

№ п/п	Desori nong
поля	
1	PbSe
2	Er ₂ PbSe ₄
3	Er_2Se_3
4	α
5	$PbSe + Er_2PbSe_4$
6	$Er_2Se_3 + Er_2PbSe_4$
7	$PbSe + Pr_2PbSe_4$
8	$Er_2PbSe_4 + \alpha$
9	$Er_2Se_3 + \alpha$
10	$PbSe + Er_2PbSe_4 + \alpha$
11	$Er_2Se_3 + Er_2PbSe_4 + \alpha$

3.1.3. Системи R₂S₃ – R'₂S₃ – SiS₂ [39], [40]

Фазові рівноваги в квазіпотрійних системах $R_2S_3 - R'_2S_3 - SiS_2$ (R – La, Pr; R' – Y, Er) за температури 770 К представлено на рисунках 3.9-3.11. Фазові поля

досліджених систем зазначені у таблицях 3.9.-3.11. sis_2

Рис. 3.10. Ізотермічний переріз системи $Er_2S_3 - La_2S_3 - SiS_2$ за температури 770 К.

Рис. 3.11. Ізотермічний переріз системи $Er_2S_3 - Pr_2S_3 - SiS_2$ за температури 770 К.

Таблиця 3.9.

Φ азові поля системи $Y_2S_3 - La_2S_3 - SiS_2$
за температури 770 К

№ п/п	Фазові поля
поля	
1	SiS ₂
2	Y_2S_3
3	La_2S_3
4	$Y_{3}Si_{1,25}S_{7}$
5	La_2SiS_5
6	$SiS_2 + Y_3Si_{1,25}S_7$
7	$Y_2S_3 + Y_3Si_{1,25}S_7$
8	$Y_2S_3 + La_2S_3$
9	$La_2S_3 + La_2SiS_5$
10	$SiS_2 + La_2SiS_5$
11	$Y_3Si_{1,25}S_7 + La_2SiS_5$
12	$Y_2S_3 + La_2SiS_5$
13	$SiS_2 + Y_3Si_{1,25}S_7 + La_2SiS_5$
14	$Y_2S_3 + Y_3Si_{1,25}S_7 + La_2SiS_5$
15	$Y_2S_3 + La_2S_3 + La_2SiS_5$

Таблиця 3.10.

	$Фазові поля системи Er_2S_3 - La_2S_3 - SiS_2$
	за температури 770 К
п	A 2222

ъ .

№ п/п	Фазові поля
поля	
1	SiS ₂
2	$\operatorname{Er}_{3,5+x}\operatorname{La}_{1-x}S_{6,8}(x=0\div 1)$
3	La_2S_3
4	La_2SiS_5
5	$SiS_2 + Er_2S_3$
6	$\operatorname{Er}_{3,5+x}\operatorname{La}_{1-x}\operatorname{S}_{6,8}(x=1) + \operatorname{La}_2\operatorname{S}_3$
7	$La_2S_3 + La_2SiS_5$
8	$SiS_2 + La_2SiS_5$
9	$\operatorname{Er}_{3,5+x}\operatorname{La}_{1-x}\operatorname{S}_{6,8}(x=0\div 1) + \operatorname{La}_2\operatorname{Si}\operatorname{S}_5$
10	$SiS_2 + Er_{3,5+x}La_{1-x}S_{6,8} (x = 1) + La_2SiS_5$
11	$\operatorname{Er}_{3,5+x}\operatorname{La}_{1-x}S_{6,8}(x=0) + \operatorname{La}_2S_3 + \operatorname{La}_2SiS_5$

Таблиця 3.11.

 Φ азові поля системи $Er_2S_3 - Pr_2S_3 - SiS_2$ за температури 770 К

№ п/п	Фазові поля
поля	
1	SiS ₂
2	Er_2S_3
3	Pr_2S_3
4	$Pr_4Si_3S_{12}$
5	$SiS_2 + Er_2S_3$
6	$\mathrm{Er}_2\mathrm{S}_3 + \mathrm{Pr}_2\mathrm{S}_3$
7	$\mathbf{Pr}_2\mathbf{S}_3 + \mathbf{Pr}_4\mathbf{Si}_3\mathbf{S}_{12}$
8	$SiS_2 + Pr_4Si_3S_{12}$
9	$\mathrm{Er}_2\mathrm{S}_3 + \mathrm{Pr}_4\mathrm{Si}_3\mathrm{S}_{12}$
10	$SiS_2 + Er_2S_3 + Pr_4Si_3S_{12}$
11	$Er_2S_3 + Pr_2S_3 + Pr_4Si_3S_{12}$

3.1.4. Системи R₂Se₃ - R'₂Se₃ - SiSe₂ [37], [41]

Фазові рівноваги в квазіпотрійних системах R2Se3 -R'₂Se₃ - SiSe₂ (R - La, Pr; R' - Y, Er) за температури 770 К на рисунках 3.12-3.15. представлено Фазові поля

Рис. 3.13. Ізотермічний переріз системи Y₂Se₃ – Pr₂Se₃ – SiSe₂ за температури 770 К.

Рис. 3.15. Ізотермічний переріз системи Er₂Se₃ – Pr₂Se₃ – SiSe₂ за температури 770 К.

Таблиця 3.12.

su temieputyph 770 R	
№ п/п поля	Фазові поля
1	SiSe ₂
2	Y_2Se_3
3	La_2Se_3
4	$La_6Si_4Se_{17}$
5	$Y_2Se_3 + SiSe_2$
6	$Y_2Se_3 + La_2Se_3$
7	$La_2Se_3 + La_6Si_4Se_{17}$
8	$SiSe_2 + La_6Si_4Se_{17}$
9	$SiSe_2 + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
10	$La_6Si_4Se_{17} + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
11	$Y_2Se_3 + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
12	$La_2Se_3 + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
13	$Y_2Se_3 + SiSe_2 + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
14	$SiSe_2 + La_6Si_4Se_{17} + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
15	$La_2Se_3 + La_6Si_4Se_{17} + Y_{1,5}La_{1,5}Si_{1,75}Se_7$
16	$Y_2Se_3 + La_2Se_3 + Y_{1,5}La_{1,5}Si_{1,75}Se_7$

Фазові поля системи Y₂Se₃ – La₂Se₃ – SiSe₂ за температури 770 К

Таблиця 3.13.

Φ азові поля системи $Y_2Se_3 - Pr_2Se_3 - SiSe_2$ за температури 770 К

№ п/п поля	Фазові поля
1	SiSe ₂
2	Y_2Se_3
3	Pr_2Se_3
4	$Pr_3Si_{1,25}Se_7$
5	$Y_2Se_3 + SiSe_2$
6	$Y_2Se_3 + Pr_2Se_3$
7	$\mathbf{Pr}_{2}\mathbf{Se}_{3}+\mathbf{Pr}_{3}\mathbf{Si}_{1,25}\mathbf{Se}_{7}$
8	$SiSe_2 + Pr_3Si_{1,25}Se_7$
9	$SiSe_2 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$
10	$Pr_3Si_{1,25}Se_7 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$
11	$Y_2Se_3 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$
12	$Pr_2Se_3 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$

№ п/п	Фазові поля
поля	
13	$Y_2Se_3 + SiSe_2 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$
14	$SiSe_2 + Pr_3Si_{1,25}Se_7 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$
15	$Pr_2Se_3 + Pr_3Si_{1,25}Se_7 + Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$
16	$Y_2Se_3 + Pr_2Se_3 + Y_{1.5}Pr_{1.5}Si_{1.75}Se_7$

Таблиця 3.14.

Фазові поля системи Er₂Se₃ – La₂Se₃ – SiSe₂ за температури 770 К

№ п/п	Deponi Hora
поля	Фазові поля
1	SiSe ₂
2	Er_2Se_3
3	La_2Se_3
4	$La_6Si_4Se_{17}$
5	$Er_2Se_3 + SiSe_2$
6	$Er_2Se_3 + La_2Se_3$
7	$La_2Se_3 + La_6Si_4Se_{17}$
8	$SiSe_2 + La_6Si_4Se_{17}$
9	$SiSe_2 + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
10	$La_6Si_4Se_{17} + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
11	$Er_2Se_3 + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
12	$La_2Se_3 + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
13	$Er_2Se_3 + SiSe_2 + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
14	$SiSe_2 + La_6Si_4Se_{17} + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
15	$La_2Se_3 + La_6Si_4Se_{17} + Er_{1,5}La_{1,5}Si_{1,67}Se_7$
16	$Er_2Se_3 + La_2Se_3 + Er_{1,5}La_{1,5}Si_{1,67}Se_7$

Таблиця 3.15.

Фазові поля системи Er₂Se₃ – Pr₂Se₃ – SiSe₂ за температури 770 К

№ п/п	Фазові поля
поля	Фазові поля
1	SiSe ₂
2	Er_2Se_3
3	Pr_2Se_3
4	$Pr_3Si_{1,25}Se_7$

№ п/п поля	Фазові поля
5	$Er_2Se_3 + SiSe_2$
6	$Er_2Se_3 + Pr_2Se_3$
7	$Pr_2Se_3 + Pr_3Si_{1,25}Se_7$
8	$SiSe_2 + Pr_3Si_{1,25}Se_7$
9	$SiSe_2 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
10	$Pr_3Si_{1,25}Se_7 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
11	$Er_2Se_3 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
12	$Pr_2Se_3 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
13	$Er_2Se_3 + SiSe_2 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
14	$SiSe_2 + Pr_3Si_{1,25}Se_7 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
15	$Pr_2Se_3 + Pr_3Si_{1,25}Se_7 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$
16	$Er_2Se_3 + Pr_2Se_3 + Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$

3.1.5. Системи R₂S₃ - R'₂S₃ - GeS₂ [42], [43]

Фазові рівноваги в квазіпотрійних системах $R_2S_3 - R'_2S_3 - GeS_2$ (R – La, Pr; R' – Y, Er) за температури 770 К представлено на рисунках 3.16-3.19. Фазові поля досліджених систем зазначені у таблицях 3.16-3.19.

Рис. 3.16. Ізотермічний переріз системи Y₂S₃ – La₂S₃ – GeS₂ за температури 770 К.

Рис. 3.18. Ізотермічний переріз системи Er₂S₃ – La₂S₃ – GeS₂ за температури 770 К.

Рис. 3.19. Ізотермічний переріз системи $Er_2S_3 - Pr_2S_3 - GeS_2$ за температури 770 К.

Таблиця 3.16.

Фазові поля системи Y₂S₃ – La₂S₃ – GeS₂ за температури 770 К

№ п/п	Фазові поля
поля	
1	GeS_2
2	Y_2S_3
3	La ₂ S ₃
4	$Y_{3}Ge_{1,25}S_{7}$
5	$La_{3}Ge_{1,25}S_{7}$
6	La_2GeS_5
7	$Y_{4x}La_{4-4x}Ge_{3}S_{12} (x = 0 \div 0,75)$
8	$GeS_2 + Y_3Ge_{1,25}S_7$
9	$Y_2S_3 + Y_3Ge_{1,25}S_7$
10	$Y_2S_3 + La_2S_3$
11	$La_2S_3 + La_3Ge_{1,25}S_7$
12	$La_3Ge_{1,25}S_7 + La_2GeS_5$
13	$La_2GeS_5 + Y_{4x}La_{4-4x}Ge_3S_{12} (x = 0)$
14	$GeS_2 + Y_{4x}La_{4-4x}Ge_3S_{12} (x = 0.75)$
15	$Y_{3}Ge_{1,25}S_{7} + Y_{4x}La_{4-4x}Ge_{3}S_{12} (x = 0 \div 0,75)$

№ п/п	Ферорі ноля
поля	Фазові поля
16	$Y_3Ge_{1,25}S_7 + La_2GeS_5$
17	$Y_2S_3 + La_2GeS_5$
18	$Y_2S_3 + La_3Ge_{1,25}S_7$
19	$GeS_2 + Y_3Ge_{1,25}S_7 + Y_{4x}La_{4,4x}Ge_3S_{12} (x = 0,75)$
20	$Y_{3}Ge_{1,25}S_{7} + La_{2}GeS_{5} + Y_{4x}La_{4-4x}Ge_{3}S_{12} (x = 0)$
21	$Y_2S_3 + Y_3Ge_{1,25}S_7 + La_2GeS_5$

Таблиця 3.17.

