Міністерство освіти і науки України Східноєвропейський національний університет імені Лесі Українки

О. В. Марчук Л. Д. Гулай

Квазіпотрійні халькогенідні системи $R_2X_3 - PbX - D^{IV}X_2$ (R – P3M; D^{IV} – Si, Ge, Sn; X – S, Se)

Монографія

Луцьк Вежа-Друк 2018 УДК 548.3 М 30

Рекомендовано вченою радою

Східноєвропейського національного університету імені Лесі Українки (протокол № 19 від 26 грудня 2017 року)

Рецензенти:

Федорчук А. О. – доктор хімічних наук, професор кафедри біохімії та загальної хімії Львівського національного університету ветеринарної медицини та біотехнологій імені С. З. Гжицького;

Федосов С. А. – доктор фізико-математичних наук, професор, завідувач кафедри експериментальної фізики та інформаційновимірювальних технологій Східноєвропейського національного університету імені Лесі Українки.

Марчук О. В.

Квазіпотрійні халькогенідні системи $R_2X_3 - PbX - D^{IV}X_2$ М 30 (R – P3M; D^{IV} – Si, Ge, Sn; X – S, Se) : монографія / О. В. Марчук, Л. Д. Гулай. – Вежа-Друк, 2018. – 132 с.

ISBN 978-966-940-133-5

У монографії охарактеризовано фазові рівноваги у системах R – Pb – D^{IV} – X на перерізах R₂X₃ – PbX – $D^{IV}X_2$ (R – P3M; D^{IV} – Si, Ge, Sn; X – S, Se) та структурні типи у яких кристалізуються бінарні, тернарні та тетрарні сполуки.

Рекомендовано студентам, аспірантам, викладачам та науковцям хімічних спеціальностей.

© Марчук О. В., Гулай Л. Д., 2018 ISBN 978-966-940-133-5 © Маліневська І. П. (обкладинка), 2018

3MICT

ПЕРЕ.	ЛІК УМОВНИХ СКОРОЧЕНЬ	6
ПЕРЕ,	ДМОВА	7
розді	Л 1. КРИСТАЛОГРАФІЧНІ ХАРАКТЕРИСТИКИ	
БІНАІ	РНИХ СПОЛУК	8
1.1.	Системи Pb – X (X – S, Se)	8
1.2.	Системи R – X (R – P3M; X – S, Se)	8
1.3.	Системи D ^{IV} – X (D ^{IV} – Si, Ge, Sn; X – S, Se)	13
розді	Л 2. КРИСТАЛОГРАФІЧНІ ХАРАКТЕРИСТИКИ	
TEPH	АРНИХ СПОЛУК	14
2.1.	Системи PbX – $D^{IV}X_2$ (D^{IV} – Si, Ge, Sn; X – S, Se)	15
2.2.	Системи PbX – R_2X_3 (R – P3M; X – S, Se)	15
2.3.	Системи $R_2X_3 - SiX_2 (R - P3M; X - S, Se)$	17
2.4.	Системи $R_2X_3 - GeX_2$ (R – P3M; X – S, Se)	19
2.5.	Системи $R_2X_3 - SnX_2$ (R – P3M; X – S, Se)	20
розді	Л 3. СТРУКТУРНІ ТИПИ	22
3.1.	Структурні типи, в яких кристалізуються бінарні	
	сполуки PbX (X – S, Se)	22
3.1.1.	Структурний тип NaCl (ПГ <i>Fm3m</i>)	22
3.1.2.	Структурний тип GeS (ПГ Pnma)	23
3.1.3.	Структурний тип CsCl (ПГ Рт3т)	24
3.1.4.	Структурний тип ТІЈ (ПГ <i>Стст</i>)	24
3.2.	Структурні типи, в яких кристалізуються бінарні	
	сполуки R ₂ X ₃ (R – P3M; X – S, Se)	25
3.2.1.	Структурний тип Sc ₂ S ₃ (ПГ <i>Fddd</i>)	27
3.2.2.	Структурний тип YScS ₃ (ПГ <i>Pna</i> 2 ₁)	28
3.2.3.	Структурний тип U_2S_3 (ПГ <i>Рпта</i>)	29
3.2.4.	Структурний тип Ho ₂ S ₃ (ПГ $P2_1 / m$)	29

3.2.5.	Структурний тип Th ₃ P ₄ (ПГ $I\overline{43d}$)	31
3.2.6.	Структурний тип La ₂ S ₃ (ПГ <i>Рпта</i>)	31
3.2.7.	Структурний тип ${ m Tm_2S_3}$ (ПГ $P2_1$ / m)	33
3.2.8.	Структурний тип Al ₂ O ₃ (ПГ $R\overline{3}c$)	34
3.2.9.	Структурний тип Mn ₂ O ₃ (ПГ <i>Ia</i> 3)	35
3.2.10.	Структурний тип Yb ₂ S ₃ (ПГ <i>P</i> 6 ₃ <i>cm</i>)	36
3.2.11.	Структурний тип UAs ₂ (ПГ <i>P</i> 4/ <i>nmm</i>)	37
3.3.	Структурні типи, в яких кристалізуються бінарні	
	сполуки D ^{IV} X ₂ (D ^{IV} – Si, Ge, Sn; X – S, Se)	38
3.3.1.	Структурний тип SiS ₂ (ПГ <i>Ibam</i>)	38
3.3.2.	Структурний тип ZnCl ₂ (ПГ $I\overline{4}2d$)	39
3.3.3.	Структурний тип GeS $_2$ (ПГ Pc)	40
3.3.4.	Структурний тип GeS ₂ (ПГ $P2_1/c$)	42
3.3.5.	Структурний тип GeS ₂ (ПГ <i>Fdd</i> 2)	43
3.3.6.	Структурний тип ZnBr ₂ (ПГ $I4_1 / acd$)	44
3.3.7.	Структурний тип 2H-CdJ ₂ (ПГ <i>Р</i> 3 <i>т</i> 1)	45
3.3.8.	Структурний тип GeSe ₂ (ПГ $I\overline{4}$)	46
3.3.9.	Структурний тип GeSe ₂ (ПГ $P\overline{4}$)	47
3.4.	Структурні типи, в яких кристалізуються сполуки	
	систем PbX – $D^{IV}X_{2}$, PbX – $R_{2}X_{3}$, $R_{2}X_{3}$ – $D^{IV}X_{2}$ (R –	
	$P3M; D^{IV} - Si, Ge, Sn; X - S, Se)$	48
3.4.1.	Структурний тип Pb_2SiS_4 (ПГ $P2_1 / c$)	48
3.4.2.	Структурний тип Pb_2GeS_4 (ПГ $P2_1/c$)	49
3.4.3.	Структурний тип Na ₆ Pb ₃ P ₄ Se ₁₆ (ПГ 143 <i>d</i>)	50
3.4.4.	Структурний тип PbGeS ₃ (ПГ $P2_1 / c$)	51
3.4.5.	Структурний тип [NH ₄]CdCl ₃ (ПГ <i>Pnma</i>)	52

3.4.6.	Структурний тип Pb_2SiSe_4 (ПГ $P2_1/c$)	53
3.4.7.	Структурний тип CaFe ₂ O ₄ (ПГ Pnma)	54
3.4.8.	Структурний тип Er_2PbS_4 (ПГ <i>Pnma</i> $Cmc2_1$)	55
3.4.9.	Структурний тип Th ₃ P ₄ (ПГ $I\overline{4}3d$)	57
3.4.10.	Структурний тип Tm ₂ PbSe ₄ (ПГ <i>Pnma</i>)	58
3.4.11.	Структурний тип Y ₆ Pb ₂ Se ₁₁ (ПГ <i>Стст</i>)	59
3.4.12.	Структурний тип Dy ₃ Ge _{1,25} S ₇ (ПГ <i>P</i> 6 ₃)	61
3.4.13.	Структурний тип La ₂ GeS ₅ (ПГ $P2_1 / c$)	62
3.4.14.	Структурний тип $La_4Ge_3S_{12}$ (ПГ $R3c$)	63
3.4.15.	Структурний тип Се ₆ Si ₄ S ₁₇ (ПГ <i>Р</i> 1)	64
3.4.16.	Структурний тип U ₂ PbSe ₅ (ПГ $P2_1 / c$)	67
3.4.17.	Структурний тип $Dy_4Si_3S_{12}$ (ПГ $P2_1/c$)	68
3.4.18.	Структурний тип La ₂ SnS ₅ (ПГ <i>Pbam</i>)	69
РОЗДІ.	Л 4. КВАЗІПОТРІЙНІ СИСТЕМИ R2X3 – PbX –	
$\mathbf{D}^{\mathrm{IV}}\mathbf{X}_2$ ($R - P3M; D^{IV} - Si, Ge, Sn; X - S, Se)$	71
4.1.	Ізотермічні перерізи	71
4.1.1.	Системи $R_2S_3 - PbS - SiS_2$	71
4.1.2.	Системи $R_2Se_3 - PbSe - SiSe_2$	75
4.1.3.	Системи $R_2S_3 - PbS - GeS_2$	77
4.1.4.	Системи $R_2Se_3 - PbSe - GeSe_2$	81
4.1.5.	Системи $R_2S_3 - PbS - SnS_2$	89
4.2.	Тетрарні сполуки	97
4.3.	Кристалічна структура тетрарних сполук	
4.3.1.	Структурний тип La ₂ PbSiS ₈ (ПГ $R\overline{3}c$)	99
4.3.2.	Структурний тип $Y_{1,32}$ Pb _{1,68} Ge _{1,67} Se ₇ (ПГ <i>P</i> 6 ₃)	101
4.3.3.	Структурний тип $Y_2Pb_3Sn_3S_{12}$ (ПГ $Pmc2_1$)	104
СПИС	ОК ВИКОРИСТАНИХ ДЖЕРЕЛ	108

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

- Літ. літературатурні джерела;
- ПГ просторова група;
- ПСТ правильна система точок;
- Рис. рисунок;
- РЗМ рідкісноземельний метал;
 - СТ структурний тип;

Табл. – таблиця;

- x/a, y/b, z/c координати атомів у частках ребра елементарної комірки;
- $a, b, c, \alpha, \beta, \gamma$ параметри елементарної комірки;
 - G коефіцієнт заповнення правильної системи точок.

ПЕРЕДМОВА

Розвиток сучасного суспільства нерозривно пов'язаний із науково-технічним прогресом (НТП). В свою чергу НТП сприяє пошуку та створенню нових матеріалів із прогнозованими функціональними властивостями. Знання про взаємозв'язок складу, будови і властивостей речовини, а також про термодинамічнорівноважні умови існування речовин із заданими складом і структурою є фундаментальною основою такого пошуку.

Відомості про кристалічну структуру речовини дозволяють мати не лише уявлення про міжатомні відстані та координаційне оточення атомів, але також дають можливість робити певні припущення та висновки про механізми хімічних перетворень і прогнозувати шляхи синтезу нових речовин.

Для багатьох дослідників значний інтерес становлять складні халькогеніди рідкісноземельних металів, для яких характерна властива технологічність, відтворюваність результатів, висока фоточутливість та інші властивості.

Представлена монографія присвячена опису кристалічної структури бінарних, тернарних та тетрарних сполук квазіпотрійних халькогенідних систем $R_2X_3 - PbX - D^{IV}X_2$ (R – P3M; $D^{IV} - Si$, Ge, Sn; X – S, Se) та фазовивих рівноваг у цих системах за температури 770 К.

У першому та другому розділах зібрано інформацію про кристалічну структуру бінарних сполук PbX, R_2X_3 і $D^{IV}X_2$ та кристалічну структуру тернарних сполук, що утворюються у системах PbX – $D^{IV}X_2$, PbX – R_2X_3 і $R_2X_3 – D^{IV}X_2$.

Третій розділ присвячено опису структурних типів, у яких кристалізуються бінарні та тернарні сполуки.

У четвертому розділі представлено результати дослідження фазових рівноваг у квазіпотрійних системах $R_2X_3 - PbX - D^{IV}X_2$ за температури 770 К та опис кристалічних структур тетрарних сполук, що утворюються у цих системах.

7

РОЗДІЛ 1 КРИСТАЛОГРАФІЧНІ ХАРАКТЕРИСТИКИ БІНАРНИХ СПОЛУК

1.1. Системи Pb – X (X – S, Se)

У системах Pb – X (X – S, Se) утворюються бінарні сполуки PbS та PbSe відповідно. Їх кристалографічні характеристики представлено у таблиці 1.1.

Таблиця 1.1.

Сполука	СТ	ПГ	Пері	оди комірки	I, НМ	Піт
Сполука	CI	111	а	b	С	J111.
PbS	NaCl	Fm ⁻ 3m	0,5996	_	_	[1]
	GeS	Pnma	1,128	0,402	0,429	[2]
	CsCl	Pm ³ m	0,3289	_	_	[3]
	TIJ	Стст	0,383	1,039	0,401	[3]
PbSe	NaCl	Fm ⁻ 3m	0,6224	_	_	[4]
	GeS	Pnma	1,161	0,400	0,439	[5]
	CsCl	Pm ³ m	0,3379	_	_	[3]

Кристалографічні характеристики бінарнх сполук PbX (X – S, Se)

1.2. Системи R – X (R – R3M; X – S, Se)

У таблицях 1.2. та 1.3. зібрано інформацію про кристалічну структуру бінарних сполук R_2X_3 та $D^{IV}X_2$ (R – R3M; D^{IV} – Si, Ge, Sn; X – S, Se).

Таблиця 1.2.

Кристалографічні характеристики бінарних сполук R₂X₃ (R – R3M; X – S, Se)

Сполука	СТ	СТ ПГ -	Пер	Піт		
	CI		а	b	С	J111.
Sc_2S_3	Sc_2S_3	Fddd	1,0376	0,73775	2,2033	[6]

Сполиса	СТ	ПГ	Пер	Пiт		
Сполука	CI	111	а	b	С	JIII.
	YScS ₃	Pna2 ₁	0,700	0,636	0,946	[7]
Y_2S_3	U_2S_3	Pnma	1,0602	0,3858	1,0436	[8]
	Ho_2S_3	P2 ₁ / m	1,72339	0,40107 $\beta = 98,60$	1,01736	[9]
	Th_3P_4	$I\overline{4}3d$	0,8306	_	—	[10]
α -La ₂ S ₃	La_2S_3	Pnma	0,7660	0,422	1,595	[11]
γ -La ₂ S ₃	Th_3P_4	I43d	0,8723	_	_	[12]
α -Ce ₂ S ₃	La_2S_3	Pnma	0,784	0,428	1,545	[13]
	La_2S_3	Pnma	0,75323	0,40967	1,57276	[14]
β -Ce ₂ S ₃	Th_3P_4	I43d	0,86524	_	—	[14]
β -Pr ₂ S ₃	La_2S_3	Pnma	0,7493	0,40554	1,5616	[15]
γ -Pr ₂ S ₃	Th_3P_4	I43d	0,857	_	_	[16]
α -Nd ₂ S ₃	La_2S_3	Pnma	0,74397	0,40278	1,55196	[17]
γ -Nd ₂ S ₃	Th_3P_4	$I\overline{4}3d$	0,8529	_	_	[18]
α - Sm ₂ S ₃	La_2S_3	Pnma	0,733	0,390	1,512	[19]
	La_2S_3	Pnma	0,733	0,400	1,546	[20]
	La_2S_3	Pnma	0,73764	0,39744	1,53626	[21]
	La_2S_3	Pnma	0,7376	0,39622	1,5352	[22]
β - Sm ₂ S ₃	Th_3P_4	I43d	0,8429	_	_	[23]
β -Eu ₂ S ₃	Th_3P_4	$I\overline{4}3d$	0,8527	_	_	[24]
α -Gd ₂ S ₃	U_2S_3	Pnma	1,07447	0,38985	1,05462	[25]

Сполиса	СТ	ПГ	Пер	Піт		
Сполука	CI	111	а	b	С	JIII.
β -Gd ₂ S ₃	Th ₃ P ₄	I43d	0,83847	_	_	[26]
α -Tb ₂ S ₃	U_2S_3	Pnma	1,06787	0,38806	1,04907	[27]
β -Tb ₂ S ₃	La_2S_3	Pnma	0,7319	0,3898	1,5224	[28]
γ -Tb ₂ S ₃	Th_3P_4	$I\overline{4}3d$	0,83523	—	_	[29]
α - Dy ₂ S ₃	La_2S_3	Pnma	0,7284	0,3881	1,5143	[30]
β -Dy ₂ S ₃	U_2S_3	Pnma	1,0609	0,3864	1,0429	[30]
γ -Dy ₂ S ₃	Th_3P_4	$I\overline{4}3d$	0,8301	—	_	[29]
α -Ho ₂ S ₃	Ho_2S_3	P2 ₁ / m	1,750	0,4002 β=99,4	1,015	[31]
β -Ho ₂ S ₃	La_2S_3	Pnma	1,05724	0,38448	1,04115	[17]
γ-Ho ₂ S ₃	Th ₃ P ₄	I43d	0,8265	—	_	[10]
$\mathrm{Er}_{2}\mathbf{S}_{3}$	Tm_2S_3	P2 ₁ / m	1,0901	0,3896 <i>β</i> =108,804	1,1167	[32]
$\mathrm{Er}_{2}\mathrm{S}_{3}$	Ho_2S_3	P2 ₁ / m	1,74417	0,39822 β=98,688	1,01013	[17]
(hp) Er_2S_3	U_2S_3	Pnma	1,0526	0,3824	1,0374	[8]
(hp) Er_2S_3	Th ₃ P ₄	$I\overline{4}3d$	0,8244	_	I	[10]
Tm_2S_3	Tm_2S_3	P2 ₁ / m	1,1110	0,3874 β=108,88	1,0872	[33]
	Ho_2S_3	P2 ₁ / m	1,7350	0,3954 β=98,68	1,0037	[34]
	Al_2O_3	$R\bar{3}c$	0,6768	—	1,8236	[35]
	Mn ₂ O ₃	Ia3	1,2489	_	_	[36]

Сполиса	СТ	ПГ	Пер	Піт		
Сполука			а	b	С	JIII.
(hp) Tm_2S_3	U_2S_3	Pnma	1,0479	0,3805	1,0353	[8]
(hp) Tm_2S_3	Th ₃ P ₄	I43d	0,8223	_	_	[34]
Yb ₂ S ₃	Al_2O_3	$R\overline{3}c$	0,6772	-	1,8280	[37]
	Yb_2S_3	<i>P</i> 6 ₃ <i>cm</i>	0,6772	_	1,828	[38]
	Ho_2S_3	P2 ₁ / m	1,037	0,406 β=100,0	1,815	[39]
	Mn_2O_3	Ia3	1,24683	_	_	[40]
(hp) Yb ₂ S ₃	U_2S_3	Pnma	1,0435	0,3786	1,0330	[8]
(hp) Yb ₂ S ₃	Th ₃ P ₄	I43d	0,8224	_	_	[10]
Lu_2S_3	Al_2O_3	$R\overline{3}c$	0,6722	—	1,816	[41]
(hp) Lu ₂ S ₃	Th ₃ P ₄	I43d	0,8198	-	_	[10]
(hp) Lu_2S_3	U_2S_3	Pnma	1,0411	0,3773	1,0320	[8]
Sc_2Se_3	Sc_2S_3	Fddd	1,0846	0,7668	2,3004	[42]
Y_2Se_3	Sc_2S_3	Fddd	1,144	0,807	2,425	[43]
	Th_3P_4	$I\overline{4}3d$	0,86626	_	_	[44]
La ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,90521	_	—	[45]
Ce ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,89774	_	_	[46]
Pr ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,89117	_	_	[45]
Nd ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,8859	_	_	[47]
α -Sm ₂ Se ₃	U_2S_3	Pnma	1,1273	0,4091	1,1032	[48]

Сполиса	СТ	ПГ	Пер	Пiт		
Сполука	CI	111	а	b	С	J111.
β -Sm ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,8782	_	_	[48]
Eu ₂ Se ₃	Sc_2S_3	Fddd	1,239	0,876	2,628	[49]
α -Gd ₂ Se ₃	U_2S_3	Pnma	1,098	0,405	1,118	[47]
β -Gd ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,87256	_	_	[45]
α -Tb ₂ Se ₃	U_2S_3	Pnma	1,1130	0,4024	1,0951	[50]
β -Tb ₂ Se ₃	Th_3P_4	I43d	0,867	_	_	[51]
α -Dy ₂ Se ₃	U_2S_3	Pnma	1,1077	0,4007	1,0912	[52]
β -Dy ₂ Se ₃	Th_3P_4	$I\overline{4}3d$	0,862	_	_	[51]
Ho ₂ Se ₃	Sc_2S_3	Fddd	1,14074	0,81259	2,4239	[53]
(hp) Ho ₂ Se ₃	Th ₃ P ₄	I43d	0,8614	_	_	[10]
α -Er ₂ Se ₃	Sc_2S_3	Fddd	1,1357	0,8093	2,4186	[54]
β -Er ₂ Se ₃	Th_3P_4	I43d	0,8581	_		[10]
δ -Er ₂ Se ₃	UAs ₂	P4/nmm	0,3984	_	0,8228	[55]
Tm_2Se_3	Sc_2S_3	Fddd	1,131	0,806	2,406	[42]
(hp) Tm ₂ Se ₃	Th ₃ P ₄	I43d	0,85992	_	_	[44]
Yb ₂ Se ₃	Sc_2S_3	Fddd	1,1274	0,8021	2,398	[56]
(hp) Yb ₂ Se ₃	Th ₃ P ₄	I43d	0,8615	_	_	[44]
α -Lu ₂ Se ₃	Sc_2S_3	Fddd	1,123	0,799	2,389	[43]
β -Lu ₂ Se ₃	Th_3P_4	I43d	0,8570	_	_	[44]

1.3. Системи D^{IV} – X (D^{IV} – Si, Ge, Sn; X – S, Se).

Таблиця 1.3.

Кристалографічні характеристики сполук $D^{IV}X_2$ (D^{IV} – Si, Ge, Sn; X – S, Se)

Сполиса	СТ	ПГ	Пер	Піт		
Сполука	CI	111	а	b	С	JIII.
SiS ₂	SiS ₂	Ibam	0,9545	0,5564	0,5552	[57]
	ZnCl ₂	$I\overline{4}2d$	0,5420	0,5420	0,8718	[58]
GeSa	GeS	Pc	0.6875	2,255	0 6809	[59]
0052	0052	10	0,0075	β=120,45°	0,0007	[37]
	GeS	$P2_{1/c}$	0.6720	1,6101	1 1/36	[60]
	0052	12/0	0,0720	$\beta = 90,88^{\circ}$	1,1450	[00]
	ZnCl ₂	$I\overline{4}2d$	0,5480	—	0,9143	[58]
	GeS ₂	Fdd2	1,168	2,238	0,686	[61]
	ZnBr ₂	$I4_1/acd$	1,1065	_	1,8717	[62]
SnS ₂	2H-CdJ ₂	$P\overline{3}m1$	0,3646	_	0,5879	[63]
SiSe ₂	SiS ₂	Ibam	0,9669	0,5998	0,5851	[57]
GeSe ₂	GeS ₂	$P2_{1} / c$	0,7019	1,6864	1,1814	[64]
	GeS ₂	Fdd 2	1,221	2,311	0,692	[65]
	ZnCl ₂	$I\overline{4}2d$	0,57307	_	0,9691	[66]
	GeSe ₂	$I\overline{4}$	0,55073	_	0,99374	[67]
	GeSe ₂	P4	0,53389	_	1,00361	[67]
SnSe ₂	2H-CdJ ₂	$P\overline{3}m1$	0,3811	—	0,6136	[68]

РОЗДІЛ 2 КРИСТАЛОГРАФІЧНІ ХАРАКТЕРИСТИКИ ТЕРНАРНИХ СПОЛУК

У таблицях 2.1. – 2.5. зібрано інформацію про кристалічну структуру тернарних сполук, що утворюються у системах PbX – $D^{IV}X_2$, PbX – R_2X_3 , R_2X_3 – SiX₂, R_2X_3 – GeX₂ i R_2X_3 – SnX₂ (R – R3M; D^{IV} – Si, Ge, Sn; X – S, Se).

2.1. Системи PbX – D^{IV}X₂ (D^{IV} – Si, Ge, Sn; X – S, Se)

Таблиця 2.1.

Кристалографічні характеристики сполук, що утворюються у системах PbX – $D^{IV}X_2$ (D^{IV} – Si, Ge, Sn; X – S, Se)

	•					
Сполука	СТ	ПГ	Періо	эди комірки	1, HM	Піт
Сполука	CI	111	а	b	С	J111.
Pb ₂ SiS ₄	Pb_2SiS_4	P2 ₁ /c	0,64721	0,66344	1,6832	[69]
Pb ₂ GeS ₄	Pb ₂ GeS ₄	P2 ₁ /c	0,79742	0,89255	0,108761	[70]
Pb ₂ GeS ₄	$Na_6Pb_3P_4Se_{16}$	$I\overline{4}3d$	1,4096	_	-	[71]
PbGeS ₃	PbGeS ₃	P2 ₁ /c	0,7224	1,0442	0,6825	[72]
PbSnS ₃	[NH ₄]CdCl ₃	Pnma	0,64721	0,66344	1,6832	[73]
Pb ₂ SiSe ₄	Pb ₂ SiSe ₄	P2 ₁ /c	0,85670	0,70745	1,36160	[69]
Pb ₂ GeSe ₄	$Na_6Pb_3P_4Se_{16}$	$I\overline{4}3d$	1,4573	_	_	[74]

2.2. Системи PbX – R₂X₃ (R – P3M; X – S, Se)

Таблиця 2.2.

Кристалографічні характеристики сполук, що утворюються у системах PbX – R₂X₃ (R – P3M; X – S, Se)

Сполиса	СТ	ПГ	Періс	Пiт		
Сполука	CI	111	а	b	С	J111.
Sc ₂ PbS ₄	CaFe ₂ O ₄	Pnma	1,1642	0,3757	1,3711	[75]
Y ₂ PbS ₄	Er_2PbS_4	Cmc2 ₁	0,79301	2,86967	1,20511	[76]
La ₂ PbS ₄	Th_3P_4	$I\overline{4}3d$	0,8767	_	_	[77]
Ce ₂ PbS ₄	Th ₃ P ₄	I43d	0,8705	_	—	[77]
Pr ₂ PbS ₄	Th ₃ P ₄	I43d	0,8675	_	_	[77]
Nd ₂ PbS ₄	Th_3P_4	$I\overline{4}3d$	0,8632	_	_	[77]
Sm ₂ PbS ₄	Th_3P_4	$I\overline{4}3d$	0,8572	_	_	[77]
Gd ₂ PbS ₄	Th_3P_4	$I\overline{4}3d$	0,8522	_	_	[77]
Dy ₂ PbS ₄	Er_2PbS_4	Cmc2 ₁	0,79484	2,8721	1,2039	[76]
Ho_2PbS_4	CaFe ₂ O ₄	Pnma	1,189	0,401	1,425	[77]
_ // _	Er_2PbS_4	Cmc2 ₁	0,79081	2,86222	1,20220	[76]
Er ₂ PbS ₄	CaFe ₂ O ₄	Pnma	1,185	0,400	1,417	[77]
_ // _	Er_2PbS_4	Cmc2 ₁	0,7863	2,8525	1,1995	[76]
Tm_2PbS_4	CaFe ₂ O ₄	Pnma	1,183	0,398	1,410	[77]
_ // _	Er_2PbS_4	Cmc2 ₁	0,78419	2,84184	1,19655	[76]
Yb ₂ PbS ₄	CaFe ₂ O ₄	Pnma	1,178	0,396	1,408	[77]
_ // _	Tm ₂ PbSe ₄	Pnma	1,1899	0,39015	1,4127	[78]
Lu ₂ PbS ₄	CaFe ₂ O ₄	Pnma	1,178	0,396	1,407	[77]
_ // _	Tm_2PbSe_4	Pnma	1,1919	0,38890	1,4103	[78]

Сполиса	СТ	ПГ	Періс	оди комірки	Пiт	
Сполука	CI	111	а	b	С	J111.
Sc ₂ PbSe ₄	CaFe ₂ O ₄	Pnma	1,22029	0,39061	1,42801	[75]
$Y_6Pb_2Se_{11}$	власний	Cmcm	0,40610	1,3467	3,7624	[79]
La ₂ PbSe ₄	Th_3P_4	I43d	0,7886	_	_	[77]
Ce ₂ PbSe ₄	Th_3P_4	I43d	0,9045	—	—	[77]
Pr ₂ PbSe ₄	Th_3P_4	$I\overline{4}3d$	0,8996	_	_	[77]
_ // _	Th_3P_4	I43d	0,89916	—	_	[80]
Nd ₂ PbSe ₄	Th_3P_4	I43d	0,8968	_	—	[77]
_ // _	Th_3P_4	I43d	0,888	_	—	[81]
Sm ₂ PbSe ₄	Th_3P_4	I43d	0,8909	_	—	[77]
_ // _	Th_3P_4	$I\overline{4}3d$	0,884	—	—	[81]
$Dy_6Pb_2Se_{11}$	$Y_6Pb_2Se_{11}$	Cmcm	0,40772	1,3458	3,7589	[79]
$Ho_6Pb_2Se_{11}$	$Y_6Pb_2Se_{11}$	Cmcm	0,40561	1,34018	3,7525	[79]
Er ₂ PbSe ₄	CaFe ₂ O ₄	Pnma	1,245	0,412	1,485	[77]
_ // _	CaFe ₂ O ₄	Pnma	1,2554	0,40778	1,4885	[82]
_ // _	Tm ₂ PbSe ₄	Pnma	1,2541	0,40810	1,4865	[83]
Tm ₂ PbSe ₄	CaFe ₂ O ₄	Pnma	1,259	0,410	1,475	[77]
_ // _	власний	Pnma	1,2505	0,40630	1,4820	[84]
Yb ₂ PbSe ₄	CaFe ₂ O ₄	Pnma	1,283	0,408	1,464	[77]
_ // _	Tm ₂ PbSe ₄	Pnma	1,2501	0,40380	1,4707	[83]
Lu ₂ PbSe ₄	CaFe ₂ O ₄	Pnma	1,287	0,407	1,459	[77]
_ // _	Tm ₂ PbSe ₄	Pnma	1,24718	0,40345	1,47338	[84]

2.3. Системи R₂X₃ – SiX₂ (R – P3M; X – S, Se)

Таблиця 2.3.

Кристалографічні характеристики сполук, що утворюються у системах $R_2X_3 - SiX_2$ (R – P3M; X – S, Se)

Сполиса	СТ	пг	Періс	ди коміркі	и, нм	Пiт
Сполука	CI	111	а	b	С	J111.
Y ₃ Si _{1,25} S ₇	Dy ₃ Ge _{1,25} S ₇	<i>Р</i> 6 ₃	0,975	_	0,570	[85]
_ // _	$Dy_3Ge_{1,25}S_7$	<i>Р</i> 6 ₃	0,97449	_	0,56985	[86]
La ₂ SiS ₅	La ₂ GeS ₅	P2 ₁ / c	0,76208	0,7606 β=101,56	0,78998	[87]
_ // _	La ₂ GeS ₅	$P2_1/c$	0,7857	0,7606 β=101,55	1,2627	[88]
Ce ₂ SiS ₅	La_2GeS_5	P2 ₁ / c	0,7798	0,7540 β=101,60	1,2524	[89]
_ // _	La_2GeS_5	P2 ₁ / c	0,75475	1,25581 β=101,55	0,78286	[90]
$Ce_4Si_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,914	_	0,795	[91]
_ // _	$La_4Ge_3S_{12}$	R3c	1,91745	_	0,79943	[90]
Ce ₆ Si ₄ S ₁₇	власний	$P\overline{1}$	0,89576 $\alpha = 82,19$	1,00022 β=86,89	1,42651 $\gamma = 89,52$	[90]
Pr ₂ SiS ₅	La ₂ GeS ₅	P2 ₁ / c	0,7775	0,7514 <i>β</i> =101,62	1,2489	[89]
$Pr_4Si_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,911	_	0,793	[91]
$Pr_6Si_4S_{17}$	$Ce_6Si_4S_{17}$	$P\overline{1}$	0,8902 $\alpha = 82,19$	0,9934 $\beta = 86,94$	1,4206 $\gamma = 89,40$	[92]
Nd ₂ SiS ₅	U ₂ PbSe ₅	P2 ₁ / c	0,7740	0,7480 <i>β</i> =101,66	1,2434	[87]
$Nd_4Si_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,906	_	0,790	[91]

Сполука	СТ	ПГ	Періс	Періоди комірки, нм			
Сполука	CI	111	а	b	С	J111.	
NA SI S	Casis	-	0,8880	0,9903	1,4168	[02]	
1Nu ₆ S1 ₄ S ₁₇	$Cc_6S1_4S_{17}$	P1	$\alpha = 82,11$	$\beta = 87,04$	$\gamma = 89,31$	[]2]	
$Sm_4Si_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,897	_	0,783	[91]	
Sm Si S		-	0,88300	0,9779	1,4047	[02]	
51116514517	$Cc_6S1_4S_{17}$	P1	$\alpha = 82,13$	$\beta = 87,34$	$\gamma = 89,02$	[92]	
$Gd_4Si_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,889	_	0,778	[91]	
Gd ₃ Si _{1,25} S ₇	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,987	_	0,571	[85]	
Gd ₄ Si ₃ S ₁₂	$Dv_4Si_3S_{12}$	$P2_1/c$	0.9867	1,09969	1.6462	[93]	
	- 54~-5~12	1		β=102,67	_,	[2]	
$Tb_3Si_{1,25}S_7$	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,982	—	0,570	[85]	
TheSiaSia	Dv ₄ Si ₂ S ₁₂	P2/c	0 98360	1,0964	1 6391	[94]	
104013012	Dy4013012	1,1,0	0,70500	β=102,76	1,0571	[רי]	
$Dy_3Si_{1,25}S_7$	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,975	_	0,570	[85]	
$Dy_4Si_3S_{12}$	власний	$P2_1/c$	0,9813	1,09387	1,6360	[95]	
J-1 J-12		1	,	β=102,86	,		
$Ho_3Si_{1,25}S_7$	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,97306	—	0,57001	[96]	
Lasisen	CecSitSiz	 11	0,94333	1,04482	1,49866	[97]	
La ₀ 5145C1/	006014017	<i>P</i> 1	$\alpha = 81,91$	$\beta = 87,48$	<i>γ</i> = 89,49	[77]	
CecSi ₄ Se ₁₇	CecSi ₄ S ₁₇	 1	0,9383	1,0356	1,4884	[97]	
00140017	006014017	Γ1	<i>α</i> =81,94	$\beta = 87,66$	$\gamma = 89,25$	[77]	
$Pr_3Si_{1,25}Se_7$	$Dy_3Ge_{1,25}S_7$	Р6 ₃	1,05268	_	0,60396	[98]	
Nd ₃ Si _{1,25} Se ₇	Dy ₃ Ge _{1,25} S ₇	<i>Р</i> 6 ₃	1,04760	_	0,60268	[98]	
Sm ₃ Si _{1,25} Se ₇	Dy ₃ Ge _{1,25} S ₇	<i>P</i> 6 ₃	1,04166	_	0,59828	[98]	

2.4. Системи R₂X₃ – GeX₂ (R – P3M; X – S, Se)

Таблиця 2.4.

Кристалографічні характеристики сполук, що утворюються у системах $R_2X_3 - GeX_2$ (R - P3M; X - S, Se)

Сполиса	СТ	пг	Пер	іоди комірк	и, нм	Піт
Сполука	CI	111	а	b	С	J111.
Y ₃ Ge _{1,25} S ₇	Dy ₃ Ge _{1,25} S ₇	<i>Р</i> 6 ₃	0,973	_	0,582	[85]
_ // _	Dy ₃ Ge _{1,25} S ₇	<i>Р</i> 6 ₃	0,9730	_	0,5826	[99]
$La_3Ge_{1,25}S_7$	Dy ₃ Ge _{1,25} S ₇	<i>Р</i> 6 ₃	1,02970	_	0,58120	[100]
La ₂ GeS ₅	La ₂ GeS ₅	P2 ₁ /c	0,7641	1,2702 β=101,39	0,7893	[101]
_ // _	La ₂ GeS ₅	P2 ₁ / c	0,7887	0,7675 β=101,40	1,2720	[89]
$La_4Ge_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,940	_	0,810	[102]
$Ce_4Ge_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,936	-	0,806	[103]
_ // _	$La_4Ge_3S_{12}$	R3c	1,9375	-	0,8029	[104]
$Ce_3Ge_{1,25}S_7$	Dy ₃ Ge _{1,25} S ₇	<i>Р</i> 6 ₃	1,022	_	0,583	[89]
$Pr_4Ge_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,930	_	0,801	[103]
_ // _	$La_4Ge_3S_{12}$	R3c	1,92856	-	0,798049	[105]
$Pr_{3}Ge_{1,25}S_{14}$	Dy ₃ Ge _{1,25} S ₇	Р6 ₃	1,010	_	0,581	[106]
$Nd_4Ge_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,924	_	0,798	[103]
_ // _	$La_4Ge_3S_{12}$	R3c	1,9250	_	0,7949	[104]
$Sm_4Ge_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,919	_	0,795	[103]
$Gd_4Ge_3S_{12}$	$La_4Ge_3S_{12}$	R3c	1,909	_	0,790	[103]
$Gd_3Ge_{1,25}S_7$	$Dy_3Ge_{1,25}S_7$	<i>P</i> 6 ₃	0,984	_	0,582	[85]
$Tb_3Ge_{1,25}S_7$	Dy ₃ Ge _{1,25} S ₇	P63	0,979	_	0,582	[85]

Сполука	СТ	ПГ	Пер	іоди комірк	и, нм	Піт
Сполука	CI	111	а	b	С	5111.
Dy ₃ Ge _{1,25} S ₇	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,973	_	0,582	[89]
Ho ₃ Ge _{1,25} S ₇	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,969	_	0,583	[85]
_ // _	$Dy_3Ge_{1,25}S_7$	Р6 ₃	0,9686	_	0,5819	[96]
La ₃ Ge _{1,25} Se ₇	$Dy_3Ge_{1,25}S_7$	Р6 ₃	1,067	_	0,610	[107]

2.5. Системи R₂X₃ - SnX₂ (R - P3M; X - S, Se)

Таблиця 2.5.