Φ азові поля системи $Y_2S_3-Pr_2S_3-GeS_2$ за температури 770 К

№ п/п	Фазові поля
поля	
1	GeS ₂
2	$Y_{3}Ge_{1,25}S_{7}$
3	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0 \div 1)$
4	Pr_2S_3
5	$Pr_3Ge_{1,25}S_7$
6	$Pr_4Ge_3S_{12}$
7	$GeS_2 + Y_3Ge_{1,25}S_7$
8	$Y_2S_3 + Y_3Ge_{1,25}S_7$
9	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0) + Pr_2S_3$
10	$Pr_2S_3 + Pr_3Ge_{1,25}S_7$
11	$Pr_3Ge_{1,25}S_7 + Pr_4Ge_3S_{12}$
12	$GeS_2 + Pr_4Ge_3S_{12}$
13	$Y_3Ge_{1,25}S_7 + Pr_4Ge_3S_{12}$
14	$Y_2S_3 + Pr_4Ge_3S_{12}$
15	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0 \div 1) + Pr_3Ge_{1,25}S_7$
16	$GeS_2 + Y_3Ge_{1,25}S_7 + Pr_4Ge_3S_{12}$
17	$Y_2S_3 + Y_3Ge_{1,25}S_7 + Pr_4Ge_3S_{12}$
18	$Y_2S_3 + Pr_3Ge_{1,25}S_7 + Pr_4Ge_3S_{12}$
19	$Y_{3,5+x}Pr_{1-x}S_{6,8}$ (x = 0) + Pr_2S_3 + $Pr_3Ge_{1,25}S_7$

Таблиця 3.18.

Фазові поля системи Er₂S₃ – La₂S₃ – GeS₂ за температури 770 К

№ п/п поля	Фазові поля
1	GeS_2
2	$La_{4-4x}Er_{4x}Ge_{3}S_{12} (x = 0 \div 0.63)$
3	$GeS_2 + La_{4.4x}Er_{4x}Ge_3S_{12}$ (x = 0÷0,63)
4	$GeS_2 + Er_{2,34}La_{0,66}Ge_{1,28}S_7$
5	$GeS_2 + Er_2S_3$
6	$Er_2S_3 + Er_{2,34}La_{0,66}Ge_{1,28}S_7$
7	$La_{4-4x}Er_{4x}Ge_{3}S_{12}$ (x = 0,5÷0,63) + $Er_{2,34}La_{0,66}Ge_{1,28}S_{7}$
8	$GeS_2 + La_{4.4x}Er_{4x}Ge_3S_{12}$ (x = 0,63) + $Er_{2,34}La_{0,66}Ge_{1,28}S_7$
9	$GeS_2 + Er_2S_3 + Er_{2,34}La_{0,66}Ge_{1,28}S_7$
10	$Er_2S_3 + La_{4-4x}Er_{4x}Ge_3S_{12}$ (x = 0,5) + $Er_{2,34}La_{0,66}Ge_{1,28}S_7$

Таблиця 3.19.

Фазові поля системи Er₂S₃ – Pr₂S₃ – GeS₂ за температури 770 К

№ п/п	Decori nong
поля	
1	GeS_2
2	$\mathrm{Er}_2\mathrm{S}_3$
3	Pr_2S_3
4	$Pr_3Ge_{1,25}S_7$
5	$Pr_4Ge_3S_{12}$
6	$GeS_2 + Er_2S_3$
7	$Er_2S_3 + Pr_2S_3$
8	$Pr_2S_3 + Pr_3Ge_{1,25}S_7$
9	$Pr_{3}Ge_{1,25}S_{7} + Pr_{4}Ge_{3}S_{12}$
10	$GeS_2 + Pr_4Ge_3S_{12}$
11	$GeS_2 + Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$
12	$Pr_4Ge_3S_{12} + Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$
13	$Er_2S_3 + Pr_4Ge_3S_{12}$
14	$Er_2S_3 + Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$
15	$Er_2S_3 + Pr_3Ge_{1,25}S_7$
16	$GeS_2 + Pr_4Ge_3S_{12} + Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$
17	$GeS_2 + Er_2S_3 + Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$
18	$Er_2S_3 + Pr_4Ge_3S_{12} + Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$

№ п/п поля	Фазові поля
19	$Er_2S_3 + Pr_3Ge_{1,25}S_7 + Pr_4Ge_3S_{12}$
20	$Er_2S_3 + Pr_2S_3 + Pr_3Ge_{1,25}S_7$

3.1.6. Системи R₂Se₃ - R'₂Se₃ - GeSe₂ [44]

Фазові рівноваги в квазіпотрійних системах R₂Se₃ – R'₂Se₃ – GeSe₂ (R – La, Pr; R' – Y, Er) за температури 770 К представлено на рисунках 3.20-3.23. Фазові поля досліджених систем зазначені у таблицях 3.20-3.23.

Рис. 3.20. Ізотермічний переріз системи Y₂Se₃ – La₂Se₃ – GeSe₂ за температури 770 К.

Рис. 3.22. Ізотермічний переріз системи Er₂Se₃ – La₂Se₃ – GeSe₂ за температури 770 К.

^{Er}₂Se₃ 6 ^{Pr}₂Se₃ **Рис. 3.23.** Ізотермічний переріз системи Er₂Se₃ – Pr₂Se₃ – GeSe₂ за температури 770 К.

Таблиця 3.20.

Фазові поля системи	$Y_2Se_3 -$	$-La_2Se_3$ -	- GeSe ₂
за темпера	атури 7	70 K	

№ п/п	Dazoni nong
поля	Фазові поля
1	GeSe ₂
2	Y_2Se_3
3	La_2Se_3
4	$La_3Ge_{1,25}Se_7$
5	$Y_2Se_3 + GeSe_2$
6	$Y_2Se_3 + La_2Se_3$
7	$La_2Se_3 + La_3Ge_{1,25}Se_7$
8	$GeSe_2 + La_3Ge_{1,25}Se_7$
9	$Y_2Se_3 + La_3Ge_{1,25}Se_7$
10	$Y_2Se_3 + GeSe_2 + La_3Ge_{1,25}Se_7$
11	$Y_2Se_3 + La_2Se_3 + La_3Ge_{1,25}Se_7$

Таблиця 3.21.

Фазові поля системи Y₂Se₃ – Pr₂Se₃ – GeSe₂ за температури 770 К

№ п/п	Decori nong
поля	Фазові поля
1	GeSe ₂
2	Y_2Se_3
3	Pr ₂ Se ₃
4	$Pr_3Ge_{1,25}Se_7$
5	$Y_2Se_3 + GeSe_2$
6	$\mathbf{Y}_{2}\mathbf{S}\mathbf{e}_{3}+\mathbf{P}\mathbf{r}_{2}\mathbf{S}\mathbf{e}_{3}$
7	$Pr_2Se_3 + Pr_3Ge_{1,25}Se_7$
8	$GeSe_2 + Pr_3Ge_{1,25}Se_7$
9	$Y_2Se_3 + Pr_3Ge_{1,25}Se_7$
10	$Y_2Se_3 + GeSe_2 + Pr_3Ge_{1,25}Se_7$
11	$Y_2Se_3 + Pr_2Se_3 + Pr_3Ge_{1,25}Se_7$

Таблиця 3.22.

Фазові поля системи Er₂Se₃ – La₂Se₃ – GeSe₂ за температури 770 К

№ п/п	Фазорі поля
поля	Фазові поля
1	GeSe ₂
2	Er_2Se_3
3	La ₂ Se ₃
4	$La_3Ge_{1,25}Se_7$
5	$Er_2Se_3 + GeSe_2$
6	$Er_2Se_3 + La_2Se_3$
7	$La_2Se_3 + La_3Ge_{1,25}Se_7$
8	$GeSe_2 + La_3Ge_{1,25}Se_7$
9	$Er_2Se_3 + La_3Ge_{1,25}Se_7$
10	$Er_2Se_3 + GeSe_2 + La_3Ge_{1,25}Se_7$
11	$Er_2Se_3 + La_2Se_3 + La_3Ge_{1,25}Se_7$

Таблиця 3.23.

Фазові поля системи Er₂Se₃ – Pr₂Se₃ – GeSe₂ за температури 770 К

№ п/п	Фазові поля
поля	
1	GeSe ₂
2	Er_2Se_3
3	Pr_2Se_3
4	$Pr_{3}Ge_{1,25}Se_{7}$
5	$Er_2Se_3 + GeSe_2$
6	$Er_2Se_3 + Pr_2Se_3$
7	$Pr_2Se_3 + Pr_3Ge_{1,25}Se_7$
8	$GeSe_2 + Pr_3Ge_{1,25}Se_7$
9	$Er_2Se_3 + Pr_3Ge_{1,25}Se_7$
10	$Er_2Se_3 + GeSe_2 + Pr_3Ge_{1,25}Se_7$
11	$Er_2Se_3 + Pr_2Se_3 + Pr_3Ge_{1,25}Se_7$

3.1.7. Системи $R_2S_3 - R'_2S_3 - SnS_2$ [45 - 47]

Фазові рівноваги в квазіпотрійних системах $R_2S_3 - R'_2S_3 - SnS_2$ (R – La, Pr; R' – Y, Er) за температури 770 К представлено на рисунках 3.24-3.27. Фазові поля досліджених систем зазначені у таблицях 3.24-3.27.

Рис. 3.25. Ізотермічний переріз системи $Y_2S_3 - Pr_2S_3 - SnS_2$ за температури 770 К.

Рис. 3.27. Ізотермічний переріз системи Er₂S₃ – Pr₂S₃ – SnS₂ за температури 770 К.

Таблиця 3.24.

	su remiepurypu , rone
№ п/п поля	Фазові поля
1	SnS ₂
2	Y_2S_3
3	La_2S_3
4	La_2SnS_5
5	$SnS_2 + Y_2S_3$
6	$Y_2S_3 + La_2S_3$
7	$La_2S_3 + La_2SnS_5$
8	$SnS_2 + La_2SnS_5$
9	$Y_2S_3 + La_2SnS_5$
10	$SnS_2 + Y_2S_3 + La_2SnS_5$
11	$Y_2S_3 + La_2S_3 + La_2SnS_5$

Фазові поля системи $Y_2S_3 - La_2S_3 - SnS_2$ за температури 770 К

Таблиця 3.25.

Фазові поля системи $Y_2S_3 - Pr_2S_3 - SnS_2$ за температури 770 К

№ п/п	Ферорі поля
поля	Ψasobi ποля
1	SnS ₂
2	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0 \div 1)$
3	Pr_2S_3
4	Pr_2SnS_5
5	$SnS_2 + Y_2S_3$
6	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0) + Pr_2S_3$
7	$Pr_2S_3 + Pr_2SnS_5$
8	$SnS_2 + Pr_2SnS_5$
9	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0 \div 1) + Pr_2SnS_5$
10	$SnS_2 + Y_2S_3 + Pr_2SnS_5$
11	$Y_{3,5+x}Pr_{1-x}S_{6,8} (x = 0) + Pr_2S_3 + Pr_2S_1S_5$

Таблиця 3.26.

	1 21
№ п/п	Фазові поля
поля	
1	SnS ₂
2	$Er_{3+x}La_{1-x}S_6(x=0\div 1)$
3	La_2S_3
4	La_2SnS_5
5	$SnS_2 + Er_2S_3$
6	$Er_{3+x}La_{1-x}S_6(x=0) + La_2S_3$
7	$La_2S_3 + La_2SnS_5$
8	$SnS_2 + La_2SnS_5$
9	$Er_{3+x}La_{1-x}S_6(x = 0 \div 1) + La_2SnS_5$
10	$SnS_2 + Er_2S_3 + La_2SnS_5$
11	$Er_{3+x}La_{1-x}S_6(x=0) + La_2S_3 + La_2SnS_5$

Фазові поля системи Er₂S₃ – La₂S₃ – SnS₂ за температури 770 К

Таблиця 3.27.

Фазові поля системи Er₂S₃ – Pr₂S₃ – SnS₂ за температури 770 К

№ п/п	
поля	
1	SnS ₂
2	Er_2S_3
3	Pr_2S_3
4	Pr ₂ SnS ₅
5	$SnS_2 + Er_2S_3$
6	$\mathrm{Er}_2\mathrm{S}_3 + \mathrm{Pr}_2\mathrm{S}_3$
7	$Pr_2S_3 + Pr_2SnS_5$
8	$SnS_2 + Pr_2SnS_5$
9	$Er_2S_3 + Pr_2SnS_5$
10	$SnS_2 + Er_2S_3 + Pr_2SnS_5$
11	$Er_2S_3 + Pr_2S_3 + Pr_2SnS_5$

3.2. Тверді розчини La4-4xR4xGe3S12 (R – Tb, Dy, Y, Ho, Er) [43], [48], [49]

Квазіпотрійні системи Tb₂S₃ – La₂S₃ – GeS₂, Dy₂S₃ – La₂S₃ – GeS₂, Y₂S₃ – La₂S₃ – GeS₂, Ho₂S₃ – La₂S₃ – GeS₂ i Er₂S₃ – La₂S₃ – GeS₂ за температури 770 К характеризуються утворенням твердих розчинів значної протяжності La_{4-4x}R_{4x}Ge₃S₁₂ (рис. 3.28) та (рис. 3.29) на основі тернарної фази La₄Ge₃S₁₂ (ПГ *R*3*c* (№ 161), власний структурний тип). Ці розчини формуються шляхом ізовалентного заміщення атомів La атомами Tb, Dy, Y, Ho і Ег відповідно.