Кристалографічні характеристики сполук, що утворюються у системах $R_2X_3 - SnX_2$ (R – P3M; X – S, Se)

Сполуга	СТ	пг	Пері	оди комірн	хи, нм	Піт
Сполука	CI	111	а	b	С	JIII.
La_2SnS_5	La_2SnS_5	Pbam	1,122	0,7915	0,396	[108]
_ // _	La_2SnS_5	Pbam	1,126	0,789	0,399	[109]
$La_3Sn_{1,25}S_7$	$Dy_3Ge_{1,25}S_7$	Р6 ₃	1,02770	_	0,60030	[100]
Ce ₂ SnSn ₅	La_2SnS_5	Pbam	1,124	0,786	0,395	[109]
Pr ₂ SnSn ₅	La_2SnS_5	Pbam	1,117	0,783	0,393	[109]
_ // _	La_2SnS_5	Pbam	0,78195	1,12145	0,39462	[110]
Nd ₂ SnS ₅	La_2SnS_5	Pbam	1,115	0,778	0,392	[109]
_ // _	La_2SnS_5	Pbam	0,77721	1,1218	0,39272	[110]
Sm_2SnS_5	La_2SnS_5	Pbam	1,1276	0,7773	0,3895	[111]
_ // _	La_2SnS_5	Pbam	1,128	0,777	0,3895	[112]
Gd_2SnS_5	La_2SnS_5	Pbam	1,116	0,775	0,388	[109]
_ // _	La_2SnS_5	Pbam	0,77330	1,1290	0,38217	[110]
Tb_2SnS_5	La_2SnS_5	Pbam	1,115	0,775	0,387	[109]

Сполука	СТ	ПГ	Пері	оди комірн	Літ	
Сполука	CI	111	а	b	С	5111.
_ // _	La_2SnS_5	Pbam	0,7717	1,12460	0,38056	[110]
Dy_2SnS_5	La_2SnS_5	Pbam	1,114	0,775	0,386	[109]
Ce ₂ SnSe ₅	CaFe ₂ O ₄	Pnma	1,405	0,412	1,180	[113]

РОЗДІЛ З СТРУКТУРНІ ТИПИ

3.1. Структурні типи, в яких кристалізуються бінарні сполуки PbX (X – S, Se)

Бінарні сполуки PbS та PbSe можуть кристалізуватись у чотирьох структурних типах: NaCl, GeS, CsCl i TlJ (табл. 3.1.).

Таблиця 3.1.

			-		
Сполука	СТ	ПГ	Сполука	СТ	ΠГ
PbS	NaCl	Fm ³ m	PbSe	NaCl	Fm ³ m
	GeS	Pnma		GeS	Pnma
	CsCl	Pm ⁻ 3m		CsCl	Pm ⁻ 3m
	TlJ	Стст			

Структурні типи сполук PbS та PbSe

3.1.1. Структурний тип NaCl (ПГ *Fm3m*): a = 0,5644 нм, [114]. У таблиці 3.2. наведені координати атомів для сполуки PbS (СТ *NaCl*), [1]. Елементарна комірка та координаційний многогранник Pb у структурі сполуки PbS зображені на рисунку 3.1. Атоми Pb мають октаедричне оточення і координують навколо себе по шість атомів Сульфуру [PbS₆].

Таблиця 3.2.

Координати атомів для сполуки PbS

Атом	ПСТ	x / a	y / b	z / c	G
Pb	4a	0	0	0	1,0
S	4 <i>b</i>	1/2	1/2	1/2	1,0

(структурний тип NaCl)

Рис. 3.1. Елементарна комірка та координаційний многогранник атома Pb сполуки PbS (CT *NaCl*).

3.1.2. Структурний тип GeS (ПГ *Pnma*): a = 1,0470 нм, b = 0,40297 нм, c = 0,3641 нм, [115]. У таблиці 3.3. наведені координати атомів для сполуки PbS (СТ *GeS*), [2]. Елементарна комірка та координаційний многогранник атома Pb у структурі сполуки PbS зображені на рисунку 3.2. У структурі PbS (СТ *GeS*) атоми Pb координують навколо себе по шість атомів Сульфуру.

Таблиця 3.3.

ATOM ΠCT x/a y/b z/c G						
Pb	4 <i>c</i>	0,12	1/4	1/8	1,0	
S	4 <i>c</i>	0,35	1/4	0	1,0	

Координати атомів для сполуки PbS (структурний тип GeS)

Рис. 3.2. Елементарна комірка та координаційний многогранник атома Pb сполуки PbS (СТ *GeS*).

3.1.3. Структурний тип CsCl (ПГ *Pm3m*): *a* = 0,411 нм, [116]. У таблиці 3.4. наведені координати атомів для сполуки PbS (CT *CsCl*), [3]. Елементарна комірка та координаційний многогранник атома Pb (КЧ = 8) зображені на рисунку 3.3.

Таблиця 3.4.

(структурний тип CsCl) y/bПСТ Атом x/az/cG 1.0 Pb 0 0 0 1aS 1/21/21b1/21.0

Координати атомів для сполуки PbS

Рис. 3.3. Елементарна комірка та координаційний многогранник атома Pb сполуки PbS (CT *CsCl*).

3.1.4. Структурний тип TIJ (ПГ *Стст*): a = 0,457 нм, b = 1,292 нм, c = 0,524 нм, [117]. У структурному типі *TlJ* (табл. 3.5.) атоми Рb координують навколо себе по сім атомів Сульфуру (рисунок 3.4.), [3].

Таблиця 3.5.

Координати атомів для сполуки PbS

(структурний тип TlJ)

Атом	ПСТ	x / a	y / b	z / c	G
Pb	4 <i>c</i>	0	0,13	1/4	1,0

Атом	ПСТ	x / a	y / b	z / c	G
S	4 <i>c</i>	0	0,40	1/4	1,0

Рис. 3.4. Елементарна комірка та координаційний многогранник атома Pb сполуки PbS (CT *TlJ*).

3.2. Структурні типи, в яких кристалізуються бінарні сполуки R₂X₃ (R – P3M; X – S, Se)

Бінарні сполуки R_2X_3 (R – Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb i Lu; X – S, Se) можуть кристалізуватись в одинадцяти структурних типах (табл. 3.6.)

Таблиця 3.6.

Ē + + + + + Å + + + + + + + + Ę + + + + + + ++ 固 + + + + + + + вH + + + + + à + + + + + f + + + + + Б R₂Se₃ + + + + $\mathbb{R}_2\mathbb{S}_3$ 뤕 + + SB + + + + PN + + + 占 + + + പ് + + + Ľ + + + + + + + + ≻ š + + + P4 / mm $P2_1/m$ $P2_1/m$ $Pna2_1$ $P6_{3}cm$ Pnma $I\overline{4}3d$ Pnma Pnma Falala Falda $I\overline{4}3d$ ß Ia_{3} E Mn₂O₃ YScS₃ Ho₂S₃ Tm_2S_3 A1203 Th₃P₄ La_2S_3 Yb_2S_3 Th₃P₄ UAs_2 Sc₂S₃ $\mathbf{U}_2\mathbf{S}_3$ Sc₂S₃ $\mathbf{U}_2\mathbf{S}_3$ Б С THII.

Структурні типи, в яких кристалізуються сполуки R₂X₃

3.2.1. Структурний тип Sc_2S_3 (ПГ *Fddd*): a = 1,0376 нм, b = 0,73775 нм, c = 2,2033 нм, [6]. Координати атомів для сполуки Sc_2S_3 наведені у таблиці 3.7. Елементарна комірка та координаційні многогранники атомів Sc1 та Sc2 у структурі сполуки Sc_2S_3 зображені на рисунку 3.5.

Таблиця 3.7.

Атом	ПСТ	x / a	y / b	z / c	G			
Sc1	16g	1/8	1/8	0,041	1,0			
Sc2	16g	1/8	1/8	0,376	1,0			
S 1	16f	1/8	0,370	1/8	1,0			
S2	32h	0,123	0,378	0,456	1,0			

Координати атомів для сполуки Sc₂S₃

Рис. 3.5. Елементарна комірка та координаційні многогранники атомів Sc1 та Sc2 у структурі сполуки Sc₂S₃ (CT *Sc₂S₃*).

У структурі цієї сполуки атоми Sc1 та Sc2 мають октаедричне

оточення і координують навколо себе по шість атомів Сульфуру [Sc1S1₂S2₄] і [Sc2S1₂S2₄].

3.2.2. Структурний тип YScS₃ (ПГ $Pna2_1$): a = 0,700 нм, b = 0,636 нм, c = 0,946 нм, [118]. У таблиці 3.8. наведені координати атомів для сполуки Sc₂S₃ (СТ *YScS₃*) [7]. Елементарну комірку та координаційні многогранники атомів Sc у структурі сполуки Sc₂S₃ зображено на рисунку 3.6.

Атоми Sc1 сполуки Sc₂S₃ координують навколо себе по вісім атомів Сульфуру [Sc1S1₃S2₃S3₂], а атоми Sc2 – шість атомів Сульфуру [Sc2S1₂S2₃S3₂].

Таблиця 3.8.

$(\cdots, \gamma, \cdots, \gamma_r, \cdots, \gamma_r, \cdots, \gamma_r, \cdots, \gamma_r, \gamma_r, \cdots, \gamma_r, \gamma_r, \cdots, \gamma_r, \gamma_r, \cdots, \gamma_r, \gamma_r, \gamma_r, \cdots, \gamma_r, \gamma_r, \gamma_r, \gamma_r, \gamma_r, \gamma_r, \gamma_r, \gamma_r$							
Атом	ПСТ	x / a	y / b	z / c	G		
Sc1	4a	0,099	0,039	0	1,0		
Sc2	4a	0,001	0,499	0,767	1,0		
S 1	4a	0,306	0,327	0,184	1,0		
S2	4a	0,323	0,323	0,825	1,0		
S3	4a	0,048	0,358	0,519	1,0		

Координати атомів для сполуки Sc₂S₃ (структурний тип YScS.)

Рис. 3.6. Елементарна комірка та координаційні многогранники атомів Sc1 та Sc2 у структурі сполуки Sc₂S₃ (CT *YScS₃*).

3.2.3. Структурний тип U_2S_3 (ПГ *Pnma*): a = 1,060 нм, b = 0,385 нм, c = 1,031 нм, [119]. У таблиці 3.9. наведені координати атомів для сполуки Y_2S_3 (СТ U_2S_3) [8].

Атоми Y1 та Y2 (рисунок 3.7.) координують навколо себе по сім атомів Сульфуру, утворюючи тригональні призми із одним додатковим атомом – [Y1S1₂S2₃S3₂] і [Y2S1₃S2₂S3₂] відповідно.

Таблиця 3.9.

$(структурний тип U_2S_3)$								
Атом	ПСТ	x / a	y / b	z / c	G			
Y1	4 <i>c</i>	0,010	1/4	0,313	1,0			
Y2	4 <i>c</i>	0,192	3/4	0,004	1,0			
S1	4 <i>c</i>	0,046	1/4	0,873	1,0			
S2	4 <i>c</i>	0,119	3/4	0,445	1,0			
S3	4 <i>c</i>	0,227	1/4	0,198	1,0			

Координати атомів для сполуки Y2S3

Рис. 3.7. Елементарна комірка та координаційні многогранники атомів Y1 та Y2 у структурі сполуки Y₂S₃ (CT *U*₂S₃).

3.2.4. Структурний тип Ho₂S₃ (ПГ $P2_1/m$): a = 1,74680 нм, b = 0,40026 нм, c = 1,0127 нм, $\beta = 98,54^{\circ}$, [15]. У таблиці 3.10. наведені координати атомів для сполуки Y₂S₃ (СТ Ho_2S_3), [120]. У структурі сполуки Y₂S₃ атоми Y1 та Y2 координують навколо себе по сім атомів Сульфуру, утворюючи тригональні призми із одним додатковим атомом [Y1S2₁S3₂S7₃S8₁] і [Y2S1₃S5₁S6₂S9₁], (рис. 3.8.). Атоми Y3, Y4, Y5 та Y6 координують навколо себе по шість атомів Сульфуру [Y3S5₂S6₁S7₁S8₂], [Y4S1₂S2₁S4₂S5₁], [Y5S4₁S6₂S9₃] і [Y6S2₂S3₂S4₁S8₁].

Рис. 3.8. Елементарна комірка та координаційні многогранники атомів Y1, Y2, Y3, Y4, Y5 та Y6 у структурі сполуки Y_2S_3 (CT Ho_2S_3).

Таблиця 3.10.

Координати атомів для сполуки Y2S3

Атом	ПСТ	x / a	y / b	z / c	G
Y1	2 <i>e</i>	0,021	1/4	0,189	1,0
Y2	2 <i>e</i>	0,430	1/4	0,124	1,0
Y3	2 <i>e</i>	0,781	1/4	0,829	1,0
Y4	2 <i>e</i>	0,720	1/4	0,187	1,0
Y5	2 <i>e</i>	0,398	1/4	0,487	1,0
Y6	2 <i>e</i>	0,116	1/4	0,549	1,0
S1	2 <i>e</i>	0,576	1/4	0,053	1,0
S2	2 <i>e</i>	0,873	1/4	0,268	1,0
S3	2 <i>e</i>	0,927	1/4	0,617	1,0
S4	2 <i>e</i>	0,281	1/4	0,637	1,0

 $(структурний тип Ho_2S_3)$

Атом	ПСТ	x / a	y / b	z / c	G
S5	2 <i>e</i>	0,269	1/4	0,998	1,0
S 6	2 <i>e</i>	0,631	1/4	0,711	1,0
S7	2 <i>e</i>	0,924	1/4	0,951	1,0
S 8	2 <i>e</i>	0,182	1/4	0,319	1,0
S 9	2 <i>e</i>	0,532	1/4	0,368	1,0

3.2.5. Структурний тип Th₃P₄ (ПГ *I*43*d*): a = 0,8637 нм, [31]. У структурному типі Th₃P₄ (табл. 3.11.), [10] атоми Ітрію сполуки Y₂S₃ координують навколо себе по вісім атомів Сульфуру [YS₈], утворюючи октаедри (рис. 3.9.).

Таблиця 3.11.

Координати атомів для сполуки У2S3

(структурний тип Th_3P_4)

Атом	ПСТ	x / a	y / b	z / c	G
Y	12 <i>a</i>	0,375	0	1/4	1,0
S	16 <i>c</i>	0,083	0,083	0,083	1,0

Рис. 3.9. Елементарна комірка та координаційний многогранник атома Y у структурі сполуки Y_2S_3 (СТ Th_3P_4).

3.2.6. Структурний тип La₂**S**₃ (ПГ *Рпта*): a = 0,766 нм, b = 0,422 нм, c = 1,588 нм, [122]. Координати атомів для сполуки

 La_2S_3 (СТ власний) наведені у таблиці 3.12., елементарну комірку та координаційні многогранники атомів La у структурі сполуки La_2S_3 зображено на рисунку 3.10.

Таблиця 3.12.

			17 71	,	
Атом	ПСТ	x / a	y / b	z / c	G
La1	2c	0,765	1/4	0,545	1,0
La2	2c	0,146	1/4	0,204	1,0
S 1	2 <i>c</i>	0,009	1/4	0,391	1,0
S2	2c	0,144	1/4	0,779	1,0
S 3	2c	0,371	1/4	0,566	1,0

Координати атомів для сполуки La_2S_3

(власний структурний тип)

Рис. 3.10. Елементарна комірка та координаційні многогранники атомів La1 та La2 у структурі сполуки La₂S₃ (CT La_2S_3).

У структурі сполуки La_2S_3 атоми La1 координують навколо себе по сім атомів Сульфуру, утворюючи тригональні призми з одним додатковим атомом [La1S1₃S2₁S3₃], а для атомів La2 характерним є KЧ = 8 і вони утворюють тригональні призми із двома додатковими атомами Сульфуру: [La2S1₂S2₄S3₂].

3.2.7. Структурний тип Tm₂S₃ (ПГ $P2_1/m$): a = 1,1110 нм, b = 0,3874 нм, c = 1,0872 нм, $\beta = 108,88^{\circ}$, [123]. Координати атомів для сполуки Er₂S₃ (СТ Tm_2S_3) наведені у таблиці 3.13., [32]. Елементарну комірку та координаційні многогранники атомів Ег у структурі сполуки Er₂S₃ зображено на рисунку 3.11.

Рис. 3.11. Елементарна комірка та координаційні многогранники атомів Er1, Er2, Er3 та Er4 у структурі сполуки Er_2S_3 (СТ Tm_2S_3).

Таблиця 3.13.

Координати атомів для сполуки Er₂S₃

		10 01	L	2 8,	
Атом	ПСТ	x / a	y / b	z / c	G
Er1	2 <i>e</i>	0,06647	1/4	0,16825	1,0
Er2	2 <i>e</i>	0,81704	1/4	0,49713	1,0
Er 3	2 <i>e</i>	0,45528	1/4	0,30917	1,0
Er4	2 <i>e</i>	0,33877	1/4	0,91614	1,0
S 1	2 <i>e</i>	0,7554	1/4	0,7238	1,0
S2	2 <i>e</i>	0,1027	1/4	0,9375	1,0

 $(структурний тип Tm_2S_3)$

Атом	ПСТ	x/a	y / b	z / c	G
S3	2 <i>e</i>	0,5816	1/4	- 0,0984	1,0
<u>S</u> 4	2e	0,0219	1/4	0,3868	1,0
S5	2 <i>e</i>	0,6920	1/4	0,2494	1,0
S6	2 <i>e</i>	0,3885	1/4	0,5372	1,0

У структурі Er_2S_3 (СТ Tm_2S_3) атоми Er1 та Er4 координують навколо себе по шість атомів Сульфуру [Er1S1₂S2₃S4₁] і [Er4S2₁S3₃S5₂], атоми Er2 – сім атомів Сульфуру [Er2S1₁S4₃S5₁S6₂] а атоми Er3 – вісім атомів Сульфуру [Er3S1₂S3₂S5₁S6₃].

3.2.8. Структурний тип Al_2O_3 (ПГ R3c): a = 0,47617 нм, c = 1,29990 нм, [124]. Координати атомів для сполуки Tm_2S_3 (СТ Al_2O_3) [35] наведені в таблиці 3.14. Елементарна комірка та координаційний многогранник атома Tm у структурі сполуки Tm_2S_3 (СТ Al_2O_3) зображені на рисунку 3.12.

У структурі сполуки Tm_2S_3 (СТ Al_2O_3) атоми Tm координують навколо себе по шість атомів Сульфуру [TmS₆].

Таблиця 3.14.

Координати атомів для сполуки Tm₂S₃

 $(структурний тип Al_2O_3)$

Атом	ПСТ	x / a	y / b	z / c	G
Tm	12 <i>c</i>	0	0	0,35007	1,0
S	18e	0,3026	0	1/4	1,0

Рис. 3.12. Елементарна комірка та координаційні многогранники атомів Tm у структурі сполуки Tm₂S₃ (CT *Al*₂*O*₃).

3.2.9. Структурний тип Mn_2O_3 (ПГ Ia3): a = 0,941 нм, [125]. Координати атомів у структурі сполуки Tm_2S_3 (СТ Mn_2O_3), [36] наведені в таблиці 3.15. Елементарну комірку та координаційні многогранники атомів Tm у структурі сполуки Tm_2S_3 зображено на рисунку 3.13.

У структурі Tm_2S_3 (СТ Mn_2O_3) атоми Тт мають октаедричне оточення і координують навколо себе по шість атомів Сульфуру [Tm1S₆] і [Tm2S₆].

Таблиця 3.15.

Координати атомів для сполуки Tm₂S₃

Атом	ПСТ	x / a	y / b	z / c	G
Tm1	8 <i>b</i>	1/4	1/4	1/4	1,0
Tm2	24 <i>d</i>	1/4	0,4522	0	1,0
S	48 <i>e</i>	0,3834	0,3938	0,1609	1,0

 $(структурний тип Mn_2O_3)$

Рис. 3.13. Елементарна комірка та координаційні многогранники атомів Tm1 та Tm2 у структурі сполуки Tm_2S_3 (CT Mn_2O_3).

3.2.10. Структурний тип Yb₂S₃ (ПГ $P6_3 cm$): a = 0,6772 нм, c = 1,828 нм, [38]. Координати атомів для сполуки Yb₂S₃ наведені у таблиці 3.16. Елементарна комірка та координаційні многогранники атомів Yb у структурі сполуки Yb₂S₃ зображені на рисунку 3.14.

У структурі сполуки Yb_2S_3 (СТ Yb_2S_3) для атомів Yb характерними є KU = 3 (Yb1, Yb3 та Yb4) і KU = 6 (Yb2).

Таблиця 3.16.

Координати атомів для сполуки Yb₂S₃

Атом	ПСТ	x / a	y / b	z / c	G
Yb1	2 <i>a</i>	0	0	0	1,0
Yb2	2 <i>a</i>	0	0	1/3	1,0
Yb3	4 <i>b</i>	1/3	2/3	0	1,0
Yb4	4 <i>b</i>	1/3	2/3	0,2483	1,0
S1	6 <i>c</i>	0,3642	0	0,1238	1,0
S2	6 <i>c</i>	0,3290	0	0,4129	1,0
S3	6 <i>c</i>	0,6700	0	0,2891	1,0

(власний структурний тип)

Рис. 3.14. Елементарна комірка та координаційні многогранники атомів Yb1, Yb2, Yb3 та Yb4 у структурі сполуки Yb₂S₃ (CT Yb_2S_3).

3.2.11. Структурний тип UAs₂ (ПГ P4/nmm): a = 0,3954 нм, c = 0,8116 нм, [126]. Координати атомів для сполуки Er₂Se₃ (СТ UAs₂) наведені у таблиці 3.17., [55]. Елементарну комірку та координаційний многогранник атома Ег у структурі сполуки Er₂Se₃ зображено на рисунку 3.15.

У структурі сполуки Er_2Se_3 атоми Ег координують навколо себе по дев'ять атомів Селену [ErSe1₅Se2₄].

Рис. 3.15. Елементарна комірка та координаційні многогранник атома Ег у структурі сполуки Er₂Se₃ (СТ *UAs*₂).

Таблиця 3.17.

Координати атомів для сполуки Er₂Se₃

Атом	ПСТ	x / a	y / b	z / c	G
Er	2c	1/4	1/4	0,2272	1,0
Se1	2c	3/4	3/4	0,1322	1,0
Se2	2 <i>b</i>	3/4	1/4	1/2	0,5

(*структурний тип UAs*₂)

3.3. Структурні типи, у яких кристалізуються бінарні сполуки D^{IV}X₂ (D^{IV} – Si, Ge, Sn; X – S, Se)

Бінарні сполуки $D^{IV}X_2$ (D^{IV} – Si, Ge, Sn; X – S, Se) можуть кристалізуватись у дев'яти структурних типах (табл. 3.18.).

Таблиця 3.18.

Струк	Структурні типи бінарних сполук D ^{IV} X ₂ (D ^{IV} – Si, Ge, Sn; X – S, Se)								
N⁰	СТ	ПГ	Si	X_2	Ge	X_2	Sn	X_2	
п/п	CI	111	S	Se	S	Se	S	Se	
1.	SiS_2	Ibam	+	+					
2.	$ZnCl_2$	$I\overline{4}2d$	+		+	+			
3.	GeS_2	Pc			+				
4.	GeS_2	$P2_{1}/c$			+	+			
5.	GeS_2	Fdd2			+	+			
6.	$ZnBr_2$	$I4_1/acd$			+				
7.	$2H$ - CdJ_2	$\bar{P3m1}$					+	+	
8.	$GeSe_2$	$I\overline{4}$				+			
9.	$GeSe_2$	P4				+			

117

3.3.1. Структурний тип SiS₂ (ПГ *Ibam*): a = 0.9545 нм,

b = 0,5564 нм, c = 0,5552 нм, [57]. Координати атомів для сполуки SiS₂ наведені у таблиці 3.19. Елементарна комірка та координаційний многогранник атома Si у структурі сполуки SiS₂ зображені на рисунку 3.16.

Таблиця 3.19.

Координати атомів для сполуки SiS₂

Атом	ПСТ	x / a	y / b	z / c	G
Si	4 <i>a</i>	0	0	1/4	1,0
S	8j	0,1182	0,2088	0	1,0

(власний структурний тип)

Рис. 3.16. Елементарна комірка та координаційний многогранник атома Si у структурі сполуки SiS₂ (*орторомбічна сингонія* (ПГ *Ibam*)).

У структурі сполуки SiS₂ атоми Si мають тетраедричне оточення і координують навколо себе по чотири атоми Сульфуру [SiS₄].

3.3.2. Структурний тип ZnCl₂ (ПГ I42d): a = 0,5398 нм, c = 1,033 нм, [127]. У структурному типі ZnCl₂ (табл. 3.20., [58]) атоми Si сполуки SiS₂ координують навколо себе по чотири атоми Сульфуру [SiS₄], утворюючи тетраедри (рис. 3.17.).

Координати атомів для сполуки SiS₂

Атом	ПСТ	x / a	y / b	z / c	G
Si	4 <i>a</i>	0	0	0	1,0
S	8 <i>d</i>	0,2272	1/4	1/8	1,0

 $(структурний тип ZnCl_2)$

Рис. 3.17. Елементарна комірка та координаційний многогранник атома Si у структурі сполуки SiS₂ (CT *ZnCl*₂).

3.3.3. Структурний тип GeS₂ (ПГ *Pc*): a = 0,6875 нм, b = 2,255 нм, c = 0,6809 нм, $\beta = 120,45^{\circ}$, [59]. Координати атомів для сполуки GeS₂ наведені у таблиці 3.21. Елементарну комірку та координаційні многогранники атомів Ge у структурі сполуки GeS₂ зображено на рисунку 3.18.

Таблиця 3.21.

Координати атомів для сполуки GeS2

Атом	ПСТ	x / a	y / b	z / c	G
Ge1	2 <i>a</i>	0	0,9880	1/2	1,0
Ge2	2 <i>a</i>	0,2513	0,7375	0,5020	1,0
Ge3	2 <i>a</i>	0,4957	0,5131	0,9983	1,0
Ge4	2 <i>a</i>	0,7436	0,7624	0,0001	1,0
Ge5	2 <i>a</i>	0,1359	0,8749	0,2484	1,0

(власний структурний тип)

Атом	ПСТ	x / a	y / b	z / c	G
Ge6	2 <i>a</i>	0,6392	0,6248	0,7509	1,0
S1	2 <i>a</i>	0,287	0,9504	0,154	1,0
S2	2 <i>a</i>	0,153	0,8976	0,569	1,0
S3	2 <i>a</i>	0,377	0,7990	0,347	1,0
S4	2 <i>a</i>	0,883	0,6979	0,843	1,0
S5	2a	0,781	0,5519	0,636	1,0
S6	2a	0,764	0,9995	0,127	1,0
S7	2a	0,832	0,8517	0,921	1,0
S 8	2a	0,380	0,7536	0,865	1,0
S 9	2a	0,873	0,7460	0,365	1,0
S10	2 <i>a</i>	0,304	0,6441	0,433	1,0
S11	2 <i>a</i>	0,611	0,6056	0,054	1,0
S12	2 <i>a</i>	0,262	0,5075	0,124	1,0

Рис. 3.18. Елементарна комірка та координаційні многогранники атомів Ge1, Ge2, Ge3, Ge4, Ge5 та Ge6 у структурі сполуки GeS₂ (моноклінна сингонія (ПГ Рс)).

У структурі сполуки GeS_2 (ПГ Pc) атоми Ge1, Ge2, Ge3, Ge4, Ge5 і Ge6 мають тетраедричне оточення і координують навколо себе

по чотири атоми Сульфуру утворюючи відповідні тетраедри: [Ge1S1₁S2₁S6₂], [Ge2S3₁S8₁S9₁S10₁], [Ge3S5₁S11₁S12₂], [Ge4S4₁S7₁S8₁S91], [Ge5S1₁S2₁S3₁S7₁] та [Ge6S4₁S5₁S10₁S11₁].

3.3.4. Структурний тип GeS₂ (ПГ $P2_1/c$): a = 0,6720 нм, b = 1,6101 нм, c = 1,1436 нм, $\beta = 90,88^{\circ}$, [60]. Координати атомів для сполуки GeS₂ наведені у таблиці 3.22. Елементарну комірку та координаційні многогранники атомів Ge у структурі сполуки GeS₂ зображено на рисунку 3.19.

У структурі сполуки GeS₂ атоми Ge1, Ge2, Ge3 та Ge4 мають тетраедричне оточення, координуючи навколо себе по чотири атоми Сульфуру, утворюють відповідні тетраедри: $[Ge1S1_1S2_1S3_1S4_1]$, $[Ge2S4_1S5_1S6_1S8_1]$, $[Ge3S2_1S3_1S7_1S8_1]$ і $[Ge4S1_1S5_1S6_1S7_1]$.

Таблиця 3.22.

T A	•			n n
Коорлиняти	9TOMIR	лпя	сполуки	(TeNa
координати	around	A 0131	chonynn	GCD2

Атом	ПСТ	x / a	y / b	z / c	G
Ge1	4 <i>e</i>	0,3430	0,1531	0,2213	1,0
Ge2	4 <i>e</i>	0,1714	0,1514	0,7798	1,0
Ge3	4 <i>e</i>	0,8396	0,0026	0,7057	1,0
Ge4	4 <i>e</i>	0,6734	0,3073	0,2777	1,0
S1	4 <i>e</i>	0,6687	0,1773	0,2141	1,0
S2	4 <i>e</i>	0,2790	0,0370	0,1226	1,0
S3	4 <i>e</i>	0,2292	0,1126	0,3933	1,0
S4	4 <i>e</i>	0,1726	0,2564	0,1369	1,0
S5	4 <i>e</i>	0,4272	0,3319	0,4000	1,0
S6	4 <i>e</i>	0,9211	0,3316	0,4020	1,0
S7	4 <i>e</i>	0,6767	0,3909	0,1236	1,0
S8	4 <i>e</i>	0,1661	0,4745	0,2011	1,0

(власний структурний тип)

Рис. 3.19. Елементарна комірка та координаційні многогранники атомів Ge1, Ge2, Ge3 та Ge1 у структурі сполуки GeS₂

(моноклінна сингонія (ПГ $P2_1 / c$)).

3.3.5. Структурний тип GeS₂ (ПГ *Fdd* 2): a = 1,1691 нм, b = 2,241 нм, c = 0,668 нм, [128]. Координати атомів для сполуки GeS₂ наведені у таблиці 3.23. Елементарну комірку та координаційні многогранники атомів Ge у структурі сполуки GeS₂ зображено на рисунку 3.20.

Таблиця 3.23.

(ondenna empyknyphan man)							
Атом	ПСТ	x / a	y / b	z / c	G		
Ge1	8 <i>a</i>	0	0	0	1,0		
Ge2	16b	1/8	0,139	0	1,0		
S1	16b	0,022	0,080	0,183	1,0		
S2	16 <i>b</i>	0,152	-0,014	-0,183	1,0		
S3	16b	0,062	1/8	-0,278	1,0		

Координати атомів для сполуки GeS2

Рис. 3.20. Елементарна комірка та координаційні многогранники атомів Ge1 та Ge2 у структурі сполуки GeS₂ (ромбічна сингонія (ПГ Fdd2)).

У структурі сполуки $GeS_2(\Pi\Gamma Fdd2)$ атоми Ge1 та Ge2 утворюють тетраедри [Ge1S1₂S2₂] і [Ge2S1₁S2₁S3₂].

3.3.6. Структурний тип ZnBr₂ (ПГ $I4_1/acd$): a = 1,1389 нм, c = 2,1773 нм, [129]. Координати атомів для сполуки GeS₂ (СТ ZnBr₂), [130] наведені у таблиці 3.24. Елементарну комірку та координаційний многогранник атома Ge у структурі сполуки GeS₂ зображено на рисунку 3.21.

Таблиця 3.24.

Координати атомів для сполуки GeS₂

Атом	ПСТ	x / a	y / b	z / c	G
Ge	32g	0,3745	0,3439	0,0604	1,0
S1	16 <i>d</i>	0	1/4	0,0124	1,0
S2	16e	0,2876	0	1/4	1,0
S3	32g	0,0345	0,0166	0,3760	1,0

(структурний тип ZnBr₂)

Рис. 3.21. Елементарна комірка та координаційний многогранник атома Ge у структурі сполуки GeS₂ (CT *ZnBr*₂).

У структурі сполуки GeS_2 (*структурний тип ZnBr*₂) усі атоми Ge мають тетраедричне оточення і координують навколо себе по чотири атоми Сульфуру [GeS1₁S2₁S3₂].

3.3.7. Структурний тип 2H-CdJ₂ (ПГ *P*3*m*1): a = 0,42445 нм, c = 0,68642 нм, [131]. Координати атомів для сполуки SnS₂ (СТ 2*H*-CdJ₂) [63] наведені у таблиці 3.25. Елементарну комірку та координаційний многогранник атома Sn у структурі сполуки SnS₂ зображено на рисунку 3.22.

Таблиця 3.25.

Координати атомів для сполуки SnS₂

Атом	ПСТ	x / a	y / b	z / c	G
Sn	1 <i>a</i>	0	0	0	1,0
S	2d	1/3	2/3	1/4	1,0

 $(структурний тип 2H-CdJ_2)$

Рис. 3.22. Елементарна комірка та координаційний многогранник атома Sn у структурі сполуки SnS₂ (CT *2H-CdJ*₂).

У структурі сполуки SnS_2 (СТ 2H- CdJ_2) усі атоми Sn мають октаедричне оточення і координують навколо себе по шість атомів Сульфуру [SnS₆].

3.3.8. Структурний тип GeSe₂ (ПГ $I\overline{4}$): a = 0,55073 нм, c = 0,99374 нм, [67]. Координати атомів для сполуки GeSe₂ (ПГ $I\overline{4}$) наведені у таблиці 3.26. Елементарну комірку та координаційні многогранники атомів Ge у структурі сполуки GeSe₂ зображено на рисунку 3.23.

Таблиця 3.26.

Координати атомів для сполуки GeSe2

Атом	ПСТ	x / a	y / b	z / c	G
Ge1	2 <i>b</i>	1/2	1/2	0	1,0
Ge2	2d	1/2	0	1/4	1,0
Se	8 <i>g</i>	0,7662	0,260	0,1282	1,0

(власний структурний тип, ПГ 14)

Рис. 3.23. Елементарна комірка та координаційні многогранники атомів Ge1 та Ge2 у структурі сполуки GeSe₂ (CT GeSe₂, $\Pi\Gamma$ I⁻4).

3.3.9. Структурний тип GeSe₂ (ПГ *P*4): a = 0,53389 нм, c = 1,00361 нм, [67]. Координати атомів для сполуки GeSe₂ наведені у таблиці 3.27. Елементарну комірку та координаційні многогранники атомів Ge у структурі сполуки GeSe₂ (ПГ $P\overline{4}$) зображено на рисунку 3.24.

Рис. 3.24. Елементарна комірка та координаційні многогранники атомів Ge1, Ge2 та Ge3 у структурі сполуки GeSe₂ (CT GeSe₂, $\Pi\Gamma$ $P\overline{4}$).

Таблиця 3.27.