Протяжність твердого розчину $Tb_{4x}La_{4-4x}Ge_3S_{12}$ сягає 72 мол. % " $Tb_4Ge_3S_{12}$ ", $Dy_{4x}La_{4-4x}Ge_3S_{12}$ – 70 мол. % " $Dy_4Ge_3S_{12}$ ", $Y_{4x}La_{4-4x}Ge_3S_{12}$ – 75 мол. % " $Y_4Ge_3S_{12}$ ", Ho_{4x}La_{4-4x}Ge₃S₁₂ – 60 мол. % "Ho₄Ge₃S₁₂" i $Er_{4x}La_{4-4x}Ge_3S_{12}$ 62 мол. % " $Er_4Ge_3S_{12}$ ". У таблиці 3.28 представлено зміну параметрів елементарних комірок в межах досліджених твердих розчинів. Найбільша зміна спостерігається для розчину $Dy_xLa_{4-4x}Ge_3S_{12}$ (x = 0÷0,70): параметр *a* зменшується від 1,9400 нм до 1,9137 нм, параметр *c* зменшується від 0,8100 нм до 0,7829 нм, об'єм елементарної комірки *V* зменшується від 2,6400 нм³ до 2,4847 нм³.

Таблиця 3.28.

Cwana a (u) dan	а,	Δa ,	с,	Δc ,	<i>V</i> ,	ΔV ,
Склад(и) фаз	HM	HM	HM	HM	HM ³	нм ³
$La_4Ge_3S_{12}$	1,9400	_	0,8100	_	2,6400	_
$Er_{4x}La_{4-4x}Ge_3S_{12}$	1,9203	0,0197	0,7858	0,0242	2,5117	0,1283
Ho _{4x} La _{4-4x} Ge ₃ S ₁₂	1,9149	0,0251	0,7900	0,0200	2,5366	0,1034
$Y_{4x}La_{4-4x}Ge_3S_{12}$	1,9152	0,0248	0,7834	0,0266	2,4886	0,1514
$Dy_xLa_{4-4x}Ge_3S_{12}$	1,9137	0,0263	0,7829	0,0271	2,4847	0,1553
Tb _x La _{4-4x} Ge ₃ S ₁₂	1,9157	0,0243	0,7878	0,0222	2,5035	0,1365

Зміна параметрів елементарних комірок в межах твердих розчинів La4-4xR4xGe3S12

Рис. 3.28. Зміна параметрів комірки *а, с* і *V* в межах твердих розчинів La_{4-4x}Tb_{4x}Ge₃S₁₂ (а) і La_{4-4x}Dy_{4x}Ge₃S₁₂ (б).

Рис. 3.29. Зміна параметрів комірки *a*, *c* і *V* в межах твердих розчинів La_{4-4x}Y_{4x}Ge₃S₁₂ (a), La_{4-4x}Ho_{4x}Ge₃S₁₂ (б), La_{4-4x}Er_{4x}Ge₃S₁₂ (в).

РОЗДІЛ 4 СТРУКТУРНІ ТИПИ, В ЯКИХ КРИСТАЛІЗУЮТЬСЯ ТЕТРАРНІ ФАЗИ В СИСТЕМАХ R₂X₃ – R'₂X₃ – Ge(Si)X₂ (R – Y, Tb, Dy, Ho, Er; R' – La, Pr; X – S, Se)

4.1. Структурний тип **Dy**₃Ge_{1,25}S₇

Сполука $Dy_3Ge_{1,25}S_7$ утворююється у квазібінарній системі Dy_2S_3 — GeS_2 при співвідношенні вихідних компонентів 11:9 [25]. Ця сполука кристалізується в гексагональній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 4.1.

Просторова група *P*6₃ (№173) *a* = 0,937 (нм) *c* = 0,582 (нм) Число формульних одиниць (Z) = 2 Об'єм комірки = 0,47718 (нм³) Кількість атомів у комірці = 23,5 Обрахована густина = 4,29 (г/см³)

Рис. 4.1. Елементарна комірка та основні характеристики кристалічної структури Dy₃Ge_{1,25}S₇.

У кристалічній структурі $Dy_3Ge_{1,25}S_7$ атоми Dy сконцентровані в тригональних призмах [DyS1₃S2₃S3₁] (рис. 4.2.) з одним додатковим атомом, Ge1 – у тетраедрах [Ge1S2₃S3₁] (рис. 4.3.), а Ge2 – в октаедрах [Ge2S1₆] (рис. 4.4.). Координати атомів для сполуки Dy₃Si_{1,25}S₇ (СТ *власний*) подано в таблиці 4.1.

Рис. 4.3. Координаційне оточення атомів Dy в структурі Dy₃Ge_{1,25}S₇ та розподіл міжатомних віддалей Dy – S.

Рис. 4.4. Координаційне оточення атомів Ge1 у структурі Dy₃Ge_{1,25}S₇ та розподіл міжатомних віддалей Ge1 – S.

Рис. 4.5. Координаційне оточення атомів Ge2 у структурі Dy₃Ge_{1,25}S₇ та розподіл міжатомних віддалей Ge2 – S.

Таблиця 4.1.

			2		
Атом	ПСТ	x/a	y/b	z/c	G
Dy	6(<i>c</i>)	0,359	0,14	0,25	1,0
Ge1	2(<i>b</i>)	1/3	2/3	0,175	1,0
Ge2	2(<i>a</i>)	0	0	0,047	0,25
S1	6(<i>c</i>)	0,251	0,1	0,818	1,0
S2	6(<i>c</i>)	0,523	0,427	0,504	1,0
S 3	2(b)	1/3	2/3	0,531	1,0

Координати атомів для сполуки Dy₃Ge_{1,25}S₇

4.2. Структурний тип La4Ge3S12

Сполука La₄Ge₃S₁₂ утворююється у квазібінарній системі La₂S₃ – GeS₂ при співвідношенні вихідних компонентів 2:3 [50]. La₄Ge₃S₁₂ кристалізується в тригональній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 4.6.

Просторова група *R*3*c* (№ 161) *a* = 1,940 (нм) *c* = 0,810 (нм) Число формульних одиниць (Z) = 6 Об'єм комірки = 2,6401 (нм³) Кількість атомів у комірці = 114,0 Обрахована густина = 4,29 (г/см³)

У структурі La₄Ge₃S₁₂ ПСТ 6(*a*) заселена атомами La1, ПСТ 18(*b*) – атомами La2. Координаційне оточення атомів: La1 – тригональна призма [La1S1₆] (рис. 4.7.); La2 – тригональна призма з одним додатковим атомом Сульфуру [La2S1₂S2₂S3₁S4₂] (рис. 4.8.), Ge – тетраедр [GeS1₁S2₁S4₂] (рис. 4.9.). Координати атомів для сполуки La4Ge₃S₁₂ (СТ *власний*) подано в таблиці 4.2.

Рис. 4.7. Координаційне оточення атомів La1 у структурі La4Ge₃S₁₂ та розподіл міжатомних віддалей La1 – S.

Рис. 4.8. Координаційне оточення атомів La2 у структурі La4Ge₃S₁₂ та розподіл міжатомних віддалей La2 – S.

Рис. 4.9. Координаційне оточення атомів Ge у структурі La4Ge₃S₁₂ та розподіл міжатомних віддалей Ge – S.

Таблиця 4.2.

N	оординан	а атомпь д	ля сполук	n Laquess	12
Атом	ПСТ	x/a	y/b	z/c	G
La1	6(<i>a</i>)	0	0	0	1,0
La2	18(<i>b</i>)	0,0030	0,2307	0, 2028	1,0
Ge	18(<i>b</i>)	0,2000	0,1875	0,1523	1,0
S1	18(<i>b</i>)	0,1549	0,3789	0,1618	1,0
S2	18(<i>b</i>)	0,1246	0,0643	0,2511	1,0
S 3	18(<i>b</i>)	0,1145	0,2005	0,9974	1,0
<u>S</u> 4	18(<i>b</i>)	0,3960	0,0593	0,1817	1,0

Координати атомів для сполуки La4Ge3S12

РОЗДІЛ 5

Кристалічна структура тетрарних фаз

5.1. Тетрарні фази систем $R_2X_3 - R'_2X_3 - PbX$ і $R_2X_3 - R'_2X_3 - D^{IV}X_2$ (R, R' – Y, La, Ce, Pr, Tb, Dy, Ho, Er; $D^{IV} - Si$, Ge, Sn; X – S, Se)

5.1.1. Кристалічна структура Y1,5La1,5Si1,75Se7

У квазіпотрійній системі Y₂Se₃ - La₂Se₃ - SiSe₂ при відпалі зразків за температури 770 К і їх гартуванні та ренттенограм отримуванні наступним вивчення 3 кристалічної структури PCA (таблиця 5.1). методом існування встановлено нової тетрарної фази Y_{1,5}La_{1,5}Si_{1,75}Se₇ [51].

Експериментальна та розрахована дифрактограми і різницева між ними для Y_{1,5}La_{1,5}Si_{1,75}Se₇ наведені на рис. 5.1.

Рис. 5.1. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі тетрарної фази Y_{1,5}La_{1,5}Si_{1,75}Se₇.

Таблиця 5.1.

Основні характеристики дифрактометричного дослідження фази Y_{1.5}La_{1.5}Si_{1.75}Se₇

Puoli 11,5241,5811,75807				
Спосіб обрахунку	Повнопрофільний			
Число атомних позицій	6			

Кількість вільних параметрів	19
2θ i sinT/l (max)	100,02 0,497
R _I	0,0414
R _P	0,1126
Фактор шкали	0,30328(1)
Вісь текстури та параметри	[3 2 0] 0,49

Тетрарна фаза кристалізується в гексагональній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 5.2.

Просторова група *P*6₃ (№. 173) *a* = 1,05968(2) (нм) *c* = 0,59995(2) (нм) Об'єм комірки = 0,58344(4) (нм³) Число формульних одиниць (*Z*) = 2 Кількість атомів у комірці = 23,5 Обрахована густина = 5,3707(4) (г/см³) Адсорбційний коефіцієнт = 810,62 (1/см)

Рис. 5.2. Елементарна комірка та основні характеристики кристалічної структури Y_{1,5}La_{1,5}Si_{1,75}Se₇.

структурі дослідженої тетрарної фази У атоми статистичної суміші R = (Y + La), займаючи положення сполуки Pr₃Si_{1,25}Se₇, сконцентровані Pr атомів тригональних призмах [RSe1₄Se2₃Se3₁] (рис. 5.3.) з двома додатковими атомами. Si(IV) _ V тетраедрах [Si(IV)Se2₃Se3₁] (рис. 5.4.), a Si(II) октаедрах В [Si(II)Se2₆] (рис. 5.5.).

Координати атомів для тетрарної фази Y_{1,5}La_{1,5}Si_{1,75}Se₇ подано в таблиці 5.2.

Рис. 5.3. Координаційне оточення суміші атомів R у структурі Y_{1,5}La_{1,5}Si_{1,75}Se₇ та розподіл міжатомних віддалей R – Se.

Рис. 5.4. Координаційне оточення атомів Si(IV) у структурі $Y_{1,5}La_{1,5}Si_{1,75}Se_7$ та розподіл міжатомних віддалей Si – Se.

Рис. 5.5. Координаційне оточення атомів Si(II) у структурі Y_{1,5}La_{1,5}Si_{1,75}Se₇ та розподіл міжатомних віддалей Si – Se.

Таблиця 5.2.

Атом	ПСТ	x/a	y/b	z/c	G			
R*	6(<i>c</i>)	0,1296	0,3591	0,0357	0,5Y + 0,5La			
Si1	2(<i>b</i>)	1/3	2/3	0,6182	0,75			
Si2	2(<i>a</i>)	0	0	-0,2040	1,0			
Se1	6(<i>c</i>)	0,2573	0,1645	0,0193	1,0			
Se2	6(<i>c</i>)	0,5215	0,1080	0,2714	1,0			
Se3	2(<i>b</i>)	1/3	2/3	0,2525	1,0			

Координати атомів для тетрарної фази Y_{1,5}La_{1,5}Si_{1,75}Se₇

5.1.2. Кристалічна структура Y_{1,5}Pr_{1,5}Si_{1,75}Se₇

Кристалічна структура тетрарної фази $Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$ [52] вивчена рентгенівським методом порошку.

Експериментальна та розрахована дифрактограми і різницева між ними для $Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$ наведені на рис. 5.6.

Рис. 5.6. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі тетрарної фази Y_{1.5}Pr_{1.5}Si_{1.75}Se₇.

Таблиця 5.3.

Основні характеристики дифрактометричного дослідження фази Y1 5Pr1 5Si1 75Se7

Спосіб обрахунку	Повнопрофільний
Число атомних позицій	6
Кількість вільних параметрів	19
Програма для обрахунку	CSD
2θ i sinT/l (max)	100,02; 0,497
----------------------------	---------------
R _I	0,0673
R _P	0,1394
Фактор шкали	0,27647
Вісь текстури та параметри	[111] 0,81

Тетрарна фаза кристалізується в гексагональній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 5.7.

Просторова група *P*6₃ (№. 173) *a* = 1,04825(3) (нм) *c* = 0,59683(2) (нм) Об'єм комірки = 0,56795(4) (нм³) Число формульних одиниць (*Z*) = 2 Кількість атомів у комірці = 23,5 ^b Обрахована густина = 5,4957(4) (г/см³) Адсорбційний коефіцієнт = 836,43 (1/см)

Рис. 5.7. Елементарна комірка та основні характеристики кристалічної структури Y_{1,5}Pr_{1,5}Si_{1,75}Se₇.