Координати атомів для сполуки GeSe₂

Атом	ПСТ	x / a	y / b	z / c	G
Ge1	1 <i>a</i>	0	0	0	1,0

(власний структурний тип, $\Pi \Gamma P \overline{4}$)

Атом	ПСТ	x / a	y / b	z / c	G
Ge2	1 <i>d</i>	1/2	1/2	1/2	1,0
Ge3	2 <i>g</i>	0	1/2	1/4	1,0
Se1	4 <i>h</i>	0,2739	0,2340	0,1280	1,0
Se2	4 <i>h</i>	0,7711	0,7700	0,6273	1,0

3.4. Структурні типи, у яких кристалізуються сполуки систем $PbX - D^{IV}X_2$, $PbX - R_2X_3$, $R_2X_3 - D^{IV}X_2$ (R – P3M; D^{IV} – Si, Ge, Sn; X – S, Se)

3.4.1. Структурний тип Pb₂SiS₄ (ПГ $P2_1/c$): a = 0,64721 нм, b = 0,66344 нм, c = 1,6832 нм, $\beta = 108,805^{\circ}$, [69]. Координати атомів для сполуки Pb₂SiS₄ наведені у таблиці 3.28. Елементарну комірку та координаційні многогранники Pb та Si у структурі сполуки Pb₂SiS₄ зображено на рисунку 3.25.

Таблиця 3.28.

Атом	ПСТ	x / a	y / b	z / c	G			
Pb1	4 <i>e</i>	0,2363	0,2494	0,0223	1,0			
Pb2	4 <i>e</i>	0,2631	0,3117	0,2854	1,0			
Si	4 <i>e</i>	0,0052	-0,0007	0,1355	1,0			
S1	4 <i>e</i>	-0,0008	0,0014	0,3612	1,0			
S2	4 <i>e</i>	0,5791	0,2279	0,1768	1,0			
S 3	4 <i>e</i>	0,6221	0,2398	0,4773	1,0			
S4	4 <i>e</i>	0,7939	0,2483	0,1064	1,0			

Координати атомів для сполуки Pb₂SiS₄ (власний структурний тип)

Рис. 3.25. Елементарна комірка та координаційні многогранники атомів Pb1, Pb2 та Si у структурі сполуки Pb₂SiS₄ (CT *Pb₂SiS₄*).

У структурі сполуки Pb_2SiS_4 атоми Pb координують навколо себе по сім атомів Сульфуру [Pb1S1₂S2₂S3₁S4₂] і [Pb2S1₂S2₂S3₂S4₁], а атом Si – чотири атоми Сульфуру [SiS1₁S2₁S3₁S4₁].

3.4.2. Структурний тип Pb_2GeS_4 (ПГ $P2_1/c$): a = 0,79742 нм, b = 0,89255 нм, c = 1,08761 нм, $\beta = 114,171^\circ$, [70]. Координати атомів для сполуки Pb_2GeS_4 наведені у таблиці 3.29. Елементарну комірку та координаційні многогранники Pb та Ge у структурі сполуки Pb_2GeS_4 зображено на рисунку 3.26.

Таблиця 3.29.

Атом	ПСТ	x / a	y / b	z / c	G
Pb1	4 <i>e</i>	0,0356	0,3161	0,3407	1,0
Pb2	4 <i>e</i>	0,4124	0,4326	0,1551	1,0
Ge	4 <i>e</i>	0,7137	0,1908	0,0063	1,0
S1	4 <i>e</i>	0,2465	-0,0171	0,1256	1,0

Координати атомів для сполуки Pb₂GeS₄ (власний структурний тип)

Атом	ПСТ	x / a	y / b	z / c	G
S2	4 <i>e</i>	0,7644	0,0900	0,2027	1,0
S3	4 <i>e</i>	0,4437	0,2002	0,3980	1,0
S4	4 <i>e</i>	0,9193	0,3691	0,0610	1,0

Рис. 3.26. Елементарна комірка та координаційні многогранники атомів Pb1, Pb2 та Ge у структурі сполуки Pb₂GeS₄ (CT *Pb₂GeS₄*).

У структурі сполуки Pb_2GeS_4 атом Pb1 координує навколо себе по сім атомів Сульфуру [Pb1S1₂S2₂S3₁S4₂], атом Pb2 – шість атомів Сульфуру [Pb2S1₁S2₁S3₃S4₁], а атом Ge – чотири атоми Сульфуру [GeS1₁S2₁S3₁S4₁].

3.4.3. Структурний тип Na₆Pb₃P₄Se₁₆ (ПГ 143*d*): a = 1,43479 нм, [132]. Координати атомів для сполуки Pb₂GeS₄ (СТ $Na_6Pb_3P_4Se_{16}$) [71] наведені у таблиці 3.30. Елементарну комірку та координаційні многогранники атомів Pb та Ge у структурі сполуки Pb₂GeS₄ зображено на рисунку 3.27.

Таблиця 3.30.

$(CmpyKmypHuu mun Nu_{61} U_{31} _{4}Se_{16})$									
Атом	G								
Pb1	24 <i>d</i>	3/4	0,2611	0	1,0				

Координати атомів для сполуки Pb₂GeS₄

Атом	ПСТ	x / a	y / b	z / c	G
Pb2	24 <i>d</i>	3/4	0,5912	0	0,324
Ge	16 <i>c</i>	0,9756	0,4756	0,0245	1,0
S1	16 <i>c</i>	0,0676	0,5676	0,9324	1,0
S2	48 <i>e</i>	0,0719	0,3719	0,0921	1,0

Рис. 3.27. Елементарна комірка та координаційні многогранники атомів Pb1, Pb2 та Ge у структурі сполуки Pb_2GeS_4 (CT $Na_6Pb_3P_4Se_{16}$).

У структурі сполуки Pb_2GeS_4 (СТ $Na_6Pb_3P_4Se_{16}$) атоми Свинцю утворюють два види координаційних многогранників: атоми Pb1 центровані у тригональних призмах із двома додатковими атомами [Pb1S1₂S2₆], а Pb2 – у несиметричних октаедрах [Pb2S2₆]. Атоми Ge координують навколо себе по чотири атоми Сульфуру, утворюючи тетраедри [GeS1₁S2₃].

3.4.4. Структурний тип PbGeS₃ (ПГ $P2_1/c$): a = 0,7224 нм, b = 1,0442 нм, c = 0,6825 нм, $\beta = 105,7^{\circ}$, [78]. Координати атомів для сполуки PbGeS₃ наведені у таблиці 3.31. Елементарну комірку та координаційні многогранники атомів Pb та Ge у структурі сполуки PbGeS₃ зображено на рисунку 3.28.

Координати атомів для сполуки PbGeS₃

			11 11		
Атом	ПСТ	x / a	y / b	z / c	G
Pb	4 <i>e</i>	0,1371	0,0796	0,2808	1,0
Ge	4 <i>e</i>	0,3183	0,7063	0,4908	1,0
S1	4 <i>e</i>	0,4870	0,2191	0,6904	1,0
S2	4 <i>e</i>	0,2305	0,5079	0,4159	1,0
S 3	4e	0,0573	0,8209	0,4103	1,0

(власний структурний тип)

Рис. 3.28. Елементарна комірка та координаційні многогранники атомів Pb та Ge у структурі сполуки PbGeS₃ (CT *PbGeS₃*).

У структурі сполуки PbGeS₃ атоми Pb координують навколо себе по сім атомів Сульфуру [PbS1₂S2₂S3₃], а атоми Ge – чотири атоми Сульфуру [GeS1₂S2₁S3₁].

3.4.5. Структурний тип [NH₄]CdCl₃ (ПГ *Pnma*): a = 0,898 нм, b = 1,490 нм, c = 0,398 нм, [133]. Координати атомів для сполуки PbSnS₃ (СТ [*NH*₄]*CdCl*₃) [73] наведені у таблиці 3.32. Елементарну комірку та координаційні многогранники атомів Pb та Sn у структурі сполуки PbSnS₃ зображено на рисунку 3.29.

У структурі сполуки PbSnS₃ (СТ [*NH*₄]*CdCl*₃) атоми Плюмбуму утворюють тригональні призми з двома додатковими атомами

[PbS1₁S2₃S3₄], а атоми Sn координують навколо себе по шість атомів Сульфуру, утворюючи октаедри [SnS1₃S2₂S3₁].

Таблиця 3.32.

(Структурний тип [1114]СиСгз)								
Атом	ПСТ	x / a	y / b	z/c	G			
Pb	4 <i>c</i>	0,5063	3/4	0,1729	1,0			
Sn	4 <i>c</i>	0,1685	1/4	0,0524	1,0			
S1	4 <i>c</i>	-0,0167	3/4	0,1048	1,0			
S2	4 <i>c</i>	0,3387	3/4	-0,0063	1,0			
S3	4 <i>c</i>	0,2827	1/4	0,2132	1,0			

Координати атомів для сполуки PbSnS₃

Рис. 3.29. Елементарна комірка та координаційні многогранники атомів у структурі сполуки PbSnS₃ (СТ [*NH*₄]*CdCl*₃)

3.4.6. Структурний тип Pb₂SiSe₄ (ПГ $P2_1/c$): a = 0,85670 нм, b = 0,70745 нм, c = 1,36160 нм, $\beta = 108,355^\circ$, [69]. Координати атомів для сполуки Pb₂SiS₄ наведені у таблиці 3.33. Елементарну комірку та координаційні многогранники атомів Pb та Si у структурі сполуки Pb₂SiSe₄ зображено на рисунку 3.30.

Таблиця 3.33.

Координати атомів для сполуки Pb₂SiSe₄

Атом	ПСТ	x / a	y / b	z / c	G		
Pb1	4 <i>e</i>	0,0543	0,1581	0,3715	1,0		

(власний структурний тип)

Атом	ПСТ	x / a	y / b	z / c	G
Pb2	4 <i>e</i>	0,5602	0,1479	0,3672	1,0
Si	4 <i>e</i>	0,2037	0,2400	0,1449	1,0
Se1	4 <i>e</i>	0,2737	0,4779	0,2640	1,0
Se2	4 <i>e</i>	0,7437	0,4726	0,2603	1,0
Se3	4 <i>e</i>	0,3668	0,2626	0,0420	1,0
Se4	4 <i>e</i>	0,9313	0,2602	0,0557	1,0

Рис. 3.30. Елементарна комірка та координаційні многогранники атомів Pb1, Pb2 та Si у структурі сполуки Pb₂SiSe₄ (CT *Pb₂SiSe₄*).

У структурі сполуки Pb_2SiSe_4 для атомів Pb1 і Pb2 характерним є KЧ = 7 ([Pb1Se1_2Se2_2Se3_1Se4_2] і [Pb2Se1_2Se2_2Se3_2Se4_1]), а атоми Si координують по чотири атоми Селену [SiSe1_1Se2_1Se3_1Se4_1].

3.4.7. Структурний тип CaFe₂O₄ (ПГ *Pnma*): a = 0,9922 нм, b = 0,3017 нм, c = 1,0689 нм, [154]. Координати атомів для сполуки Sc₂PbS₄ (СТ *CaFe₂O₄*) [75] наведені у таблиці 3.34. Елементарна комірку та координаційні многогранники атомів Sc та Pb у структурі сполуки Sc₂PbS₄ зображені на рисунку 3.31.

Таблиця 3.34.

Координати атомів для сполуки Sc₂PbS₄

 ATOM
 ΠCT x/a y/b z/c G

 Sc1
 4c
 0,4420
 1/4
 0,3893
 1,0

 $(структурний тип CaFe_2O_4)$

Атом	ПСТ	x / a	y / b	z / c	G
Sc2	4 <i>c</i>	0,4178	1/4	0,9025	1,0
Pb	4 <i>c</i>	0,76042	1/4	0,33074	1,0
S1	4 <i>c</i>	0,2037	1/4	0,8424	1,0
S2	4 <i>c</i>	0,1221	1/4	0,5279	1,0
S3	4 <i>c</i>	0,5293	1/4	0,2156	1,0
S4	4 <i>c</i>	0,4119	1/4	0,5729	1,0

Рис. 3.31. Елементарна комірка та координаційні многогранники атомів Sc1, Sc2 та Pb у структурі сполуки Sc_2PbS_4 (CT $CaFe_2O_4$).

У структурі сполуки Sc_2PbS_4 атоми Sc1 та Sc2 координують навколо себе по шість атомів Сульфуру, утворюючи октаедри [Sc1S1₂S3₁S4₃] і [Sc2S1₁S2₃S3₂] відповідно, а атом Pb – вісім атомів Сульфуру [PbS1₂S2₂S3₂S4₂].

3.4.8. Структурний тип Er_2PbS_4 (ПГ *Pnma* $Cmc2_1$): *a* = 0,7863 нм, *b* = 2,8525 нм, *c* = 1,1995 нм, [76]. Координати атомів для сполуки Y₂PbS₄ (СТ Er_2PbS_4) [76] наведені у таблиці 3.35. Елементарну комірку та координаційні многогранники атомів Y та Pb у структурі сполуки Y₂PbS₄ зображено на рисунку 3.32.

Координати атомів для сполуки Y2PbS4

Атом	ПСТ	x / a	y / b	z / c	G
Y1	8 <i>b</i>	0,249	0,0762	0,2670	1,0
Y2	4 <i>a</i>	0	0,0694	0,9111	1,0
Y3	4 <i>a</i>	1/2	0,0713	0,9336	1,0
Y4	8 <i>b</i>	0,257	0,1796	0,7864	1,0
Y5	4 <i>a</i>	1/2	0,1738	0,4359	1,0
Y6	4 <i>a</i>	0	0,1772	0,4261	1,0
Pb1	4 <i>a</i>	0	0,0477	0,5596	1,0
Pb2	4 <i>a</i>	1/2	0,0375	0,6271	1,0
Pb3	8 <i>b</i>	0,2351	0,2062	0,1323	0,5
Pb4	8 <i>b</i>	0,248	0,2093	0,0918	0,5
S1	8 <i>b</i>	0,249	0,0608	0,0608	1,0
S2	4 <i>a</i>	1/2	0,1426	0,227	1,0
S3	4 <i>a</i>	0	0,1649	0,938	1,0
S4	4 <i>a</i>	1/2	0,1630	0,952	1,0
S5	8 <i>b</i>	0,252	0,0870	0,7589	1,0
S 6	4 <i>a</i>	0	0,0187	0,337	1,0
S7	4 <i>a</i>	1/2	0,0163	0,311	1,0
S8	8 <i>b</i>	0,261	0,2365	0,372	1,0
S9	4 <i>a</i>	0	0,1338	0,229	1,0
S10	8 <i>b</i>	0,231	0,1161	0,4776	1,0
S11	4 <i>a</i>	1/2	0,2056	0,658	1,0
S12	4 <i>a</i>	0	0,2162	0,645	1,0

 $(структурний тип Er_2PbS_4)$

У структурі сполуки Y₂PbS₄ атоми Y координують навколо себе по шість атомів Сульфуру, утворюючи октаедри: [Y1S1₁S2₁S6₁S7₁S9₁S10₁], [Y2S1₂S3₁S5₂S6₁], [Y3S1₂S4₁S5₂S7₁], [Y4S3₁S4₁S5₁S8₁S11₁S12₁], [Y5S2₁S8₂S10₂S11₁], [Y6S8₂S9₁S10₂S12₁]. Атоми Плюмбуму утворюють два види многогранників: тригональні призми із одним додатковим атомом – $[Pb1S1_2S5_2S6_1S10_2]$ і $[Pb2S1_2S5_2S7_1S10_2]$ та тригональні призми із двома додатковими атомами – $[Pb3S2_1S3_1S4_1S8_2S9_1S11_1S12_1]$ і $[Pb4S2_1S3_1S4_1S8_2S9_1S11_1S12_1]$.

Рис. 3.32. Елементарна комірка та координаційні многогранники атомів Y1, Y2, Y3, Y4, Y5, Y6, Pb1, Pb2, Pb3 та Pb4 у структурі сполуки Y₂PbS₄ (CT *Er*₂*PbS*₄).

3.4.9. Структурний тип Th₃P₄ (ПГ *I*43*d*): a = 0,8637 нм, [121]. Координати атомів для сполуки La₂PbS₄ (СТ *Th₃P₄*) [77] наведені у таблиці 3.36. Елементарну комірку та координаційний многогранник статистичної суміші M (66,7 % La + 33,3 % Pb) у структурі сполуки La₂PbS₄ зображено на рисунку 3.33.

У структурі сполуки La₂PbS₄ атоми статистичної суміші М координують навколо себе по вісім атомів Сульфуру [MS₈].

Координати атомів для сполуки La₂PbS₄

			77 ····	5 47	
Атом	ПСТ	x / a	y / b	z / c	G
М	12 <i>a</i>	0,375	0	1/4	0,667 La + 0,333 Pb
S	16 <i>c</i>	0,083	0,083	0,083	1,0

Рис. 3.33. Елементарна комірка та координаційний многогранник у структурі сполуки La₂PbS₄ (СТ *Th*₃*P*₄).

3.4.10. Структурний тип Tm_2PbSe_4 (ПГ *Pnma*): a = 1,2505 нм, b = 0,40630 нм, c = 1,4820 нм, [84]. Координати атомів для сполуки Yb₂PbS₄ (СТ *Tm*₂*PbSe*₄) [78] наведені у таблиці 3.37. Елементарну комірку та координаційні многогранники атомів Yb та Pb у структурі сполуки Yb₂PbS₄ зображено на рисунку 3.34.

Таблиця 3.37.

Атом	ПСТ	x / a	y / b	z / c	G
Yb1	4 c	0,43733	1/4	0,38884	1,0
Yb2	4 c	0,41635	1/4	0,90142	1,0
Pb1	4 c	0,7763	1/4	0,3391	0,5
Pb2	4 c	0,7420	1/4	0,3304	0,5

Координати атомів для сполуки Yb₂PbS₄ (структурний тип Tm₂PbSe₄)

Атом	ПСТ	x / a	y / b	z / c	G
Se1	4 c	0,2054	1/4	0,8326	1,0
Se2	4 c	0,1263	1/4	0,5286	1,0
Se3	4 c	0,5268	1/4	0,2157	1,0
Se4	4 c	0,4120	1/4	0,5756	1,0

Рис. 3.34. Елементарна комірка та координаційні многогранники атомів Yb1, Yb2, Pb1 та Pb2 у структурі сполуки Yb₂PbS₄ (CT *Tm*₂PbSe₄).

У структурі сполуки Yb₂PbS₄ атоми Yb1 та Yb2 координують навколо себе по шість атомів Сульфуру, утворюючи октаедри [Yb1S1₂S3₁S4₃] і [Yb2S1₁S2₃S3₂]. Атоми Плюмбуму утворюють тригональні призми з двома додатковими атомами [Pb1S1₂S2₂S3₂S4₂] і [Pb2S1₂S2₂S3₂S4₂].

3.4.11. Структурний тип $Y_6Pb_2Se_{11}$ (ПГ *Стст*): a = 0,40620 нм, b = 1,3467 нм, c = 3,7624 нм, [79]. Координати атомів для сполуки $Y_6Pb_2Se_{11}$ наведені у таблиці 3.38. Елементарну комірку та координаційні многогранники атомів у структурі сполуки $Y_6Pb_2Se_{11}$ зображено на рисунку 3.35.

Таблиця 3.38.

Координати атомів для сполуки Y₆Pb₂Se₁₁

			10 01		
Атом	ПСТ	x / a	y / b	z / c	G
Y1	8f	0	0,0257	0,63328	1,0
Y2	8f	0	0,2462	0,18144	1,0
Y3	4 <i>a</i>	0	0	0	1,0
М	8f	0	0,2761	0,55707	0,5Y + 0,5Pb
Pb	4 <i>c</i>	0	0,5148	1/4	1,0
Se1	8f	0	0,0810	0,06902	1,0
Se2	8f	0	0,1203	0,70071	1,0
Se3	8f	0	0,3394	0,11226	1,0
Se4	8f	0	0,3575	0,01521(5)	1,0
Se5	<u>8</u> f	0	0,6047	0,16219	1,0
Se6	4c	0	0,1629	1/4	1,0

(власний структурний тип)

Рис. 3.35. Елементарна комірка та координаційні многогранники атомів Y1, Y2, Y3, Y4, M (0,5Y + 0,5Pb) та Pb у структурі сполуки Y₆Pb₂Se₁₁ (CT $Y_6Pb_2Se_{11}$).

У структурі сполуки $Y_6Pb_2Se_{11}$ атоми Y1, Y2 та Y3 координують навколо себе по шість атомів Селену, утворюючи октаедри [Y1Se1₁Se2₁Se3₂Se5₂], [Y2Se2₂Se3₁Se5₂Se6₁] і [Y3Se1₂Se4₄], атоми статистичної суміші М координують по сім атомів Селену, утворюючи тригональні призми із одним додатковим атомом [MSe1₂Se3₂Se4₃], а атоми Рb координують навколо себе по вісім атомів Селену, утворюючи тригональні призми із двома додатковими атомами [PbSe2₄Se5₂Se6₂].

3.4.12. Структурний тип Dy₃Ge_{1,25}S₇ (ПГ P6₃): *a* = 0,973 нм,

c = 0,582 нм, [89]. Координати атомів для сполуки Y₃Si_{1,25}S₇ (СТ $Dy_3Ge_{1,25}S_7$) [86] наведені у таблиці 3.39. Елементарну комірку та координаційні многогранники атомів Y та Si у структурі сполуки Y₃Si_{1,25}S₇ зображено на рисунку 3.36.

Таблиця 3.39.

		1, 11	5 -	-, ,,	
Атом	ПСТ	x / a	y / b	z / c	G
Y	6 <i>c</i>	0,2247	0,3569	0,759	1
Si1	2 <i>b</i>	1/3	2/3	1/3	1
Si2	2 <i>a</i>	0	0	0,980	0,25
S 1	2 <i>b</i>	1/3	2/3	0,976	1
S2	6 <i>c</i>	0,9042	0,1541	0,710	1
S3	6 <i>c</i>	0,4222	0,8966	0,481	1

Координати атомів для сполуки Y₃Si_{1,25}S₇ (структурний тип Dy₃Ge_{1,25}S₇)

У структурі сполуки Y₃Si_{1,25}S₇ атоми Y координують навколо себе по сім атомів Сульфуру, утворюючи тетраедри із одним додатковим атомом [YS1₁S2₃S3₃]. Атоми Si утворюють два види многогранників: тетраедри [Si1S1₁S3₃] і октаедри [Si2S2₆].

Рис. 3.36. Елементарна комірка та координаційні многогранники атомів Y, Si1 та Si2 у структурі сполуки $Y_3Si_{1,25}S_7$ (CT $Dy_3Ge_{1,25}S_7$).

3.4.13. Структурний тип La₂GeS₅ (ПГ $P2_1/c$): a = 0,7641 нм, b = 1,2702 нм, c = 0,7893 нм, $\beta = 101,39^{\circ}, [135]$. Координати атомів для сполуки La₂SiS₅ (СТ La₂GeS₅) [88] наведені у таблиці 3.40. Елементарну комірку та координаційні многогранники атомів La та Si у структурі сполуки La₂SiS₅ зображено на рисунку 3.37.

Таблиця 3.40.

Координати атомів для сполуки La₂SiS₅

Атом	ПСТ	x / a	y / b	z / c	G
La1	4 <i>e</i>	0,74054	0,09529	0,04559	1,0
La2	4 <i>e</i>	0,66488	0,66522	0,13363	1,0
Si	4 <i>e</i>	0,83032	0,38347	0,09619	1,0
S1	4 <i>e</i>	1,02312	0,27396	0,05064	1,0
S2	4 <i>e</i>	0,92134	0,50034	0,28160	1,0
S3	4 <i>e</i>	0,36080	0,12101	0,00203	1,0
<u>S</u> 4	4e	0,67558	0,47033	-0,11162	1,0
S5	4 <i>e</i>	0,62829	0,29811	0,19537	1,0

 $(структурний тип La_2GeS_5)$

Рис. 3.37. Елементарна комірка та координаційні многогранники атомів La1, La2 та Si у структурі сполуки La₂SiS₅ (CT La_2GeS_5).

У структурі сполуки La₂SiS₅ атоми La1 координують навколо себе по вісім атомів Сульфуру, утворюючи тригональні призми із $[La1S1_1S2_2S3_2S4_1S5_2],$ додатковими атомами атоми La2 двома координують навколо себе по дев'ять атомів Сульфуру, утворюючи тригональні призми i3 трьома додатковими атомами $[La2S1_2S2_1S3_2S4_2S5_2]$, а атоми Si координують навколо себе по чотири атоми Сульфуру [SiS1₁S2₁S4₁S5₁], утворюючи симетричні тетраедри.

3.4.14. Структурний тип La₄Ge₃S₁₂ (ПГ R3c): a = 1,940 нм, c = 0,810 нм, [136]. Координати атомів для сполуки Ce₄Si₃S₁₂ (СТ La₄Ge₃S₁₂) [90] наведені у таблиці 3.41. Елементарну комірку та координаційні многогранники атомів Се та Ge у структурі сполуки Ce₄Si₃S₁₂ зображено на рисунку 3.38.

Таблиця 3.41.

Атом	ПСТ	x / a	y / b	z / c	G
Ce1	6 <i>a</i>	0	0	0	1,0
Ce2	18b	0,2284	0,2307	0,7032	1,0
Si	18b	0,2010	0,1864	0,153	1,0
S 1	18b	0,2861	0,1794	- 0,002	1,0

Координати атомів для сполуки $Ce_4Si_3S_{12}$ (структурний тип $La_4Ge_3S_{12}$)

Атом	ПСТ	x / a	y / b	z / c	G
S2	18b	0,1258	0,0675	0,247	1,0
S 3	18b	0,1178	0,2019	0,006	1,0
S4	18b	0,2677	0,2684	0,344	1,0

Рис. 3.38. Елементарна комірка та координаційні многогранники атомів Ce1, Ce2 та Si у структурі сполуки Ce₄Si₃S₁₂ (CT $La_4Ge_3S_{12}$).

У структурі сполуки $Ce_4Si_3S_{12}$ атоми Ce1 координують навколо себе по дев'ять атомів Сульфуру, утворюючи тригональні призми із трьома додатковими атомами [Ce1S2₆S3₃], атоми Ce2 координують навколо себе по сім атомів Сульфуру, утворюючи тригональні призми із одним додатковим атомом [Ce2S1₂S2₁S3₂S4₂]. Атоми Si центровані у тетраедрах, утворених із чотирьох атомів Сульфуру [SiS1₁S2₁S3₁S4₁].

3.4.15. Структурний тип Се₆Si₄S₁₇ (ПГ *P*1): a = 0,89576 нм, b = 1,00022 нм, c = 1,42651 нм, $\alpha = 82,19^{\circ}$, $\beta = 86,89^{\circ}$, $\gamma = 89,51^{\circ}$, [90]. Координати атомів для сполуки Се₆Si₄S₁₇ наведені у таблиці 3.42. Елементарну комірку та координаційні многогранники атомів Се та Si у структурі сполуки Се₆Si₄S₁₇ зображено на рисунку 3.39.

Таблиця 3.42.

Координати атомів для сполуки Се₆Si₄S₁₇

			1		
Атом	ПСТ	x / a	y / b	z / c	G
Ce1	2 <i>i</i>	0,47753	0,73133	0,54087	1,0
Ce2	2 <i>i</i>	0,58162	0,57886	0,16660	1,0
Ce3	2 <i>i</i>	0,83025	0,91349	0,34206	1,0
Ce4	2 <i>i</i>	0,12796	0,43096	0,32673	1,0
Ce5	2 <i>i</i>	0,39393	0,11542	0,18165	1,0
Ce6	2 <i>i</i>	0,94665	0,23952	0,00062	1,0
Si1	2 <i>i</i>	0,2500	0,0000	0,4154	1,0
Si2	2 <i>i</i>	0,2487	0,4410	0,0773	1,0
Si3	2 <i>i</i>	0,7311	0,9382	0,0987	1,0
Si4	2 <i>i</i>	0,7735	0,5567	0,3949	1,0
S 1	2 <i>i</i>	0,8407	0,5015	0,0567	1,0
S2	2 <i>i</i>	0,4863	0,0036	0,3771	1,0
S3	2 <i>i</i>	0,3159	0,5179	0,4673	1,0
S4	2 <i>i</i>	0,6059	0,7000	0,3460	1,0
S5	2 <i>i</i>	0,1785	0,0192	0,0428	1,0
S 6	2 <i>i</i>	0,7972	0,4107	0,3047	1,0
S 7	2 <i>i</i>	0,5097	0,8719	0,1133	1,0
S 8	2 <i>i</i>	0,2415	0,6149	0,1498	1,0
S 9	2 <i>i</i>	0,4578	0,3527	0,0476	1,0
S10	2 <i>i</i>	0,1145	0,2886	0,1605	1,0
S11	2 <i>i</i>	0,4282	0,3547	0,2790	1,0
S12	2 <i>i</i>	0,2054	0,1905	0,4598	1,0
S13	2 <i>i</i>	0,1883	0,8649	0,5373	1,0
S14	2 <i>i</i>	0,8674	0,7844	0,1666	1,0
S15	2 <i>i</i>	0,1445	-0,0297	0,2926	1,0
S16	2 <i>i</i>	0,7477	0,1134	0,1681	1,0

(власний структурний тип)

Атом	ПСТ	x / a	y / b	z / c	G
S17	2 <i>i</i>	0,9818	0,6520	0,3981	1,0

Рис. 3.39. Елементарна комірка та координаційні многогранники атомів Ce1, Ce2, Ce3, Ce4, Ce5, Ce6, Si1, Si2, Si3 та Si4 у структурі сполуки Ce₆Si₄S₁₇ (CT $Ce_6Si_4S_{17}$).

У структурі сполуки Ce₆Si₄Se₁₇ атоми Ce4 координують навколо себе по сім атомів Сульфуру, утворюючи тригональні призми із одним додатковим атомом [Ce4S6₁S8₁S10₁S11₁S12₁S17₂], атоми Ce3, Ce5 та Ce6 координують по вісім атомів Сульфуру, утворюючи тригональні призми із двома додатковими атомами [Ce3S2₁S4₁S13₁S12₁S14₁S15₁S16₁S17₁],

 $[Ce5S2_1S5_1S7_1S9_1S10_1S11_1S15_1S16_1]$ і $[Ce6S1_2S5_2S8_1S10_1S14_1S16_1]$, атоми Ce1 та Ce2 координують по дев'ять атомів Сульфуру, утворюючи тригональні призми із трьома додатковими атомами $[Ce1S2_2S3_2S4_1S6_1S11_1S12_1S13_1]$ і $[Ce2S1_1S4_1S6_1S7_1S8_1S11_2S14_2]$.

Атоми Si утворюють тетраедри [Si1S2₁S12₁S13₁S15₁], [Si2S1₁S8₁S9₁S10₁], [Si3S5₁S7₁S14₁S16₁] та [Si4S3₁S4₁S6₁S17₁]. **3.4.16.** Структурний тип U₂PbSe₅ (ПГ $P2_1/c$): a = 0,8605 нм, b = 0,7788 нм, c = 1,227 нм, $\beta = 90,0^{\circ}$, [137]. Координати атомів для сполуки Nd₂SiS₅ (СТ U_2PbSe_5) [87] наведені у таблиці 3.43. Елементарну комірку та координаційні многогранники атомів Nd та Si у структурі сполуки Nd₂SiS₅ зображено на рисунку 3.40.

Таблиця 3.43.

Атом	ПСТ	x / a	y / b	z / c	G	
Nd1	4 <i>e</i>	0,503	0,022	0,819	1,0	
Nd2	4 <i>e</i>	0,252	0,920	0,491	1,0	
Si	4 <i>e</i>	- 0,012	0,486	0,320	1,0	
S1	4 <i>e</i>	0,452	0,163	0,599	1,0	
S2	4 <i>e</i>	0,041	0,335	0,088	1,0	
S3	4 <i>e</i>	0,276	0,168	0,316	1,0	
S4	4 <i>e</i>	0,280	0,541	0,498	1,0	
S5	4 <i>e</i>	0,267	0,804	0,719	1,0	

Координати атомів для сполуки Nd₂SiS₅ (структурний тип U₂PbSe₅)

Рис. 3.40. Елементарна комірка та координаційні многогранники атомів Nd1, Nd2 та Si у структурі сполуки Nd₂SiS₅ (CT U_2PbSe_5).

У структурі сполуки Nd₂SiS₅ атоми Nd1 координують навколо себе по вісім атомів Сульфуру, утворюючи тригональні призми із

двома додатковими атомами [Nd1S1₂S3₂S4₂S5₂], атоми Nd2 координують по сім атомів Сульфуру, утворюючи тригональні призми із одним додатковим атомом [Nd2S1₂S2₂S3₁S4₁S5₁]. Для атомів Si характерним є тетраедричне оточення – [SiS2₁S3₁S4₁S5₁].

3.4.17. Структурний тип Dy₄Si₃S₁₂ (ПГ $P2_1/c$): a = 0,9813 нм, b = 1,09387 нм, c = 1,6360 нм, $\beta = 102,86^{\circ}$, [95]. Координати атомів для сполуки Gd₄Si₃S₁₂ (СТ $Dy_4Si_3S_{12}$) [93] наведені у таблиці 3.44. Елементарну комірку та координаційні многогранники атомів Gd та Si у структурі сполуки Gd₄Si₃S₁₂ зображено на рисунку 3.41.

Таблиця 3.44.

Координати	атомів	ппа сполуки	Cd.Si.S.	
координати	arowind	длл	CHOMYNH	004013012

Атом	ПСТ	x / a	y / b	z / c	G
Gd1	4 <i>e</i>	0,61132	0,98313	0,12507	1,0
Gd2	4 <i>e</i>	0,87752	0,65265	0,06004	1,0
Gd3	4 <i>e</i>	0,53286	0,37699	0,12985	1,0
Gd4	4 <i>e</i>	0,32365	0,75955	0,28899	1,0
Si1	4 <i>e</i>	0,50585	0,77564	0,18821	1,0
Si2	4 <i>e</i>	0,41893	0,15293	0,18301	1,0
Si3	4 <i>e</i>	0,74990	0,21297	0,13600	1,0
S 1	4 <i>e</i>	0,84781	0,83566	0,18881	1,0
S2	4 <i>e</i>	0,61310	0,76168	0,01339	1,0
S 3	4 <i>e</i>	0,90927	0,84820	- 0,05348	1,0
S4	4 <i>e</i>	0,04408	0,43704	0,09415	1,0
S5	4 <i>e</i>	0,34910	0,48027	0,22733	1,0
S6	4 <i>e</i>	0,66637	0,47328	- 0,02218	1,0
S 7	4 <i>e</i>	0,15249	0,73108	0,12630	1,0
S 8	4 <i>e</i>	0,65817	0,05906	- 0,02814	1,0

 $(структурний тип Dy_4Si_3S_{12})$

Атом	ПСТ	x / a	y / b	z / c	G
S9	4 <i>e</i>	0,75819	0,54314	0,18856	1,0
S10	4 <i>e</i>	0,22182	0,55396	0,11670	1,0
S11	4 <i>e</i>	0,70031	0,88416	- 0,06081	1,0
S12	4 <i>e</i>	0,70969	0,71551	0,23358	1,0

У структурі сполуки $Gd_4Si_3S_{12}$ атоми Gd1, Gd2 та Gd3координують навколо себе по вісім атомів Сульфуру, утворюючи тригональні призми i3 лвома лолатковими атомами $[Gd2S4_1S5_1S6_1S7_2S9_1S10_1S12_1]$ $[Gd1S1_1S2_1S3_1S4_1S5_1S8_1S11_2],$ 1 $[Gd3S1_1S2_1S3_1S5_1S8_1S9_2S12_1]$, атоми Gd4 координують по сім атомів Сульфуру, утворюючи тригональні призми із одним додатковим атомом [Gd4S1₁S2₁S6₁S7₁S8₂S10₁]. Атоми Si координують по чотири $[Si1S7_1S8_1S9_1S10_1], [Si2S2_1S5_1S6_1S11_1]$ Сульфуру атоми 1 [Si3S1₁S2₁S4₁S12₁].

Рис. 3.41. Елементарна комірка та координаційні многогранники атомів Gd1, Gd2, Gd3, Gd4, Si1, Si2 та Si3 у структурі сполуки Gd₄Si₃S₁₂ (CT $Dy_4Si_3S_{12}$).

3.4.18. Структурний тип La₂SnS₅ (ПГ *Pbam*): a = 1,126 нм, b = 0,789 нм, c = 0,399 нм, [109]. Координати атомів для сполуки La₂SnS₅ наведені у таблиці 3.45. Елементарну комірку та координаційні многогранники атомів La та Sn у структурі сполуки La₂SnS₅ зображено на рисунку 3.42.

У структурі сполуки La₂SnS₅ атоми La координують навколо себе по дев'ять атомів Сульфуру, утворюючи тригогальні призми із

трьома додатковими атомами [LaS1₂S2₄S3₃]. Атоми Sn центровані в октаедрах: [SnS2₂S3₄].

Таблиця 3.45.

Атом	ПСТ	x / a	y / b	z / c	G
La	4 <i>h</i>	0,3310	0,0740	1/2	1,0
Sn	2a	0	0	0	1,0
S 1	2c	0	1/2	0	1,0
S2	4g	0,2980	0,3570	0	1,0
S 3	4h	0,0690	0,1870	1/2	1,0

Координати атомів для сполуки La₂SnS₅ (власний структурний тип)

Рис. 3.42. Елементарна комірка та координаційні многогранники атомів La та Sn у структурі сполуки La₂SnS₅ (CT *La₂SnS₅*).