У структурі тетрарної фази $Y_{1,5}Pr_{1,5}Si_{1,75}Se_7 \ \Pi CT \ 6(c)$ "заселена" атомами статистичної сумішші (Y + Pr), координаційне оточення катіонів (рис. 5.8. - 5.10.): R – тригональна призма з двома додатковими атомами [RSe1₄Se2₃Se3₁], Si (II) – октаедр [Si(II) Se1₆], Si(IV) – тетраедр [Si(IV)Se2₃Se3₁]. Довжини зв'язків R – Se є адитивними величинами. Координати атомів для тетрарної фази Y_{1,5}Pr_{1,5}Si_{1,75}Se₇ подано в таблиці 5.4.

Рис. 5.8. Координаційне оточення суміші атомів R у структурі $Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$ та розподіл міжатомних віддалей R — Se.

Рис. 5.9. Координаційне оточення атомів Si(IV) у структурі $Y_{1,5}Pr_{1,5}Si_{1,75}Se_7$ та розподіл міжатомних віддалей Si – Se.

Рис. 5.10. Координаційне оточення атомів Si(II) у структурі Y_{1,5}Pr_{1,5}Si_{1,75}Se₇ та розподіл міжатомних віддалей Si – Se.

Таблиця 5.4.

	1	/ 1		-,-	-,, ,
Атом	ПСТ	x/a	y/b	z/c	G
R*	6(<i>c</i>)	0,1297	0,3591	0,0336	0,54Y + 0,46Pr
Si1	2(<i>b</i>)	1/3	2/3	0,614	0,75
Si2	2(<i>a</i>)	0	0	-0,204	1,0
Se1	6(<i>c</i>)	0,2583	0,1649	0,0183	1,0
Se2	6(<i>c</i>)	0,5210	0,1072	0,2686	1,0
Se3	2(<i>b</i>)	1/3	2/3	0,2505	1,0

Координати атомів для тетрарної фази Y_{1,5}Pr_{1,5}Si_{1,75}Se₇

5.1.3. Кристалічна структура Dy1,5La1,5Si1,66Se7

Кристалічна структура тетрарної фази Dy_{1,5}La_{1,5}Si_{1,66}Se₇ [52] вивчена рентгенівським методом порошку. Експериментальна та розрахована дифрактограми і різницева між ними для Dy_{.5}La_{1,5}Si_{1,75}Se₇ наведені на рис. 5.11.

Рис. 5.11. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі тетрарної фази Dy_{1.5}La_{1.5}Si_{1.66}Se₇.

Таблиця 5.5.

Основні характеристики дифрактометричного дослідження фази Dyi 5L at 5Sit (Sez

φush D <i>j</i> 1,52u1,551,00507					
Спосіб обрахунку	Повнопрофільний				
Число атомних позицій	6				
Кількість вільних параметрів	19				
Програма для обрахунку	CSD				

2θ i sinT/l (max)	100,02; 0,497
R _I	0,0667
R _P	0,1733
Фактор шкали	0,09145
Вісь текстури та параметри	[111] 1,2

Тетрарна фаза кристалізується в гексагональній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 5.12.

Просторова група *P*6₃ (№. 173) *a* = 1,05951(4) (HM) *c* = 0,59982(3) (HM) Об'єм комірки = 0,58313(7) (HM³) Число формульних одиниць (Z) = 2 Кількість атомів у комірці = 23,5 Обрахована густина = 5,992(4) (г/см³) Адсорбційний коефіцієнт = 1146,57 (1/см)

Рис. 5.12. Елементарна комірка та основні характеристики кристалічної структури Dy_{1,5}La_{1,5}Si_{1,66}Se₇.

У структурі фази $Dy_{1.5}La_{1.5}Si_{1.66}Se_7 \Pi CT 6(c)$ заселена сумішшю атомів Dy і La (0,446:0,554). Переважання зайнятості позиції атомом Лантану пояснюється тим, що його радіус є значно більшим за радіус атома Диспрозію. Цей фактор призводить до того, що ПСТ (2а) заселена сумішшю M(Si(II) + Dy) (0,833 : 0,167). Координаційне атомів: R(La + Dy) – тригональна оточення призма [RSe2₃Se3₃Se1₂] (рис. 5. 13.) з двома додатковими атомами, тетраедр [Si(IV)Se3₃Se1₁] (рис. 5.14.) Si(IV) _ та M1(Si(II) + Dy) – октаедр [MSe2₆] (рис. 5.15.). Координати атомів для тетрарної фази Dy1,5La1,5Si1,66Se7 подано в таблині 5.6.

Рис. 5.13. Координаційне оточення суміші атомів R у структурі Dy_{1,5}La_{1,5}Si_{1,66}Se₇ та розподіл міжатомних віддалей R – Se.

Рис. 5.14. Координаційне оточення атомів Si(IV) у структурі Dy_{1,5}La_{1,5}Si_{1,66}Se₇ та розподіл міжатомних віддалей Si – Se.

Рис. 5.15. Координаційне оточення суміші атомів М(Si+Dy) у структурі Dy_{1,5}La_{1,5}Si_{1,66}Se₇ та розподіл міжатомних віддалей Si – Se.

Таблиця 5.6.

Атом	ПСТ	x/a	y/b	z/c	G
R*	6(<i>c</i>)	0,1281	0,3580	0,0414	0,554La+0,446Dy
M**	2(a)	0	0	-0,245	0,833Si+0,167Dy
Si1	2(<i>b</i>)	1/3	2/3	0,633	0,83 Si
Se1	2(<i>b</i>)	1/3	2/3	0,2618	1,0
Se2	6(<i>c</i>)	0,2583	0,1641	0,0256	1,0
Se3	6(<i>c</i>)	0,5196	0,1051	0,2749	1,0

Координати атомів для тетрарної фази Dy1,5La1,5Si1,66Se7

5.1.4. Кристалічна структура Er_{1,5}La_{1,5}Si_{1,67}Se₇

Кристалічна структура тетрарної фази $Er_{1,5}La_{1,5}Si_{1,67}Se_7$ [53] вивчена рентгенівським методом порошку. Експериментальна та розрахована дифрактограми і різницева між ними для $Er_{1,5}La_{1,5}Si_{1,67}Se_7$ наведені на рис. 5.16.

Рис. 5.16. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі тетрарної фази Er_{1.5}La_{1.5}Si_{1.67}Se₇.

Тетрарна фаза Er_{1,5}La_{1,5}Si_{1,67}Se₇ кристалізується в гексагональній сингонії. Елементарна комірка та основні характеристики кристалічної структури цієї фази представлені на рис. 5.17.

Таблиця 5.7.

Основні характеристики дифрактометричного дослідження фази Er1 5La1 5Si1 67Se7

1					
Спосіб обрахунку	Повнопрофільний				
Число атомних позицій	6				
Кількість вільних параметрів	17				
Програма для обрахунку	CSD				
2θ i sinT/l (max)	100,02; 0,497				
R _I	0,0552				
R _P	0,1703				
Фактор шкали	0,2300				
Вісь текстури та параметри	[111] 1,2				

Просторова група *P*6₃ (№. 173) *a* = 1,05890(4) (нм) *c* = 0,59952(3) (нм) Об'єм комірки = 0,58216(6) (нм³) Число формульних одиниць (*Z*) = 2 Кількість атомів у комірці = 23,3 Обрахована густина = 6,0402(7) (г/см³) Адсорбційний коефіцієнт = 901,406 (1/см)

Рис. 5.17. Елементарна комірка та основні характеристики кристалічної структури Er_{1,5}La_{1,5}Si_{1,67}Se₇.

У структурі тетрарної фази $Er_{1,5}La_{1,5}Si_{1,67}Se_7 \Pi CT 6(c)$ заселена статистичною сумішшю атомів (La + Er). Координаційне оточення атомів: R(La + Er) – тригональна призма [R(La + Er)Se2₃Se3₁Se1₄] (рис. 5.18.) з двома додатковими атомами; Si(IV) – тетраедр [Si(IV)Se2₃Se3₁] (рис. 5.19.) і Si(II) – октаедр [Si(II)Se1₆] (рис. 5.20.). Координати атомів для тетрарної фази $Er_{1,5}La_{1,5}Si_{1,66}Se_7$

Рис. 5.18. Координаційне оточення суміші атомів R у структурі Er_{1,5}La_{1,5}Si_{1,67}Se₇ та розподіл міжатомних віддалей R – Se.

Рис. 5.19. Координаційне оточення атомів Si(IV) у структурі Er_{1,5}La_{1,5}Si_{1,67}Se₇ та розподіл міжатомних віддалей Si – Se.

Рис. 5.20. Координаційне оточення суміші атомів Si у структурі Er_{1,5}La_{1,5}Si_{1,67}Se₇ та розподіл міжатомних віддалей Si – Se.

Таблиця 5.8.

Атом	ПСТ	x/a	y/b	z/c	G
R*	6(<i>c</i>)	0,1297	0,3587	0,0434	0,5 Er + 0,5 La
Si1	2(<i>b</i>)	1/3	2/3	0,5990	0,67 Si
Si2	2(<i>a</i>)	0	0	-0,2620	1,0
Se1	6(<i>c</i>)	0,2587	0,1645	0,0420	1,0
Se2	6(<i>c</i>)	0,5216	0,1087	0,2673	1,0
Se3	2(<i>b</i>)	1/3	2/3	0,2511	1,0

Координати атомів для тетрарної фази Er_{1,5}La_{1,5}Si_{1,66}Se₇

5.1.5. Кристалічна структура Er_{1,5}Pr_{1,5}Si_{1,67}Se₇

Кристалічна структура тетрарної фази $Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$ [53] вивчена рентґенівським методом порошку. Експериментальна та розрахована дифрактограми і різницева між ними для $Er_{1,5}Pr_{1,5}Si_{1,67}Se_7$ наведені на рис. 5.21.

Рис. 5.21. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі тетрарної фази Er_{1,5}Pr_{1,5}Si_{1,67}Se₇.

Таблиця 5.9.

Основні характеристики дифрактометричного дослідження фази Er_{1.5}Pr_{1.5}Si_{1.67}Se₇

φαση Ξ11,51 11,58 11,678 C7					
Спосіб обрахунку	Повнопрофільний				
Число атомних позицій	6				
Кількість вільних параметрів	13				
Програма для обрахунку	CSD				
2θ i sinT/l (max)	100,02; 0,497				

R _I	0,0447
R _P	0,1549
Фактор шкали	0,17602
Вісь текстури та параметри	[111] 1,2

Тетрарна фаза кристалізується в гексагональній сингонії. Елементарна комірка та основні характеристики кристалічної структури цієї фази представлені на рис. 5.22.

Просторова група $P6_3$ (№. 173) a = 1,04790(3) (нм) c = 0,59735(2) (нм) Об'єм комірки = 0,56807(5) (нм³) Число формульних одиниць (Z) = 2 Кількість атомів у комірці = 23,3 Обрахована густина = 6,2075(5) (г/см³) Адсорбційний коефіцієнт = 956,99 (1/см)

Рис. 5.22. Елементарна комірка та основні характеристики кристалічної структури Er_{1,5}Pr_{1,5}Si_{1,67}Se₇.

У структурі тетрарної фази $Er_{1,5}Pr_{1,5}Si_{1,67}Se_7 \Pi CT 6(c)$ заселена статистичною сумішшю атомів (Er + Pr). Координаційне оточення атомів: R(Er + Pr) – тригональна призма [R(Er + Pr)Se24Se3₃Se1₁] (рис. 5.23.) з двома додатковими атомами), Si(IV) – тетраедр [Si(IV)Se3₃Se1₁] (рис. 5.24.) та Si(II) – октаедр [Si(II)Se2₆] (рис. 5.25.). Координати атомів для тетрарної фази $Er_{1,5}Pr_{1,5}Si_{1,66}Se_7$ подано в таблиці 5.10.

Рис. 5.23. Координаційне оточення суміші атомів R у структурі Er_{1,5}Pr_{1,5}Si_{1,67}Se₇ та розподіл міжатомних віддалей R – Se.

Рис. 5.24. Координаційне оточення атомів Si(IV) у структурі Er_{1,5}Pr_{1,5}Si_{1,67}Se₇ та розподіл міжатомних віддалей Si – Se.

Рис. 5.25. Координаційне оточення суміші атомів Si у структурі Er_{1,5}La_{1,5}Si_{1,67}Se₇ та розподіл міжатомних віддалей Si –Se.

Таблиця 5.10.

Атом	ПСТ	x/a	y/b	z/c	G
R*	6(<i>c</i>)	0,1293	0,3581	0,0309	0,5 Pr + 0,5 Er
Si1	2(<i>b</i>)	1/3	2/3	0,616	0,67 Si
Si2	2(a)	0	0	0,737	1,0
Se1	6(<i>c</i>)	0,2571	0,1623	0,0071	1,0
Se2	6(<i>c</i>)	0,5224	0,1067	0,2665	1,0
Se3	2(<i>b</i>)	1/3	2/3	0,2489	1,0

Координати атомів для тетрарної фази Er_{1,5}Pr_{1,5}Si_{1,66}Se₇

5.1.6. Особливості кристалічної структури тетрарних фаз R_{1.5}R'_{1.5}Si_xSe₇ (R – Y, Er, Dy; R' – La, Pr)

Тетрарні фази $R_{1,5}R'_{1,5}Si_xSe_7$ (R, R' – Y, La, Pr, Er; x = 1,66; 1,67 і 1,75) отримуються шляхом заповнення ПСТ 6(*c*) атомами статистичної суміші M(R + R') (R – Y, Dy, Er; R' – La, Pr). Ця суміш концентрується в тригональних призмах з двома додатковими атомами. Вершини цих призм є спільними з вершинами октаедрів та тетраедрів, утворених атомами Si(II) та Si(IV). Взаємне просторове розташування координаційних многогранників в структурах тетрарних фаз $R_{1,5}R'_{1,5}Si_xSe_7$ показано на рис. 5.26.

В цих структурах відстані M(R + R') – Se збільшуються в ряду YLa \rightarrow DyLa \rightarrow ErLa \rightarrow YPr \rightarrow ErPr (рис. 5.27.); відстані Si(IV) – Se залишаються практично незмінними (рис. 5.28.); значний розкид значень довжин зв'язків спостерігається у зв'язках Si(II) – Se (рис. 5.29.).

В ряду YLa \rightarrow DyLa \rightarrow ErLa \rightarrow YPr \rightarrow ErPr параметри комірки *a* та *c* для тетрарних фаз R_{1,5}R'_{1,5}Si_xSe₇ (рис. 5.30.) монотонно зменшуються. При переході від ErLa до YPr монотонність порушується.

Рис. 5.26. Просторове розташування координаційних многогранників в структурах тетрарних фаз R_{1,5}R'_{1,5}Si_xSe₇.

Рис. 5.27. Розподіл міжатомних віддалей М(R + R') – Se у кристалічній структурі тетрарних фаз R_{1,5}R'_{1,5}Si_xSe₇.

Рис. 5.28. Розподіл міжатомних віддалей Si(IV) – Se у кристалічній структурі тетрарних фаз R_{1,5}R'_{1,5}Si_xSe₇.

Рис. 5.29. Розподіл міжатомних віддалей Si(II) – Se у кристалічній структурі тетрарних фаз R_{1,5}R'_{1,5}Si_xSe₇.

Рис. 5.30. Зміна параметрів комірки *а* та *с* для тетрарних ϕ аз $R_{1,5}R'_{1,5}Si_xSe_7$.

Для кристалічної структури тетрарних фаз $R_{1,5}R'_{1,5}Si_xSe_7$ характерним є утворення "сіток" із атомів Селену (рис. 5.31.) в площині *ab*. Притаманним для цих структур також є те, що в них на одну елементарну комірку припадає одна октаедрична та дві тетраедричні пустоти. Атоми РЗМ укладаються навколо октаедрів Si(II) у формі шестикутників.

Рис. 5.31. "Сітка", утворена атомами Селену в площині *аb* в структурі фаз R_{1,5}R'_{1,5}Si_xSe₇.

Ще однією особливістю тетрарних фаз $R_{1,5}R'_{1,5}Si_xSe_7$ є "ряди", укладені з тетраедрів [Si(IV)Se3₃Se1₁] (рис. 5.32.) та "колони" октаедрів [Si(II)Se2₆], що центровані атомами Si(II).

Рис. 5.32. Укладка многогранників атомів Si(II) і Si(IV) в структурі тетрарних фаз $R_{1,5}R'_{1,5}Si_xSe_7$ (атоми P3M не показані).

5.2. Тетрарні фази систем Er₂S₃ – La(Ce, Pr)₂S₃ – GeS₂ 5.2.1. Кристалічна структура Er2,34La0,66Ge1,28S7

Існування тетрарної фази Er_{2,34}La_{0,66}Ge_{1,28}S₇ було при дослідженні фазових рівноваг у встановлено квазіпотрійній системі Er₂S₃ – La₂S₃ – GeS₂ за температури 770 К. Її кристалічна структура вивчена рентгенівським методом монокристалу.

Таблиця 5.11.

дослідження фази Er _{2,34} La _{0,66} Ge _{1,28} S ₇				
Колір кристалу	білий			
Розмір кристалу	0,06 imes 0,029 imes 0,024 mm			
Просторова група	<i>P</i> 6 ₃ (№ 173)			
Формульна маса	801,2344			
Обрахована густина	5,572 (г/см ³)			
Коефіцієнт абсорбції	28,754 (мм ⁻¹)			
Параметри гратки:	a = 0,96934(3) нм, $c = 0,58680(2)$ нм,			
	$V = 0,47749(3) \text{ Hm}^3$			

Основні характеристики монокристального

Структура тетрарної фази проіндексована [49] і [54] в гексагональній сингонії. елементарна комірка Ϊï представлена на рис. 5.33.

кристалічній структурі тетрарної У фази суміш M(Er + La) $Er_{2,34}La_{0,66}Ge_{1,28}S_{7}$ статистична (рис. 5.34.) займає ПСТ 6(c) та координує навколо себе сім атомів Сульфуру. Атоми Ge зосереджені в двох ПСТ 2(b) та 2(*a*) і характеризуються тетраедричним (Ge1) (рис. 5.35.) та октаедричним (Ge2) (рис. 5.36.) оточенням з атомів Сульфуру.

Координати атомів для тетрарної фази Er_{2 34}La_{0 66}Ge_{1 28}S₇ подано в таблиці 5.12.

Рис. 5.33. Елементарна комірка в структурі Er_{2.34}La_{0.66}Ge_{1.28}S₇.

Рис. 5.34. Координаційне оточення суміші атомів М(Er + La) у структурі Er_{2,34}La_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей M – S.

Рис. 5.35. Координаційне оточення атомів Ge1 у структурі Er_{2,34}La_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей Ge – S.

Рис. 5.36. Координаційне оточення атомів Ge2 у структурі Er_{2,34}La_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей Ge – S.

Таблиця 5.12.

Roopdiniarin around dim rotpupitor quan Er2,34Ea0,00Ge1,2807					
Атом	ПСТ	x/a	y/b	z/c	G
М	6(<i>c</i>)	0,21319	0,35880	0,5443	0,78 Er + 0,22 La
Ge1	2(<i>b</i>)	1/3	2/3	0,1199	1,0
Ge2	2(a)	0	0	0,2296	0,28 Ge
S1	6(<i>c</i>)	0,2533	0,1053	0,4911	1,0
S2	6(<i>c</i>)	0,4747	0,5693	0,2778	1,0
S 3	2(<i>b</i>)	1/3	2/3	0,7475	1,0

Координати атомів для тетрарної фази Er_{2,34}La_{0,66}Ge_{1,28}S₇

5.2.2. Кристалічна структура Ег_{2,34}Се_{0,66}Ge_{1,28}S₇

Тетрарна фаза $Er_{2,34}Ce_{0,66}Ge_{1,28}S_7$ утворюється шляхом ізоморфного заміщення атомів Лантану на атоми Церію у структурі $Er_{2,34}La_{0,66}Ge_{1,28}S_7$ [55]. Кристалічна структура фази $Er_{2,34}Ce_{0,66}Ge_{1,28}S_7$ вивчена рентгенівським методом порошку.

Графічним відображенням результатів обчислення структури тетрарної фази $Er_{2,34}Ce_{0,66}Ge_{1,28}S_7 \in$ експериментальна, теоретична та різницева між ними дифрактограма (рис. 5.37.).

Рис. 5.37. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі фази Er_{2,34}Ce_{0,66}Ge_{1,28}S₇.

Таблиця 5.13.

Основні характеристики дифрактометричного дослідження фази Er_{2,34}Ce_{0,66}Ge_{1,28}S₇

Просторова група	<i>P</i> 6 ₃ (№ 173)
Формульна маса	802,0149
Обрахована густина	5,507(1) (г/см ³)
Коефіцієнт абсорбції	76,768 (мм ⁻¹)
Параметри гратки:	a = 0,97386(5) нм, $c = 0,58698(5)$ нм,
	$V = 0,48211(9) \text{ Hm}^3$
$R_I; R_P$	0,0844; 0,2019

Тетрарна фаза $Er_{2,34}Ce_{0,66}Ge_{1,28}S_7$ кристалізується в гексагональній сингонії. Її елементарна комірка представлена на рис. 5.38. В структурі тетрарної фази $Er_{2,34}Ce_{0,66}Ge_{1,28}S_7$ статистична суміш атомів M (Er + Ce) займає ПСТ 6(c) та координує навколо себе сім атомів Сульфуру (рис. 5.39.). Атоми Ge зосереджені в двох ПСТ 2(b) та 2(a) і характеризуються тетраедричним (Ge1) (рис. 5.40.) та октаедричним (Ge2) оточенням з атомів Сульфуру (рис. 5.41.).

Рис. 5.38. Елементарна комірка в структурі Er_{2,34}Ce_{0,66}Ge_{1,28}S₇.

Рис. 5.39. Координаційне оточення суміші атомів М(Еr + Ce) у структурі Er_{2,34}Ce_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей M – S.

Рис. 5.40. Координаційне оточення атомів Ge1 у структурі Er_{2,34}Ce_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей Ge – S.

Рис. 5.41. Координаційне оточення атомів Ge2 у структурі Er_{2,34}Ce_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей Ge – S.

Координати атомів для тетрарної фази Er_{2,34}Ce_{0,66}Ge_{1,28}S₇ подано в таблиці 5.14.

Таблиця 5.14.

Координати атомів для тетрарної фази Er_{2,34}Ce_{0,66}Ge_{1,28}S₇

1 ' '			1 1	1 -,•	,
Атом	ПСТ	x/a	y/b	z/c	G
M1	6(<i>c</i>)	0,3573	0,1419	0,2814	0,78 Er + 0,22 Ce
Ge1	2(<i>b</i>)	1/3	2/3	0,2003	1,0
Ge2	2(<i>a</i>)	0	0	0,046	0,28 Ge
S 1	6(<i>c</i>)	0,245	0,1086	0,814	1,0
S2	6(<i>c</i>)	0,5577	0,469	0,508	1,0
S 3	2(b)	1/3	2/3	0,575	1,0

5.2.3. Кристалічна структура Ег_{2,34}Рг_{0,66}Ge_{1,28}S₇

Тетрарна фаза $Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$ утворюється шляхом ізоморфного заміщення атомів Лантану на атоми Празеодиму у структурі $Er_{2,34}La_{0,66}Ge_{1,28}S_7$ [56].

Кристалічна структура фази Er_{2,34}Pr_{0.66}Ge_{1.28}S₇ вивчена рентгенівським методом порошку. Графічним відображенням результатів обчислення структури тетрарної фази Er_{2,34}Pr_{0,66}Ge_{1,28}S₇ є експериментальна, теоретична та різницева між НИМИ дифрактограма (рис. 5.42.).

Рис. 5.42. Експериментальний (верхня шкала), розрахований (середня шкала) та різницевий (нижня шкала) профілі фази Er_{2,34}Pr_{0,66}Ge_{1,28}S₇.

Таблиця 5.15.

Основні характеристики дифрактометричного дослідження фази Er_{2,34}Pr_{0,66}Ge_{1,28}S₇

	1 -,
Просторова група	<i>P</i> 6 ₃ (№ 173)
Формульна маса	802,5244
Обрахована густина	5,5218(9) (г/см ³)
Коефіцієнт абсорбції	777,45 (мм ⁻¹)
Параметри гратки:	a = 0,97481(5) нм, $c = 0,58459(4)$ нм,
	$V = 0,48109(8) \text{ Hm}^3$
$R_I; R_P$	0,0992; 0,2500

Тетрарна фаза $Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$ кристалізується в гексагональній сингонії. Її елементарна комірка представлена на рис. 5.43. В структурі тетрарної фази $Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$ статистична суміш атомів M (Er + Pr) займає ПСТ 6(c) та координує навколо себе сім атомів Сульфуру (рис. 5.44.). Атоми Ge зосереджені в двох ПСТ 2(b) та 2(a) і характеризуються тетраедричним (Ge1) (рис. 5.45.) та октаедричним (Ge2) оточенням з атомів Сульфуру (рис. 5.46.).

Рис. 5.43. Елементарна комірка в структурі Er_{2,34}Pr_{0,66}Ge_{1,28}S₇.

Рис. 5.44. Координаційне оточення суміші атомів М(Er + La) у структурі Er_{2,34}Pr_{0,66}Ge_{1,28}S₇ та розподіл міжатомних віддалей M – S.

Рис. 5.45. Координаційне оточення атомів Ge1 у структурі $Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$ та розподіл міжатомних віддалей Ge – S.

Рис. 5.46. Координаційне оточення атомів Ge2 у структурі $Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$ та розподіл міжатомних віддалей Ge – S.