РОЗДІЛ 4 КВАЗІПОТРІЙНІ СИСТЕМИ R₂X₃ – PbX – D^{IV}X₂ (R – P3M; D^{IV} – Si, Ge, Sn; X – S, Se)

4.1. Ізотермічні перерізи. 4.1.1. Системи R₂S₃ – PbS – SiS₂ [138-143].

Фазові рівноваги за температури 770 К у системах $R_2S_3 - PbS - SiS_2$ (R – Y, La i Er) зображено на рисунках 4.1.-4.3.

Фазові поля у досліджених системах зазначені у таблицях 4.1.-4.3.

Рис. 4.1. Ізотермічний переріз системи $Y_2S_3 - PbS - SiS_2$ за температури 770 К.

Рис. 4.2. Ізотермічний переріз системи $La_2S_3 - PbS - SiS_2$ за температури 770 К.

Рис. 4.3. Ізотермічний переріз системи $Er_2S_3 - PbS - SiS_2$ за температури 770 К.
Таблиця 4.1.

№ п/п поля	Фазові поля
1	$Y_2S_3 + Y_2PbS_4$
2	$PbS + Y_2PbS_4$
3	$PbS + Pb_2SiS_4$
4	$SiS_2 + Pb_2SiS_4$
5	$SiS_2 + Y_3Si_{1,25}S_7$
6	$Y_2S_3 + Y_3Si_{1,25}S_7$
7	$Y_2S_3 + Y_2PbSi_2S_8$
8	$Y_2S_3 + Pb_2SiS_4$
9	$Y_2PbS_4 + Pb_2SiS_4$
10	$Y_3Si_{1,25}S_7 + Y_2PbSi_2S_8$
11	$SiS_2 + Y_2PbSi_2S_8$
12	$Pb_2SiS_4 + Y_2PbSi_2S_8$
13	$Y_2S_3 + Y_2PbS_4 + Pb_2SiS_4$
14	$Y_2S_3 + Pb_2SiS_4 + Y_2PbSi_2S_8$
15	$Y_2S_3 + Y_3Si_{1,25}S_7 + Y_2PbSi_2S_8$
16	$PbS + Y_2PbS_4 + Pb_2SiS_4$
17	$SiS_2 + Pb_2SiS_4 + Y_2PbSi_2S_8$
18	$SiS_2 + Y_3Si_{1,25}S_7 + Y_2PbSi_2S_8$

Фазові поля системи Y2S3 – PbS – SiS2 за температури 770 К

Таблиця 4.2.

Фазові поля системи $La_2S_3 - PbS - SiS_2$ за температури 770 К

№ п/п поля	Фазові поля
1	$La_2S_3 + La_{2+2/3x}Pb_{1-x}S_4 \ (x = 0,86)$
2	$La_{2+2/3x}Pb_{1-x}S_4 (x = 0 - 0,86)$
3	$PbS + La_2PbS_4$
4	$PbS + Pb_2SiS_4$
5	$SiS_2 + Pb_2SiS_4$

№ п/п поля	Фазові поля
6	$SiS_2 + La_2SiS_5$
7	$La_2S_3 + La_2SiS_5$
8	$La_{2}SiS_{5} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0,39 - 0,86)$
9	$La_{2+2/3x}Pb_{1-x}S_4 \ (x=0-0,39) + La_2PbSi_2S_8$
10	$PbS + La_2PbSi_2S_8$
11	$Pb_2SiS_4 + La_2PbSi_2S_8$
12	$SiS_2 + La_2PbSi_2S_8$
13	$La_2SiS_5 + La_2PbSi_2S_8$
14	$La_{2}S_{3} + La_{2}SiS_{5} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0,86)$
15	$La_{2}SiS_{5} + La_{2}PbSi_{2}S_{8} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0, 39)$
16	$PbS + La_2PbS_4 + La_2PbSi_2S_8$
17	$SiS_2 + La_2SiS_5 + La_2PbSi_2S_8$
18	$PbS + Pb_2SiS_4 + La_2PbSi_2S_8$
19	$SiS_2 + Pb_2SiS_4 + La_2PbSi_2S_8$

Таблиця 4.3.

Фазові поля системи $Er_2S_3 - PbS - SiS_2$ за температури 770 К

№ п/п поля	Фазові поля
1	$Er_2S_3 + Er_2PbS_4$
2	$PbS + Er_2PbS_4$
3	$PbS + Pb_2SiS_4$
4	$SiS_2 + Pb_2SiS_4$
5	$SiS_2 + Er_2S_3$
6	$Er_2S_3 + Pb_2SiS_4$
7	$Er_2S_3 + Er_2PbSi_2S_8$
8	$Pb_2SiS_4 + Er_2PbSi_2S_8$
9	$Er_2PbS_4 + Pb_2SiS_4$
10	$SiS_2 + Er_2PbSi_2S_8$
11	$Er_2S_3 + Er_2PbS_4 + Pb_2SiS_4$

№ п/п поля	Фазові поля
12	$Er_2S_3 + Pb_2SiS_4 + Er_2PbSi_2S_8$
13	$SiS_2 + Er_2S_3 + Er_2PbSi_2S_8$
14	$PbS + Pb_2SiS_4 + Er_2PbS_4$
15	$SiS_2 + Pb_2SiS_4 + Er_2PbSi_2S_8$

4.1.2. Системи R₂Se₃ – PbSe – SiSe₂ [138], [139], [141], [142], [144].

Фазові рівноваги за температури 770 K у системах $R_2Se_3 - PbSe - SiSe_2$ (R – Y, La) представлено на рисунках 4.4. та 4.5.

Фазові поля у цих системах зазначені у таблицях 4.4. та 4.5.

Рис. 4.4. Ізотермічний переріз системи $Y_2Se_3 - PbSe - SiSe_2$ за температури 770 К.

Таблиця 4.4.

Фазові поля системи Y₂Se₃ – PbSe – SiSe₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Y_2Se_3 + Y_6Pb_2Se_{11}$

№ п/п поля	Фазові поля
2	$PbSe + Y_6Pb_2Se_{11}$
3	$PbSe + Pb_2SiSe_4$
4	$SiSe_2 + Pb_2SiSe_4$
5	$Y_2Se_3 + SiSe_2$
6	$Y_6Pb_2Se_{11}+Pb_2SiSe_4$
7	$Y_2Se_3 + Pb_2SiSe_4$
8	$Y_2Se_3 + Y_6Pb_2Se_{11} + Pb_2SiSe_4$
9	$PbSe + Y_6Pb_2Se_{11} + Pb_2SiSe_4$
10	$Y_2Se_3 + SiSe_2 + Pb_2SiSe_4$

Рис. 4.5. Ізотермічний перерізи системи La₂Se₃ – PbSe – SiSe₂ за температури 770 К.

Таблиця 4.5.

Фазові поля системи La₂Se₃ – PbSe – SiSe₂ за температури 770 К

№ п/п поля	Фазові поля
1	$La_{2+2/3x}Pb_{1-x}Se_4 \ (x=0-1)$

№ п/п поля	Фазові поля
2	$PbSe + La_2PbSe_4$
3	$PbSe + Pb_2SiSe_4$
4	$SiSe_2 + Pb_2SiSe_4$
5	$SiSe_2 + La_6Si_4Se_7$
6	$La_{6}Si_{4}Se_{7} + La_{2+2/3x}Pb_{1-x}Se_{4} (x = 0,66 - 1)$
7	$La_{2+2/3x}Pb_{1-x}Se_4 (x = 0 - 0.66) + La_2PbSi_2Se_8$
8	$La_2PbSe_4 + Pb_2SiSe_4$
9	$La_6Si_4Se_7 + La_2PbSi_2Se_8$
10	$Pb_2SiSe_4 + La_2PbSi_2Se_8$
11	$SiSe_2 + La_2PbSi_2Se_8$
12	$La_{2+2/3x}Pb_{1-x}Se_4 (x = 0,66) + La_6Si_4Se_7 + La_2PbSi_2Se_8$
13	$La_2PbSe_4 + Pb_2SiSe_4 + La_2PbSi_2Se_8$
14	$PbSe + La_2PbSe_4 + Pb_2SiSe_4$
15	$SiSe_2 + Pb_2SiSe_4 + La_2PbSi_2Se_8$
16	$SiSe_2 + La_6Si_4Se_7 + La_2PbSi_2Se_8$

4.1.3. Системи R₂S₃ – PbS – GeS₂ [138], [141], [145], [147].

Фазові рівноваги за температури 770 К у системах $R_2S_3 - PbS - GeS_2$ (R – Y, La i Pr) представлено на рисунку 4.6.-4.8.

Фазові поля у досліджених системах зазначені у таблицях 4.6.-4.8.

Рис. 4.6. Ізотермічний переріз системи $Y_2S_3 - PbS - GeS_2$ за температури 770 К.

Рис. 4.7. Ізотермічний переріз системи $La_2S_3 - PbS - GeS_2$ за температури 770 К.

Рис. 4.8. Ізотермічний переріз системи $Pr_2S_3 - PbS - GeS_2$ за температури 770 К.

Таблиця 4.6.

Фазові поля системи Y₂S₃ – PbS – GeS₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Y_2S_3 + Y_2PbS_4$
2	$PbS + Y_2PbS_4$
3	$PbS + Pb_2GeS_4$
4	$GeS_2 + Pb_2GeS_4$
5	$GeS_2 + Y_3Ge_{1,25}S_7$
6	$Y_2S_3 + Y_3Ge_{1,25}S_7$
7	$Y_2S_3 + Pb_2GeS_4$
8	$Y_2PbS_4 + Pb_2GeS_4$
9	$Y_3Ge_{1,25}S_7 + Pb_2GeS_4$
10	$Y_2S_3 + Y_2PbS_4 + Pb_2GeS_4$
11	$Y_2S_3 + Y_3Ge_{1,25}S_7 + Pb_2GeS_4$

№ п/п поля	Фазові поля
12	$PbS + Y_2PbS_4 + Pb_2GeS_4$
13	$GeS_2 + Y_3Ge_{1,25}S_7 + Pb_2GeS_4$

Таблиця 4.7.

Фазові поля системи $La_2S_3 - PbS - GeS_2$ за температури 770 К

№ п/п поля	Фазові поля
1	$La_{2}S_{3} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0,86)$
2	$La_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 - 0.86)$
3	$PbS + La_2PbS_4$
4	$PbS + Pb_2GeS_4$
5	$GeS_2 + Pb_2GeS_4$
6	$GeS_2 + La_2GeS_5$
7	$La_2S_3 + La_2GeS_5$
8	$La_{2+2/3x}Pb_{1-x}S_4 (x = 0 - 0.86) + La_2GeS_5$
9	$PbS + La_2GeS_5$
10	$PbS + La_2PbGe_2S_8$
11	$Pb_2GeS_4 + La_2PbGe_2S_8$
12	$GeS_2 + La_2PbGe_2S_8$
13	$La_2GeS_5 + La_2PbGe_2S_8$
14	$La_2S_3 + La_{2+2/3x}Pb_{1-x}S_4 (x = 0,86) + La_2GeS_5$
15	$PbS + La_2PbS_4 + La_2GeS_5$
16	$PbS + La_2GeS_5 + La_2PbGe_2S_8$
17	$GeS_2 + La_2GeS_5 + La_2PbGe_2S_8$
18	$PbS + Pb_2GeS_4 + La_2PbGe_2S_8$
19	$GeS_2 + Pb_2GeS_4 + La_2PbGe_2S_8$

Таблиця 4.8.

№ п/п поля	Фазові поля
1	$Pr_{2}S_{3} + Pr_{2+2/3x}Pb_{1-x}S_{4} (x = 0,78)$
2	$Pr_{2+2/3x}Pb_{1-x}S_4 \ (x=0-0,78)$
3	$PbS + Pr_2PbS_4$
4	$PbS + Pb_2GeS_4$
5	$GeS_2 + Pb_2GeS_4$
6	$GeS_2 + Pr_4Ge_3S_{12}$
7	$Pr_{3}Ge_{1,25}S_{7} + Pr_{4}Ge_{3}S_{12}$
8	$Pr_2S_3 + Pr_3Ge_{1,25}S_7$
9	$Pr_{3}Ge_{1,25}S_{7} + Pr_{2+2/3x}Pb_{1-x}S_{4} (x = 0,22 - 0,78)$
10	$Pr_{2+2/3x}Pb_{1-x}S_4 \ (x=0-0,22) + Pr_2PbGe_2S_8$
11	$Pr_{3}Ge_{1,25}S_{7} + Pr_{2}PbGe_{2}S_{8}$
12	$Pr_4Ge_3S_{12} + Pr_2PbGe_2S_8$
13	$Pr_2PbS_4 + Pb_2GeS_4$
14	$Pb_2GeS_4 + Pr_2PbGe_2S_8$
15	$GeS_2 + Pr_2PbGe_2S_8$
16	$Pr_{2}S_{3} + Pr_{2+2/3x}Pb_{1-x}S_{4} (x = 0,78) + Pr_{3}Ge_{1,25}S_{7}$
17	$Pr_{2+2/3x}Pb_{1-x}S_4$ (x=0,22) + $Pr_3Ge_{1,25}S_7$ + $Pr_2PbGe_2S_8$
18	$Pr_{3}Ge_{1,25}S_{7} + Pr_{4}Ge_{3}S_{12} + Pr_{2}PbGe_{2}S_{8}$
19	$Pr_2PbS_4 + Pb_2GeS_4 + Pr_2PbGe_2S_8$
20	$PbS + Pb_2GeS_4 + Pr_2PbS_4$
21	$GeS_2 + Pb_2GeS_4 + Pr_2PbGe_2S_8$
22	$GeS_2 + Pr_4Ge_3S_{12} + Pr_2PbGe_2S_8$

Фазові поля системи Pr₂S₃ – PbS – GeS₂ за температури 770 К

4.1.4. Системи R₂Se₃ – PbSe – GeSe₂ [138], [141], [147 –150].

Фазові рівноваги за температури 770 K у системах $R_2S_3 - PbS - GeS_2$ (R – Y, La, Sm, Gd, Ho i Er) представлено на рисунках 4.9.-4.14. Фазові поля у досліджених системах зазначені у таблицях 4.9.-4.14.

Рис. 4.9. Ізотермічний переріз системи Y₂Se₃ – PbSe – GeSe₂ за температури 770 К.

Рис. 4.10. Ізотермічний переріз системи La₂Se₃ – PbSe – GeSe₂ за температури 770 К.

Рис. 4.12. Ізотермічний переріз системи Gd₂Se₃ – PbSe – GeSe₂ за температури 770 К.

Рис. 4.14. Ізотермічний переріз системи Er₂Se₃ – PbSe – GeSe₂ за температури 770 К.

Таблиця 4.9.

№ п/п поля	Фазові поля
1	$Y_2Se_3 + Y_6Pb_2Se_{11}$
2	$PbSe + Y_6Pb_2Se_{11}$
3	$PbSe + Pb_2GeSe_4$
4	$GeSe_2 + Pb_2GeSe_4$
5	$Y_2Se_3 + GeSe_2$
6	$Y_6Pb_2Se_{11}+Pb_2GeSe_4$
7	$Y_2Se_3 + Pb_2GeSe_4$
8	$Y_2Se_3 + Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
9	$Pb_{2}GeSe_{4} + Y_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
10	$GeSe_2 + Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
11	$PbSe + Y_6Pb_2Se_{11} + Pb_2GeSe_4$
12	$Y_2Se_3 + Y_6Pb_2Se_{11} + Pb_2GeSe_4$
13	$Y_2Se_3 + Pb_2GeSe_4 + Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
14	$Y_2Se_3 + GeSe_2 + Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
15	$GeSe_2 + Pb_2GeSe_4 + Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$

Фазові поля системи Y₂Se₃ – PbSe – GeSe₂ за температури 770 К

Таблиця 4.10.

Фазові поля системи La₂Se₃ – PbSe – GeSe₂ за температури 770 К

№ п/п поля	Фазові поля
1	$La_{2+2/3x}Pb_{1-x}Se_4 \ (x=0-1)$
2	$PbSe + La_2PbSe_4$
3	$PbSe + Pb_2GeSe_4$
4	$GeSe_2 + Pb_2GeSe_4$
5	$GeSe_2 + La_3Ge_{1,25}Se_7$
6	$La_{2+2/3x}Pb_{1-x}Se_{4} (x = 0 - 1) + La_{3}Ge_{1,25}Se_{7}$
7	$PbSe + La_3Ge_{1,25}Se_7$
8	$La_{3}Ge_{1,25}Se_{7} + La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$

№ п/п поля	Фазові поля
9	$La_3Ge_{1,25}Se_7 + La_2PbGe_2Se_8$
10	$PbSe + La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
11	$Pb_{2}GeSe_{4}+La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
12	$La_{2}PbGe_{2}Se_{8} + La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
13	$GeSe_2 + La_2PbGe_2Se_8$
14	$GeSe_2 + La_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
15	$PbSe + La_3Ge_{1,25}Se_7 + La_2PbSe_4$
16	$PbSe + La_{3}Ge_{1,25}Se_{7} + La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
17	$La_{3}Ge_{1,25}Se_{7}+La_{2}PbGe_{2}Se_{8}+La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
18	$GeSe_2 + La_3Ge_{1,25}Se_7 + La_2PbGe_2Se_8$
19	$GeSe_2 + La_2PbGe_2Se_8 + La_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
20	$PbSe + Pb_2GeSe_4 + La_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
21	$GeSe_2 + Pb_2GeSe_4 + La_{1,32}Pb_{1,68}Ge_{1,67}Se_7$

Таблиця 4.11.

Фазові поля системи Sm₂Se₃ – PbSe – GeSe₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Sm_{2+2/3x}Pb_{1-x}Se_4 \ (x=0-1)$
2	$Sm_2Se_3 + PbSe$
3	$PbSe + Pb_2GeSe_4$
4	$GeSe_2 + Pb_2GeSe_4$
5	$GeSe_2 + Sm_3Ge_{1,25}Se_7$
6	$Sm_{3}Ge_{1,25}Se_{7}+Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
7	$PbSe + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
8	$Pb_{2}GeSe_{4}+Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
9	$GeSe_2 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
10	$Sm_{2+2/3x}Pb_{1-x}Se_4 (x = 0, 14 - 1) + Sm_3Ge_{1,25}Se_7$
11	$Sm_{2+2/3x}Pb_{1-x}Se_4 (x = 0 - 0, 14) +$
	$Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$

№ п/п поля	Фазові поля
12	$Sm_{2+2/3x}Pb_{1-x}Se_4 (x = 0, 14) + Sm_3Ge_{1,25}Se_7 +$
	$Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
13	$Sm_2PbSe_4 + PbSe + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
14	$GeSe_2 + Sm_3Ge_{1,25}Se_7 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
15	$PbSe + Pb_2GeSe_4 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
16	$GeSe_2 + Pb_2GeSe_4 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$

Таблиця 4.12.