Координати атомів для тетрарної фази Er_{2,34}Pr_{0,66}Ge_{1,28}S₇ подано в таблиці 5.14.

Таблиця 5.16.

Координати атомів для тетрарної фази Er_{2,34}Pr_{0,66}Ge_{1,28}S₇

				/	, ,
Атом	ПСТ	x/a	y/b	z/c	G
M2	6(<i>c</i>)	0,3557	0,1452	0,2482	0,78 Er + 0,22 Pr
Ge1	2(<i>b</i>)	1/3	2/3	0,225	1,0
Ge2	2(a)	0	0	0,047	0,28 Ge
S 1	6(<i>c</i>)	0,252	0,1021	0,818	1,0
S2	6(<i>c</i>)	0,5231	0,4242	0,5051	1,0
S 3	2(b)	1/3	2/3	0,5942	1,0

5.2.4. Особливості кристалічної структури тетрарних фаз Er_{2,34}La(Ce, Pr)_{0,66}Ge_{1,28}S₇

У системах Er_2S_3 – La(Ce, Pr)₂S₃ – GeS₂ 3a температури межах ізотермічного 770 K В перерізу встановлено існування тетрарних фаз нових складу $Er_{2.34}La(Ce, Pr)_{0.66}Ge_{1.28}S_7.$ кристалічна Îχ структура належить до структурного типу Dy₃Ge_{1.25}S₇ (ПГ Р6₃) i утворюється шляхом заселення ПСТ 6(с) сумішшю атомів Er + La, Er + Ce або Er + Pr. У статистичних сумішшях переважаюча частка належить атомам Er.

Кристалічна структура тетрарних фаз $Er_{2,34}La_{0,66}Ge_{1,28}S_7$, $Er_{2,34}Ce_{0,66}Ge_{1,28}S_7$ і $Er_{2,34}Pr_{0,66}Ge_{1,28}S_7$ характеризується деякими структурними особливостями. Для атомів Ge1 властивим є тетраедричне оточення, для атомів Ge2 – октаедричне, для атомів M(Er + R)характерним є KЧ = 7 (тригональна призма із одним додатковим атомом). Тетраедри Ge1S₄ із тригональними призмами утворюють спільні ребра, а октаедри Ge2S₆ – спільні грані (рис. 5.47.).

Рис. 5.47. Фрагмент кристалічної структури тетрарних фаз Er_{2,34}La(Ce, Pr)_{0,66}Ge_{1,28}S₇.

Октаедри центровані атомами Ge2 утворюють "колони", що чергують з "ланцюжками" тетраедрів центрованих атомами Ge1 (рис. 5.48.).

У структурах тетрарних фаз $Er_{2,34}R_{0,66}Ge_{1,28}S_7$ міжатомні відстані M – S зменшуються в ряду ErLa \rightarrow ErCe \rightarrow ErPr (рис. 5.49.); відстані Ge1 – S збільшються в ряду ErLa \rightarrow ErCe \rightarrow ErPr (рис. 5.50.); значний розкид значень довжин зв'язків спостерігається у зв'язках Ge2 – S (рис. 5.51.).

Рис. 5.48. "Колони" та "ланцюжки" в структурі тетрарних фаз Er_{2,34}R_{0,66}Ge_{1,28}S₇ (атоми P3M не показані).

Рис. 5.49. Розподіл міжатомних віддалей М – S у кристалічній структурі тетрарних фаз Er_{2,34}R_{0,66}Ge_{1,28}S₇.

Рис. 5.50. Розподіл міжатомних віддалей Ge1 – S у кристалічній структурі тетрарних фази Er_{2,34}R_{0,66}Ge_{1,28}S₇.

Рис. 5.51. Розподіл міжатомних віддалей Ge2 – S у кристалічній структурі тетрарних фази Er_{2,34}R_{0,66}Ge_{1,28}S₇.

5.3. Тетрарні фази систем La_2S_3 – Y(Tb, Dy, Ho, $Er)_2S_3$ – GeS_2

5.3.1. Кристалічна структура Y₂La₂Ge₃S₁₂

При дослідженні фазових рівноваг у квазіпотрійній системі $Y_2S_3 - La_2S_3 - GeS_2$ за температури 770 К [43] встановлено існування твердого розчину Y_{4x}La_{4-4x}Ge₃S₁₂ $(x = 0 \div 0.75).$ Рентгенівським методом порошку (таблиця 5.17) вивчено один його складів Y₂La₂Ge₃S₁₂ (x = 0.5).Дифрактограма відповідного сплаву проіндексована в тригональній сингонії (СТ – La₄Ge₃S₁₂, $\Pi\Gamma R3c$). Графічним відображенням результатів обчислення структури тетрарної фази Y2La2Ge3S12 є експериментальна, теоретична та різницева між ними дифрактограма (рис. 5.52.).

Рис. 5.52. Експериментальна, розрахована та різницева дифрактограми тетрарної фази Y₂La₂Ge₃S₁₂.

Таблиця 5.17.

Основні характеристики дифрактометричного дослідження фази Y₂La₂Ge₃S₁₂

T	2 5 - 12
Спосіб обрахунку	Повнопрофільний
Кількість вільних параметрів	7
2θ i sinT/l (max)	100,02 i 0,497
R _I ; R _P	0,0812; 0,2139
Фактор шкали	0,4933
Вісь текстури та параметри	[1 1 1] 1,95

Тетрарна фаза Y₂La₂Ge₃S₁₂ кристалізується в тригональній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 5.53.

У структурі $Y_2La_2Ge_3S_{12}$ ПСТ 6(*a*) заселена сумішшю атомів Y + La (0,91:0,09), а одна із ПСТ 18(b) заселена сумішшю атомів Y + La (0,374 : 0,626). Відстані між Координаційне атомами адитивними величинами. € тригональна призма атомів: M1 (Y + La) – оточення [M1S2₆S3₃] з трьома додатковими атомами (рис. 5.54.); M2(La + Y)тригональна призма $[M2S1_2S3_2S4_2]$ _ (рис. 5.55.), Ge – тетраедр [GeS1₁S2₁S3₁S4₁] (рис. 5.56.).

Рис. 5.53. Елементарна комірка та основні характеристики кристалічної структури Y₂La₂Ge₃S₁₂.

Рис. 5.54. Координаційне оточення атомів М1 у структурі Y₂La₂Ge₃S₁₂ та розподіл міжатомних віддалей М1 – S.

Рис. 5.55. Координаційне оточення атомів M2 у структурі Y₂La₂Ge₃S₁₂ та розподіл міжатомних віддалей M2 – S.

Рис. 5.56. Координаційне оточення атомів Ge у структурі Y₂La₂Ge₃S₁₂ та розподіл міжатомних віддалей Ge – S.

Координати атомів для тетрарної фази $Y_2La_2Ge_3S_{12}$ подано в таблиці 5.18.

Таблиця 5.18.

TC	•		1	
Коорлицати	STOMID III	g TETNANUAI	mazii	Yol as tes is
координати	атомпь дл	η τοτραριίοι	ψasn	12La2OC3D12

Атом	ПСТ	x/a	y/b	z/c	G
M1	6(<i>a</i>)	0	0	0	0,91 Y + 0,09 La
M2	18(<i>b</i>)	0,0046	0,2302	0,2083	0,63 La + 0,37 Y
Ge	18(<i>b</i>)	0,1964	0,1862	0,1638	1,0
S1	18(<i>b</i>)	0,1581	0,3758	0,1721	1,0
S2	18(<i>b</i>)	0,1211	0,0635	0,2440	1,0
S3	18(<i>b</i>)	0,1116	0,2013	1,0048	1,0
<u>S</u> 4	18(b)	0,3928	0,0574	0,1916	1,0

5.3.2. Кристалічна структура La2,02 Tb1,98 Ge3 S12

Кристалічна структура тетрарної проміжної фази La_{2,02}Tb_{1,98}Ge₃S₁₂ вивчена рентгенівським методом монокристалу [49]. Тетрарна фаза кристалізується в ромбоедричній сингонії. Елементарна комірка та основні характеристики кристалічної структури представлені на рис. 5.57.

Таблиця 5.19.

Основні характеристики монокристального дослідження фази La_{2.02}Tb_{1.98}Ge₃S₁₂

Колір кристалу	жовтий
Розмір кристалу	0,162 imes 0,128 imes 0,103 mm
Просторова група	<i>R</i> 3 <i>c</i> (№ 161)
Формульна маса	1197,84
Обрахована густина	4,685 (г/см ³)
Коефіцієнт абсорбції	19,781 (мм ⁻¹)
Параметри гратки:	a = 1,92627(5) нм, $c = 0,79263(2)$ нм,
	$V = 2,54705(16) \text{ Hm}^3$

Рис. 5.57. Елементарна комірка в кристалічній структурі La_{2.02}Tb_{1.98}Ge₃S₁₂.

У структурі тетрарної фази $La_{2,02}Tb_{1,98}Ge_3S_{12}$ ПСТ 6(*a*) заселена сумішшю атомів Tb + La (0,867 : 0,133), а одна із ПСТ 18(*b*) заселена сумішшю атомів La + Tb (0,629 : 0,371). Координаційне оточення атомів: M1 (Tb + La) – тригональні призми [M1S2₆] (рис. 5.58.); M2 (La + Tb) – тригональні призми [M2S1₂S2₁S3₂S4₂] з одним додатковим атомом (рис. 5.59.). Атом Ge має тетраедричне оточення [GeS1₁S2₁S3₁S4₁] (рис. 5.60.).

Координати атомів для тетрарної фази La_{2,02}Tb_{1,98}Ge₃S₁₂ подано в таблиці 5.20.

Рис. 5.58. Координаційне оточення атомів М1 у структурі La_{2,02}Tb_{1,98}Ge₃S₁₂ та розподіл міжатомних віддалей М1 – S.

Рис. 5.59. Координаційне оточення атомів M2 у структурі $La_{2,02}Tb_{1,98}Ge_3S_{12}$ та розподіл міжатомних віддалей M2 – S.

Рис. 5.60. Координаційне оточення атомів Ge у структурі $La_{2,02}Tb_{1,98}Ge_3S_{12}$ та розподіл міжатомних віддалей Ge – S.

Таблиця 5.20.

/		/ \		,*	,, 0 0
Атом	ПСТ	x/a	y/b	z/c	G
M1	6(<i>a</i>)	0	0	0	0,87 Tb + 0,13 La
M2	18(<i>b</i>)	0,23214	0,00481	0,29107	0,63 La + 0,37 Tb
Ge	18(<i>b</i>)	0,18612	0,19854	0,34133	1,0
S1	18(<i>b</i>)	0,17791	0,28680	0,50334	1,0
S2	18(<i>b</i>)	0,05962	0,12026	0,2509	1,0
S3	18(<i>b</i>)	0,20154	0,11378	0,50011	1,0
S4	18(<i>b</i>)	0,27040	0,27465	0,14436	1,0

Координати атомів для тетрарної фази La_{2,02}Tb_{1,98}Ge₃S₁₂

5.3.3. Кристалічна структура La_{2,64}Dy_{1,36}Ge₃S₁₂

Кристалічна структура тетрарної фази $La_{2,64}Dy_{1,36}Ge_3S_{12}$ [49] вивчена рентгенівським методом монокристалу. Інтенсивність рефлексів і розраховані параметри комірки (таблиця 5.21) вказують на приналежність цієї структури до структурного типу $La_4Ge_3S_{12}$ (ПГ R3c). Координати атомів для тетрарної фази $La_{2,64}Dy_{1,36}Ge_3S_{12}$ подано в таблиці 5.22.

Таблиця 5.21.

Основні характеристики монокристального дослідження фази La_{2.64}Dv_{1.36}Ge₃S₁₂

достидног	min quasi 202,042 J 1,30 C C 30 12
Колір кристалу	жовтий
Розмір кристалу	0,192 imes 0,106 imes 0,052 mm
Просторова група	<i>R</i> 3 <i>c</i> (№ 161)
Формульна маса	1190,21
Обрахована густина	4,630 (г/см ³)
Коефіцієнт абсорбції	18,978 (мм ⁻¹)
Параметри гратки:	a = 1,92868(5) нм, $c = 0,79498(2)$ нм,
	$V = 2,56099(14) \text{ Hm}^3$

У структурі тетрарної фази La_{2,64}Dy_{1,36}Ge₃S₁₂ ПСТ 6(*a*) заселена сумішшю атомів Dy + La (0,65 : 0,35), одна із ПСТ 18(*b*) заселена атомами цієї ж суміші у співвідношенні 0,24 : 0,76. Для атомів статистичної суміші M1(0,65 Dy + 0,35 La) характерним є KЧ = 6 (рис. 5.61.), для атомів статистичної суміші M2(0,76 La + 0,24 Dy) притаманне KU = 7 (рис. 5.62.), а атом Ge має тетраедричне оточення із атомів Сульфуру (рис. 5.63.).

Таблиця 5.22.

коорд	Координати атомпь для тетрарної фази La2,64D у 1,360 € 3512				
Атом	ПСТ	x/a	y/b	z/c	G
M1	6(<i>a</i>)	0,0000	0,0000	0,0000	0,65 Dy + 0,35 La
M2	18(<i>b</i>)	0,23180	0,00440	0,29217	0,76 La + 0,24 Dy
Ge	18(<i>b</i>)	0,18617	0,19870	0,34239	1,0
S1	18(<i>b</i>)	0,17763	0,28681	0,5037	1,0
S2	18(<i>b</i>)	0,06020	0,12063	0,2507	1,0
S3	18(<i>b</i>)	0,20135	0,11384	0,5012	1,0
S4	18(<i>b</i>)	0,27045	0,27455	0,1456	1,0

Рис. 5.61. Координаційне оточення атомів М1 у структурі La_{2,64}Dy_{1,36}Ge₃S₁₂ та розподіл міжатомних віддалей М1 – S.

Рис. 5.62. Координаційне оточення атомів M2 у структурі La_{2,64}Dy_{1,36}Ge₃S₁₂ та розподіл міжатомних віддалей M2 – S.

Рис. 5.63. Координаційне оточення атомів Ge у структурі La_{2,64}Dy_{1,36}Ge₃S₁₂ та розподіл міжатомних віддалей Ge – S.

5.3.4. Кристалічна структура La2,25H01,75Ge3S12

Кристалічна структура тетрарної фази La_{2,25}Ho_{1,75}Ge₃S₁₂ (CT La₄Ge₃S₁₂, ПГ R3c) [49] вивчена рентгенівським методом монокристалу (таблиця 5.23).

У структурі тетрарної фази La_{2,25}Ho_{1,75}Ge₃S₁₂ ПСТ 6(*a*) заселена сумішшю атомів Ho + La (0,78 : 0,22), одн із ПСТ 18(*b*) заселена сумішшю атомів La + Ho (0,68 : 0,32). Координаційне оточення атомів: M1 (Ho + La) – тригональна призма [M1S2₆] (рис. 5.64.), M2 (La + Ho) – тригональна призма [M2S1₂S2₁S3₂S4₂] з одним додатковим атомам Сульфуру (рис. 5.65.), атом Ge має тетраедричне оточення із атомів Сульфуру (рис. 5.66.).

Таблиця 5.23.

дослідження фази La2,251101,75003512			
Колір кристалу	білий		
Розмір кристалу	0,301 imes 0,078 imes 0,071 мм		
Просторова група	<i>R</i> 3 <i>c</i> (№ 161)		
Формульна маса	1203,77		
Обрахована густина	4,727 (г/см ³)		
Коефіцієнт абсорбції	20,360 (мм ⁻¹)		
Параметри гратки:	a = 1,92448(6) нм, $c = 0,79096(4)$ нм,		
	$V = 2,5370(2) \text{ Hm}^3$		

Основні характеристики монокристального дослідження фази La2.25Ho1.75Ge3S12

Рис. 5.64. Координаційне оточення атомів М1 у структурі La_{2.25}Ho_{1.75}Ge₃S₁₂ та розподіл міжатомних віддалей М1 – S.

Рис. 5.65. Координаційне оточення атомів M2 у структурі La_{2,25}Ho_{1,75}Ge₃S₁₂ та розподіл міжатомних віддалей M2 – S.

Рис. 5.66. Координаційне оточення атомів Ge у структурі La_{2,25}Ho_{1,75}Ge₃S₁₂ та розподіл міжатомних віддалей Ge – S.

Координати атомів для тетрарної фази La_{2,25}Ho_{1,75}Ge₃S₁₂ подано в таблиці 5.24.
Таблиця 5.22.

Атом	ПСТ	x/a	y/b	z/c	G	
M1	6(<i>a</i>)	0,0000	0,0000	0,0000	0,78 Ho + 0,22 La	
M2	18(<i>b</i>)	0,00512	0,23235	0,20972	0,68 La + 0,32 Ho	
Ge	18(<i>b</i>)	0,19840	0,18600	0,15939	1,0	
S1	18(<i>b</i>)	0,28676	0,17798	-0,0029	1,0	
S2	18(<i>b</i>)	0,12012	0,05927	0,2489	1,0	
S3	18(<i>b</i>)	0,11377	0,20170	0,00018	1,0	
S4	18(<i>b</i>)	0,27474	0,27032	0,35681	1,0	

Координати атомів для тетрарної фази La_{2,25}Ho_{1,75}Ge₃S₁₂

5.3.5. Кристалічна структура La2,16Er1,84Ge3S12

Кристалічна структура тетрарної фази $La_{2,16}Er_{1,84}Ge_3S_{12}$ (СТ $La_4Ge_3S_{12}$, ПГ R3c) [49] вивчена рентґенівським методом монокристалу (таблиця 5.25).

У структурі тетрарної фази La_{2,16}Er_{1,84}Ge₃S₁₂ ПСТ 6(*a*) заселена сумішшю атомів Er + La (0,80 : 0,20), а одна із ПСТ 18(*b*) заселена сумішшю атомів La + Er (0,65 : 0,35).

Координаційне оточення атомів: M1 (Er + La) – тригональна призма [M1S2₆] (рис. 5.67.); M2 (Er + La) – тригональна призма з одним додатковим атомом [M2S1₂S2₁S3₂S4₂] (рис. 5.68.), Ge – тетраедр [GeS1₁S2₁S3₁S4₁] (рис. 5.69.).

Координати атомів для тетрарної фази La_{2,16}Er_{1,84}Ge₃S₁₂ подано в таблиці 5.26.

Таблиця 5.25.

2005112/10211,84003012						
Колір кристалу	жовтий					
Розмір кристалу	0,374 imes 0,074 imes 0,039 мм					
Просторова група	<i>R</i> 3 <i>c</i> (№ 161)					
Формульна маса	1210,39					
Обрахована густина	4,788 (г/см ³)					
Коефіцієнт абсорбції	21,228 (мм ⁻¹)					
Параметри гратки:	a = 1,92165(4) нм, $c = 0,78757(2)$ нм,					
	$V = 2,51866(13) \text{ HM}^3$					

Основні характеристики монокристального дослідження фази La_{2.16}Er_{1.84}Ge₃S₁₂

Таблиця 5.24.

Координати атомпв для тетрарної фази La2,16L11,840C3512							
Атом	ПСТ	x/a	y/b	z/c	G		
M1	6(<i>a</i>)	0,0000	0,0000	0,0000	0,80 Er + 0,20 La		
M2	18(<i>b</i>)	0,00561	0,23269	0,21091	0,65 La + 0,35 Er		
Ge	18(<i>b</i>)	0,19819	0,18583	0,16050	1,0		
S1	18(<i>b</i>)	0,28665	0,17814	-0,0030	1,0		
S2	18(<i>b</i>)	0,11948	0,05862	0,2486	1,0		
S3	18(<i>b</i>)	0,11378	0,20200	0,0004	1,0		
S4	18(<i>b</i>)	0,27482	0,27028	0,3586	1,0		

Координати атомів для тетрарної фази La_{2,16}Er_{1,84}Ge₃S₁₂

Рис. 5.67. Координаційне оточення атомів М1 у структурі La_{2,16}Er_{1,84}Ge₃S₁₂ та розподіл міжатомних віддалей М1 – S.

Рис. 5.68. Координаційне оточення атомів M2 у структурі $La_{2,16}Er_{1,84}Ge_3S_{12}$ та розподіл міжатомних віддалей M1 – S.

Рис. 5.69. Координаційне оточення суміші атомів Ge у структурі La_{2,16}Er_{1,84}Ge₃S₁₂ та розподіл міжатомних віддалей Ge – S.

5.3.6. Особливості кристалічної структури тетрарних фаз $La_x R_y Ge_3 S_{12}$ (R – Y, Tb, Dy, Ho, Er)

У структурі тетрарних фаз $La_x R_y Ge_3 S_{12}$ (R – Y, Tb, Dy, Ho, Er; $x = 2,00 \div 2,64$, $y = 1,36 \div 2,00$) $\Pi CT 6(a)$ i ΠCT 18(b)"заповнені" лвома типами сумішей рідкісноземельних металів. Кожна із них описується різним співвідношенням кількостей рідкісноземельних металів у різних позиціях. У ПСТ 6(а) переважає вміст атомів La, а в позиції 18(b) переважає вміст атомів R (R – Y, Tb, Dy, Ho, Er). Cymim M1 (R + La) (R - Y, Tb, Dy, Ho, Er) має призматичне оточення з атомів Сульфуру (KY = 6), а атоми суміші M2 (La + R) центровані в тригональних призмах із одним додатковим атомом (КЧ = 7). Атоми Ge центровані в тетраедрах, вершини яких є вершинами тригональних призм атомів сумішей M1 і M2.

Координаційні многогранники атомів M2 (La + R) та Ge укладаються навколо суміші атомів M1 (R + La) у формі спіралі, в якій спостерігається взаємне їх чергування, що дозволяє прогнозувати фізичні властивості матеріалів із такою структурою (рис. 5.70.).

Рис. 5.70. Укладка катіонних многогранників у структурі $La_{x}R_{y}Ge_{3}S_{12}$ (R – Y, Tb, Dy, Ho, Er).

У структурі тетрарних фаз La_xR_yGe₃S₁₂ відстані М1 – S першої лінії координаційного оточення в цілому є співмірними, окрім фази, що включає атоми Диспрозію. У другій лінії координаційного оточення спостерігається зменшення міжатомних віддалей в ряду YLa -> LaTb -> LaDy \rightarrow LaHo \rightarrow LaEr (puc. 5.71.); відстані M2 – S збільшуються з кожним наступним атомом, причому значний розрив у міжатомних віддалях спостерігається при переході до другої координаційної сфери (рис. 5.72.); значний розкид значень довжин зв'язків спостерігається у зв'язках Ge – S у структурі Y2La2Ge3S12. У кристалічній участю інших атомів розкид структурі за значень віллалей міжатомних невеликий. шо дозволяє констатувати те, що оточення інших, більших за атомним радіусом, атомів у структурі фаз La_xR_vGe₃S₁₂ виступає лише стабілізуючим фактором (рис. 5.73.).

Рис. 5.71. Розподіл міжатомних віддалей М1 – S у структурі тетрарних фаз La_xR_yGe₃S₁₂.

Рис. 5.72. Розподіл міжатомних віддалей M2 – S у структурі тетрарних фаз La_xR_yGe₃S₁₂.

Рис. 5.73. Розподіл міжатомних віддалей Ge – S у структурі тетрарних фаз La_xR_yGe₃S₁₂.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- [1]. Методичні вказівки до виконання лабораторного практикуму з дисципліни "Аналіз та контроль матеріалів" з розділу "Рентґеноструктурний аналіз матеріалів" для студентів ІІ-ІV курсів механічних спеціальностей / Укл.: Гірін О. Б., Колесник Є. В., Овчаренко В. І. – Д.: ДВНЗ УДХТУ, 2015. – 31 с.
- [2]. Sheldrick G. M. Crystal structure refinement with SHELXL / Acta Cryst. C. 2015. 71(1). 3-8.
- [3]. Abe S., Mochizuki K., Masumoto K. Solubility Range and Lattice Constant of New Quaternary Solid Solution Semiconductor Pb_{1-x}Ca_xS_{1-y}Se_y for Mid-Infrared Lasers / J. Japan Inst. Metals. 1992. 56. 1479-1484.
- [4]. Peters J., Krebs B. Silicon disulphide and silicon diselenide: A reinvestigation. / Acta Cryst. B. 1982. 38. 1270-1272.
- [5]. Dittmar G., Schaefer H. Die Kristallstruktur von H.T.-GeS₂ / Acta Cryst. B. 1975. 31. 2060-2064.
- [6]. Dittmar G., Schaefer H. Kristallstruktur von Germaniumdiselenid / Acta Cryst. B. 1976. 32. 2726-2728.
- [7]. Arora S. K., Patel D. H., Agarwal M. K. Microtopographical Characterization of Vapour-grown SnS₂ Single Crystals / Cryst. Res. Technol. 1993. 28(5). 623-627.
- [8]. Huifang Liu, Luke L. Y. Chang Phase relations in systems of tin chalcogenides / J. Alloys Compd. 1992. 185(1). 183-190.
- [9]. Schleid T. Crystal structure of D- Y_2S_3 and Y_2OS_2 / Eur. J. Inorg. Chem. 1992. 29. 1015-1028.
- [10]. Flahaut J., Laruelle P., Pardo M. P., Guittard M. Les sulfures, seleniures et tellurures L_2X_3 de terres rares, d'yttrium et de scandium orthorhombiques du type Sc_2S_3 / Bull. Soc. Chim. Fr. 1965. 4(7). 1399-1404.

- [11]. Landa-Canovas A. R., Amador U., Otero-Diaz L. C. Crystal structure and microstructure of delta-Er₂S₃ / J. Alloys Compd. 2001. 323. 91-96.
- [12]. Range K. J., Eglmeier C. Crystal data for rare earth sesquiselenides Ln_2Se_3 (Ln = Ho, Er, Tm, Yb, Lu) and structure refinement of Er_2Se_3 / J. Less-Common Met. 1991. 171. 27-30.
- [13]. Basancon P., Adolphe C., Flahaut J., Laruelle P. Sur les varietes alpha et beta des sulfures L_2S_3 des terres rares / Mat. Res. Bull. 1969. 4. 227-238.
- [14]. Schleid T., Lissner F. A-Pr₂S₃, D-Ho₂S₃ und E-Yb₂S₃: Synthesis and Single C rystal S tructure Investigations / Z. Naturforsch. 1968. 7. 2282-2288.
- [15]. Folchnandt M., Schleid T. Single Crystals of C-La₂Se₃, C-Pr₂Se₃, and C-Gd₂Se₃ with Cation-Deficient Th₃P₄-Type Structure / Z. Anorg. Allg. Chem. 2001. 627. 1411-1413.
- [16]. Gulay L. D., Daszkiewicz M., Shemet V. Ya. Crystal structure of the RE_2PbS_4 (RE = Y, Dy, Ho, Er, Tm) compounds and a comparison with the crystal structures of other rare earth lead chalcogenides / Z. Anorg. Allg. Chem. 2008. 634. 887-1895.
- [17]. Gulay L. D., Shemet V. Ya., J. Stępień-Damm, Pietraszko A., Olekseyuk I. D. Crystal structure of the R₆Pb₂Se₁₁ (R = Y, Dy and Ho) compounds / J. Alloys Compd. 2005. 403. 206-210.
- [18]. Gulay L. D., Daszkiewicz M., Stepien-Damm Yu., Pietraszko A. Crystal structure of the R₂PbSe₄ (R= Er and Yb) compounds / J. Alloys Compd. 2007. 429. 111-115.
- [19]. Patrie M., Guittard M., Pardo M. P. Systemes $L_2X_3 PbX$ (L = lanthanides, X= S, Se, Te) / Mat. Res. Bull. 1969. 11. 3832-3834.
- [20]. Michelet A., Flahaut J. Chimie minerale. Sur de nouvelles familles de composes formes par les sulfures des terres

rares avec le sulfure de germanium ou le sulfure de silicium / J. Solid State Chem. 1976. 11. 1073-1080.

- [21]. Gulay L. D., Lychmanyuk O. S., Stepien-Damm Yu. Isothermal section of the $Y_2S_3 Cu_2S GeS_2$ system at 870 K and crystal structures of the $Y_3Ge_{1.25}S_7$ and Y_3CuGeS_7 compounds / J. Alloys Compd. 2006. 414. 113-117.
- [22]. Daszkiewicz M., Gulay L. D., Ruda I. R., Marchuk O. V., Olekseuk I. D. La₂SiS₅ / Acta Cryst. E. 2007. 63(12). i197i197.
- [23]. Gulay L. D., Daszkiewicz M., Lychmanyuk O. S., Pietraszko A. The crystal structure of the $R_6Si_4S_{17}$ (R = Pr, Nd and Sm) compounds / J. Alloys Compd. 2008. 453. 197-202.
- [24]. Zeng H. Y., Zheng F. K., Guo G. C., Huang J. S. Syntheses and single-crystal structures of La₃AgSnS₇, Ln₃M_xMS₇ (Ln = La, Ho, Er; M= Ge, Sn; $\frac{1}{4} \le x \le \frac{1}{2}$) / J. Alloys Compd. 2008. 458. 123-129.
- [25]. Michelet A., Mazurier A., Collin G. Etude structurale des systemes $Ln_2S_3 GeS_2 / J$. Solid State Chem. 1975. 13. 65-76.
- [26]. Mazurier A., Etienne J. Structure cristalline de La₄GeS₁₂ / Acta Cryst. B. 1974. 30. 759-762.
- [27]. Loireau-Lozach A. M., Guittard M. Systeme ternaire La₂Se₃ – Ga₂Se₃ – GeSe₂. Diagramme de phase - Etude des verres / Mat. Res. Bull. 1977. 12. 887-893.
- [28]. Jaulmes S. Structure cristalline du sulfure d'etain et de lanthane, La₂SnS₅ / Acta Cryst. B. 1974. 30. 2283-2285.
- [29]. Perez G., Duale M. Chimie minerale. Sur une nouvelle famille de combinaisons sulfurees des terres rares de formule generale $Ln_4Si_3S_{12}$ (Ln = Ce-Gd) / C. R. Acad. Sci. 1969. 269. 984-986.

- [30]. Gulay L. D., Lychmanyuk O. S. Crystal structure of the $R_3Si_{1.25}Se_7$ (R = Pr, Nd and Sm) compounds. / J. Alloys Compd. 2008. 458. 174-177.
- [31]. Helmholdt R. B., Goubitz K., Sonneveld E. J., Schenk H. $Pr_4Ge_3S_{12}$: structure determination from high-resolution powder diffraction data / Acta Cryst. E. 2003. 59. i119-i121.
- [32]. Eliseev A. A., Kuzmichyeva G. M. Phase Equilibrium and Crystal Chemistry in Rare Earth Ternary Systems with Chalcogenide Elements / Handbook on the Physics and Chemistry of Rare Earths. 1990. 13(89). 191-281.
- [33]. Олексеюк І. Д., Смітюх О. В., Марчук О. В., Гулай Л. Д. Система PbS – Y₂S₃ – La₂S₃ за температури 770 К / Актуальні проблеми фундаментальних наук: матеріали I Міжнар. наук. конф. м. Луцьк, Вежа – Друк. 2015. 260-263.
- [34]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Гулай Л. Д. Система PbS – Y₂S₃ – Pr₂S₃ за температури 770 К / Актуальні задачі сучасних технологій: матеріали IV Міжнар. наук.-практ. конф. м. Тернопіль. 2015. 75-76.
- [35]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Гулай Л. Д. Система PbS – Er₂S₃ – La₂S₃ за температури 770 К / Матеріали Міжнар. конф. мол. вч. з хім. та хім. технолог. м. Київ. 2016. 151.
- [36]. Смітюх О. В., Марчук О. В., Олексеюк І. Д., Гулай Л. Д. Фазові рівноваги в системі PbS – Er₂S₃ – температури 770 K Матеріали Pr₂S₃ за / XIV всеукраїнської конференції молодих вчених та студентів актуальних сучасної хімії. 3 питань м. Дніпропетровськ. 2016. 90.
- [37]. Смітюх О. В., Марчук О. В., Олексеюк І. Д., Гулай Л. Д. Фазові рівноваги в системах PbSe – Y₂Se₃ – La(Pr)₂Se₃ / Збірка тез доповідей XVIII Міжнародної

конференції студентів та аспірантів "Сучасні проблеми хімії". м. Київ. 2017. 70.

- [38]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Гулай Л. Д. Фазові рівноваги в системі PbSe – Er₂Se₃ – La₂Se₃ за температури 770 К / Хімічні проблеми сьогодення: матеріали Дев'ятої укр. наук. конф. м. Вінниця. 2016. 89.
- [39]. Смітюх О. В., Олексеюк І. Д., Марчук О. В. Системи $SiS_2 Y_2S_3 La(Pr)_2S_3$ за температури 770 К / Збірка тез доповідей "V міжнародної науково-технічної конференції молодих учених та студентів". м. Тернопіль. 2016. 55.
- [40]. Смітюх О. В., Олексеюк І. Д., Марчук О. В. Фазові рівноваги в системах SiS(Se)₂ – Y(Er)₂S(Se)₃ – La(Pr)₂S(Se)₃ за температури 770 К / Всеукраїнська наукова конференція "Актуальні задачі хімії: дослідження та перспективи". м. Житомир. 2017. 114.
- [41]. Смітюх О. В., Харкевич Л. М., Марчук О. В., Олексеюк І. Д. Система SiSe₂ – Er₂Se₃ – La₂Se₃ за температури 770 К / IX Всеукраїнська наукова конференція студентів та аспірантів "Хімічні Каразінські читання – 2017". м. Харків. 2017. 30.
- [42]. Смітюх О. В., Марчук О. В., Олексеюк І. Д., Гулай Л. Д. Фазові рівноваги у системах GeS₂ – Y(Er)₂S₃ – Pr₂S₃ за температури 770 К. / Фізика і хімія твердого тіла. Стан, досягнення і перспективи: матеріали IV всеукраїнської наук.-практ. конф. мол. вч. та студ. м. Луцьк. 2016. 70.
- [44]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Гулай Л. Д. Фазові рівноваги в системах R₂Se₃ – R'₂Se₃ – GeSe₂ (R – Y, Er; R' – La, Pr) за температури 770 К /

Актуальні проблеми фундаментальних наук: матеріали ІІ Міжнар. наук. конф. м. Луцьк. 2017. 127.

- [45]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Гулай Л. Д. Фазові рівноваги у системі SnS₂ – Y₂S₃ – La₂S₃ за температури 770 К / Міжвузівський збірник «Наукові нотатки». м. Луцьк : ЛНТУ. 2015. 114-118.
- [46]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Гулай Л. Д. Фазові рівноваги в системах SnS₂ – Er₂S₃ – La₂S₃ за температури 770 К / XVIII Наукова молодіжна конференція. "Проблеми та досягнення сучасної хімії" м. Одеса. 2016. 131.
- [47]. Смітюх О. В., Олексеюк І. Д., Марчук О. В. Фазові рівноваги в системах Y(Er)₂S₃ – Pr₂S₃ – SnS₂ за температури 770 К / Матеріали X Міжнародної науково-практичної конференції студентів і аспірантів "Молода наука Волині: пріоритети та перспективи досліджень" м. Луцьк. 444.
- [48]. Смітюх О., Марчук О., Олексеюк І., Гулай Л. Кристалічна структура Tb(Dy)₂La₂Ge₃S₁₂ / Збірник наукових праць: XVI наукова конференція "Львівські хімічні читання – 2017". м. Львів. 2017. 315.
- [49]. Daszkiewicz M., Smitiukh O. V., Marchuk O. V., Gulay L. D. The crystal structure of $Er_{2.34}La_{0.66}Ge_{1.28}S_7$ and the $La_xR_yGe_3S_{12}$ phases (R Tb, Dy, Ho and Er) / J. Alloys Compd. 2018. 738. 263-269.
- [50]. Mazurier A., Etienne J. Structure cristalline de $La_4Ge_3S_{12}$ / Acta Cryst. B. 1974. 30. 759-762.
- [51]. Смітюх О. В., Харкевич Л. М., Марчук О. В., Олексеюк І. Д., Федорчук А. О. Кристалічна структура сполуки Y³⁺_{1.5}La³⁺_{1.5}Si²⁺Se²⁻₇ / Матеріали XII всеукраїнської конференції молодих вчених та студентів з актуальних питань хімії. м. Харків. 2016. 58.
- [52]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Федорчук А. О. Кристалічна структура сполук

Y_{1.5}Pr_{1.5}Si_{1.75}Se₇ та Dy_{1.5}La_{1.5}Si_{1.66}Se₇ / Наук. вісник Ужгород. ун-ту (Сер. Хімія). 2016. 2. 18-21.

- [53]. Смітюх О. В., Олексеюк І. Д., Марчук О. В., Федорчук А. О. Кристалічна структура сполук Er_{1.5}La(Pr)_{1.5}Si_{1.67}Se₇ / Наук. вісник Ужгород. ун-ту (Сер. Хімія). 2017. 1(37). 44-47.
- [54]. Daszkiewicz M., Smitiukh O., Marchuk O., Gulay L. Crystal Structure of Er_{2.355}La_{0.645}Ge_{1.285}S₇ / Konwersatorium Krystalograficzne Warsztaty, wręczenie nagrody i walne zebranie PTK. Wrocław. 2017. 314.
- [55]. Смітюх О. В., Марчук О. В., Олексеюк І. Д. Кристалічна структура Er_{2.34}R_{0.66}Ge_{1.28}S₇ (R Ce, Pr) / І Міжнародна (IX Українська) наукова конференція студентів, аспірантів і молодих учених "Хімічні проблеми сьогодення". м. Вінниця. 2018. 116.
- [56]. Смітюх О. В., Гулай Л. Д., Марчук О. В. Кристалічна структура сполук Er_{2.34}Ce(Pr)_{0.66}Ge_{1.28}S₇ / Вісник ОНУ. Хімія. 2018. 23. 86-94.

ДЛЯ НОТАТОК

ДЛЯ НОТАТОК

ДЛЯ НОТАТОК

Наукове видання

Марчук Олег Васильович Смітюх Олександр Вікторович Олексеюк Іван Дмитрович

Квазіпотрійні халькогенідні системи R₂X₃ – R'₂X₃ – PbX (D^{IV}X₂) (R – Y, Er; R' – La, Pr; D^{IV} – Si, Ge, Sn; X – S, Se)

Монографія

Друкується в авторській редакції Технічний редактор Марчук О. В.

Формат 60х84 1/16. Обсяг 7,21 ум. друк. арк., 7,04 обл.-вид. арк. Наклад 300 пр. Зам. 114. Видавець і виготовлювач – Вежа-Друк (м. Луцьк, вул. Шопена, 12, тел. (0332) 29-90-65). Свідоцтво Держ. комітету телебачення та радіомовлення України ДК № 4607 від 30.08.2013 р.