Фазові поля системи Gd₂Se₃ – PbSe – GeSe₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Gd_2Se_3 + Gd_{2+2/3x}Pb_{1-x}Se_4 \ (x = 0,9)$
2	$Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0, 5 - 0, 9)$
3	$PbSe + Gd_{2+2/3x}Pb_{1-x}Se_4 \ (x = 0,5)$
4	$PbSe + Pb_2GeSe_4$
5	$GeSe_2 + Pb_2GeSe_4$
6	$GeSe_2 + Gd_2Se_3$
7	$Gd_2Se_3 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
8	$Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0, 5 - 0, 9) +$
	$Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}\\$
9	$PbSe + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
10	$Pb_{2}GeSe_{4}+Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
11	$GeSe_2 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
12	$Gd_2Se_3 + Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0,9) +$
	$Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
13	$PbSe + Gd_{2+2/3x}Pb_{1-x}Se_4 (x = 0,5) +$
	$Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
14	$PbSe + Pb_2GeSe_4 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
15	$GeSe_2 + Gd_2Se_3 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
16	$GeSe_2 + Pb_2GeSe_4 + Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_7$

Таблиця 4.13.

№ п/п поля	Фазові поля
1	$Ho_2Se_3 + Ho_6Pb_2Se_{11}$
2	$PbSe + Ho_6Pb_2Se_{11}$
3	$PbSe + Pb_2GeSe_4$
4	$GeSe_2 + Pb_2GeSe_4$
5	$Ho_2Se_3 + GeSe_2$
6	$Ho_6Pb_2Se_{11} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
7	$PbSe + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
8	$Pb_{2}GeSe_{4} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
9	$GeSe_2 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
10	$Ho_2Se_3 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
11	$Ho_{2}Se_{3} + Ho_{6}Pb_{2}Se_{11} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
12	$PbSe + Ho_6Pb_2Se_{11} + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
13	$GeSe_2 + Ho_2Se_3 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
14	$PbSe + Pb_2GeSe_4 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
15	$GeSe_2 + Pb_2GeSe_4 + Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$

Фазові поля системи Ho₂Se₃ – PbSe – GeSe₂ за температури 770 К

Таблиця 4.14.

Фазові поля системи Er₂Se₃ – PbSe – GeSe₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Er_2Se_3 + Er_2PbSe_4$
2	$PbSe + Er_2PbSe_4$
3	$PbSe + Pb_2GeSe_4$
4	$GeSe_2 + Pb_2GeSe_4$
5	$Er_2Se_3 + GeSe_2$
6	$Er_2Se_3 + Pb_2GeSe_4$
7	$Pb_2GeSe_4 + Er_2PbSe_4$
8	$Er_2Se_3 + Er_2PbSe_4 + Pb_2GeSe_4$

№ п/п поля	Фазові поля
9	$PbSe + Er_2PbSe_4 + Pb_2GeSe_4$
10	$Er_2Se_3 + GeSe_2 + Pb_2GeSe_4$

4.1.5. Системи R₂S₃ – PbS – SnS₂ [138], [141], [151 – 158].

Фазові рівноваги за температури 770 K у системах $R_2S_3 - PbS - SnS_2$ (R – Y, La, Pr, Sm, Ho i Er) представлено на рисунках 4.15.-4.20. Фазові поля у досліджених системах зазначені у таблицях 4.15.-4.20.

Рис. 4.15. Ізотермічний переріз системи $Y_2S_3 - PbS - SnS_2$ за температури 770 К.

Рис. 4.16. Ізотермічний переріз системи $La_2S_3 - PbS - SnS_2$ за температури 770 К.

Рис. 4.17. Ізотермічний переріз системи $Pr_2S_3 - PbS - SnS_2$ за температури 770 К.

Рис. 4.18. Ізотермічний переріз системи $Sm_2S_3 - PbS - SnS_2$ за температури 770 К.

Рис. 4.19. Ізотермічний переріз системи $Ho_2S_3 - PbS - SnS_2$ за температури 770 К.

Рис. 4.20. Ізотермічний переріз системи $Er_2S_3 - PbS - SnS_2$ за температури 770 К.

Таблиця 4.15.

Фазові поля системи Y₂S₃ – PbS – SnS₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Y_2S_3 + Y_2PbS_4$
2	$PbS + Y_2PbS_4$
3	$PbS + PbSnS_3$
4	$SnS_2 + PbSnS_3$
5	$Y_2S_3 + SnS_2$
6	$Y_2S_3 + Y_2Pb_3Sn_3S_{12}$
7	$Y_2PbS_4 + Y_2Pb_3Sn_3S_{12}$
8	$PbS + Y_2Pb_3Sn_3S_{12}$
9	$SnS_2 + Y_2Pb_3Sn_3S_{12}$
10	$PbSnS_3 + Y_2Pb_3Sn_3S_{12}$
11	$Y_2S_3+Y_2PbS_4+Y_2Pb_3Sn_3S_{12}$
12	$Y_2S_3 + SnS_2 + Y_2Pb_3Sn_3S_{12}$

№ п/п поля	Фазові поля
13	$PbS + Y_2PbS_4 + Y_2Pb_3Sn_3S_{12}$
14	$PbS + PbSnS_3 + Y_2Pb_3Sn_3S_{12}$
15	$PbSnS_3 + Y_2Pb_3Sn_3S_{12} + SnS_2$

Таблиця 4.16.

Фазові поля системи $La_2S_3-PbS-SnS_2$ за температури 770 К

№ п/п поля	Фазові поля
1	$La_{2}S_{3} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0,86)$
2	$La_{2+2/3x}Pb_{1-x}S_4 \ (x=0-0,86)$
3	$PbS + La_2PbS_4$
4	$PbS + PbSnS_3$
5	$SnS_2 + PbSnS_3$
6	$SnS_2 + La_2SnS_5$
7	$La_2S_3 + La_2SnS_5$
8	$La_{2}SnS_{5} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0 - 0.86)$
9	$PbS + La_2SnS_5$
10	$PbS + La_2Pb_3Sn_3S_{12}$
11	$PbSnS_3 + La_2Pb_3Sn_3S_{12}$
12	$SnS_2 + La_2Pb_3Sn_3S_{12}$
13	$La_2SnS_5 + La_2Pb_3Sn_3S_{12}$
14	$La_{2}S_{3} + La_{2}SnS_{5} + La_{2+2/3x}Pb_{1-x}S_{4} (x = 0,86)$
15	$PbS + La_2SnS_5 + La_2PbS_4$
16	$PbS + La_2SnS_5 + La_2Pb_3Sn_3S_{12}$
17	$SnS_2 + La_2SnS_5 + La_2Pb_3Sn_3S_{12}$
18	$PbS + PbSnS_3 + La_2Pb_3Sn_3S_{12}$
19	$SnS_2 + PbSnS_3 + La_2Pb_3Sn_3S_{12}$

Таблиця 4.17.

№ п/п поля	Фазові поля
1	$Pr_{2}S_{3} + Pr_{2+2/3x}Pb_{1-x}S_{4} (x = 0,78)$
2	$Pr_{2+2/3x}Pb_{1-x}S_4 \ (x=0-0,78)$
3	$PbS + Pr_2PbS_4$
4	$PbS + PbSnS_3$
5	$SnS_2 + PbSnS_3$
6	$SnS_2 + Pr_2SnS_5$
7	$Pr_2S_3 + Pr_2SnS_5$
8	$Pr_2SnS_5 + Pr_{2+2/3x}Pb_{1-x}S_4 \ (x = 0 - 0,78)$
9	$PbS + Pr_2SnS_5$
10	$PbS + Pr_2Pb_3Sn_3S_{12}$
11	$PbSnS_3 + Pr_2Pb_3Sn_3S_{12}$
12	$SnS_2 + Pr_2Pb_3Sn_3S_{12}$
13	$Pr_2SnS_5 + Pr_2Pb_3Sn_3S_{12}$
14	$Pr_{2}S_{3} + Pr_{2}SnS_{5} + Pr_{2+2/3x}Pb_{1-x}S_{4} (x = 0,78)$
15	$PbS + Pr_2SnS_5 + Pr_2PbS_4$
16	$PbS + Pr_2SnS_5 + Pr_2Pb_3Sn_3S_{12}$
16	$SnS_2 + Pr_2SnS_5 + Pr_2Pb_3Sn_3S_{12}$
18	$PbS + PbSnS_3 + Pr_2Pb_3Sn_3S_{12}$
19	$SnS_2 + PbSnS_3 + Pr_2Pb_3Sn_3S_{12}$

Фазові поля системи $Pr_2S_3 - PbS - SnS_2$ за температури 770 К

Таблиця 4.18.

Фазові поля системи $Sm_2S_3 - PbS - SnS_2$ за температури 770 К

№ п/п поля	Фазові поля
1	$Sm_2S_3 + Sm_{2+2/3x}Pb_{1-x}S_4$ (x = 0,86)
2	$Sm_{2+2/3x}Pb_{1-x}S_4$ (x = 0 - 0,86)
3	$PbS + Sm_2PbS_4$
4	$PbS + PbSnS_3$

№ п/п поля	Фазові поля
5	$SnS_2 + PbSnS_3$
6	$SnS_2 + Sm_2SnS_5$
7	$Sm_2S_3 + Sm_2SnS_5$
8	$Sm_{2+2/3x}Pb_{1-x}S_4 (x = 0.60 - 0.86) + Sm_2SnS_5$
9	$Sm_{2+2/3x}Pb_{1-x}S_4 (x = 0 - 0.60) + Sm_2Pb_3Sn_3S_{12}$
10	$Sm_2SnS_5 + Sm_2Pb_3Sn_3S_{12}$
11	$PbS + Sm_2Pb_3Sn_3S_{12}$
12	$SnS_2 + Sm_2Pb_3Sn_3S_{12}$
13	$PbSnS_3 + Sm_2Pb_3Sn_3S_{12}$
14	$Sm_2S_3 + Sm_{2+2/3x}Pb_{1-x}S_4 \ (x = 0.86) + Sm_2SnS_5$
15	$Sm_{2+2/3x}Pb_{1-x}S_4 (x = 0,60) + Sm_2SnS_5 + Sm_2Pb_3Sn_3S_{12}$
16	$PbS + Sm_2PbS_4 + Sm_2Pb_3Sn_3S_{12}$
17	$SnS_2 + Sm_2SnS_5 + Sm_2Pb_3Sn_3S_{12}$
18	$PbS + PbSnS_3 + Sm_2Pb_3Sn_3S_{12}$
19	$SnS_2 + PbSnS_3 + Sm_2Pb_3Sn_3S_{12}$

Таблиця 4.19.

Фазові поля системи Ho₂S₃ – PbS – SnS₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Ho_2S_3 + Ho_2PbS_4$
2	$PbS + Ho_2PbS_4$
3	$PbS + PbSnS_3$
4	$SnS_2 + PbSnS_3$
5	$Ho_2S_3 + SnS_2$
6	$Ho_2S_3 + Ho_2Pb_3Sn_3S_{12}$
7	$Ho_2PbS_4 + Ho_2Pb_3Sn_3S_{12}$
8	$PbS + Ho_2Pb_3Sn_3S_{12}$
9	$SnS_2 + Ho_2Pb_3Sn_3S_{12}$
10	$PbSnS_3 + Ho_2Pb_3Sn_3S_{12}$

№ п/п поля	Фазові поля
11	$Ho_2S_3 + Ho_2PbS_4 + Ho_2Pb_3Sn_3S_{12}$
12	$Ho_2S_3 + SnS_2 + Ho_2Pb_3Sn_3S_{12}$
13	$PbS + Ho_2PbS_4 + Ho_2Pb_3Sn_3S_{12}$
14	$PbS + PbSnS_3 + Ho_2Pb_3Sn_3S_{12}$
15	$PbSnS_3 + Ho_2Pb_3Sn_3S_{12} + SnS_2$

Таблиця 4.20.

Фазові поля системи Er₂S₃ – PbS – SnS₂ за температури 770 К

№ п/п поля	Фазові поля
1	$Er_2S_3 + Er_2PbS_4$
2	$PbS + Er_2PbS_4$
3	$PbS + PbSnS_3$
4	$SnS_2 + PbSnS_3$
5	$Er_2S_3 + SnS_2$
6	$Er_2S_3 + Er_2Pb_3Sn_3S_{12}$
7	$Er_2PbS_4 + Er_2Pb_3Sn_3S_{12}$
8	$Er_2PbS_4 + PbSnS_3$
9	$SnS_2 + Er_2Pb_3Sn_3S_{12}$
10	$PbSnS_3 + Er_2Pb_3Sn_3S_{12}$
11	$Er_2S_3 + Er_2PbS_4 + Er_2Pb_3Sn_3S_{12}$
12	$Er_2S_3 + SnS_2 + Er_2Pb_3Sn_3S_{12}$
13	$PbS + PbSnS_3 + Er_2PbS_4$
14	$Er_2PbS_4 + PbSnS_3 + Er_2Pb_3Sn_3S_{12}$
15	$SnS_2 + PbSnS_3 + Er_2Pb_3Sn_3S_{12}$

4.2. Тетрарні сполуки.

У системах $R_2X_3 - PbX - D^{IV}X_2$ (R – P3M, $D^{IV} - Si$, Ge, Sn; X – S, Se) утворюється сорок три (табл. 4.21.) тетрарні сполуки $R_2PbSi_2S_8$ (R – Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er), $R_2PbSi_2Se_8$, (R – La, Ce, Pr, Nd, Sm, Gd), $R_2PbGe_2S_8$ (R – La, Ce, Pr), $R_2PbGe_2S_8$ (R – La), $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R – Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) і $R_2Pb_3Sn_3S_{12}$ (R – Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) і $R_132Pb_{1,68}Ge_{1,67}Se_7$ (R – Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm). Сполуки $R_2PbSi(Ge)_2S(Se)_8$ утворюються у відповідних системах при співвідношенні вихідних компонентів 1:1:2, сполуки $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ – при співвідношенні вихідних компонентів 0,66:1,68:1,67, а сполуки $R_2Pb_3Sn_3S_{12}$ – при співвідношенні вихідних компонентів 1:3:3.

Таблиця 4.21.

Мо п/п	Сполика	Пері	Пim				
JN <u>9</u> 11/11	Сполука	а	b	С	J111.		
$(CT La_2)$	$(\operatorname{CT} La_2 PbSi_2S_8, \Pi\Gamma R\overline{3}c)$						
1.	$Y_2PbSi_2S_8$	0,88433	—	2,59745	[159]		
2.	La ₂ PbSi ₂ S8	0,90522	_	2,6964	[160]		
3.	Ce ₂ PbSi ₂ S ₈	0,90030	-	2,6765	[160]		
5.	$Pr_2PbSi_2S_8$	0,89744	_	2,6640	[160]		
6.	$Nd_2PbSi_2S_8$	0,8942	—	2,6492	[160]		
7.	$Sm_2PbSi_2S_8$	0,88854	—	2,6283	[160]		
8.	$Gd_2PbSi_2S_8$	0,88633	—	2,6185	[160]		
9.	$Tb_2PbSi_2S_8$	0,88604	-	2,61184	[160]		
10.	$Dy_2PbSi_2S_8$	0,88422	-	2,60033	[160]		
11.	Ho ₂ PbSi ₂ S ₈	0,88428	-	2,5963	[160]		
12.	$Er_2PbSi_2S_8$	0,8830	-	2,584	[143]		
13.	$La_2PbSi_2Se_8$	0,93984	_	2,8089	[160]		
14.	$Ce_2PbSi_2Se_8$	0,9351	-	2,7908	[160]		

Кристалографічні характеристики тетрарних сполук

Мо п/п	Сполуга	Пері	Піт		
JN≌ 11/11	Сполука	а	b	С	J111.
15.	$Pr_2PbSi_2Se_8$	0,93264	-	2,7779	[160]
16.	Nd ₂ PbSi ₂ Se ₈	0,92998	_	2,7670	[160]
17.	Sm ₂ PbSi ₂ Se ₈	0,92620	-	2,7487	[160]
18.	Gd ₂ PbSi ₂ Se ₈	0,92320	-	2,7329	[160]
19.	La ₂ PbGe ₂ S ₈	0,90613	-	2,7187	[160]
20.	Ce ₂ PbGe ₂ S ₈	0,90176	_	2,6980	[160]
21.	Pr ₂ PbGe ₂ S ₈	0,89840	-	2,68670	[160]
22.	$La_2PbGe_2Se_8$	0,93994	_	2,8098	[149]
(CT $Y_{l,.}$	$_{32}Pb_{1,68}Ge_{1,67}Se_7,\Pi\Gamma P$	63)			
23.	$Y_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0394	_	0,66361	[161]
24.	$La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0590	_	0,6612	[161]
25.	$Ce_{1,32}Pb_{1,68}Ge_{1,67}Se_7$	1,0542	-	0,6604	[161]
26.	$Pr_{1,32}Pb_{1,68}Ge_{1,67}Se_7$	1,0520	_	0,6623	[161]
27.	Nd _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0499	-	0,6640	[161]
28.	Sm _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0442	_	0,6627	[161]
29.	$Gd_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0428	_	0,6638	[161]
30.	$Tb_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0406	_	0,66384	[161]
31.	$Dy_{1,32}Pb_{1,68}Ge_{1,67}Se_7$	1,0389	_	0,6647	[161]
32.	$Ho_{1,32}Pb_{1,68}Ge_{1,67}Se_7$	1,0381	_	0,6646	[161]
(CT Y ₂)	$Pb_3Sn_3S_{12}, \Pi\Gamma Pmc2_1)$				
33.	$Y_2Pb_3Sn_3S_{12}$	0,39021	2,01003	1,15169	[151]
34.	$La_2Pb_3Sn_3S_{12}$	0,39697	2,0329	1,1606	[154]
35.	$Ce_2Pb_3Sn_3S_{12}$	0,39575	2,0275	1,1590	[154]
36.	$Pr_2Pb_3Sn_3S_{12}$	0,39448	2,0071	1,1702	[154]
37.	$Nd_2Pb_3Sn_3S_{12}$	0,39361	2,0049	1,1680	[154]
38.	$Sm_2Pb_3Sn_3S_{12}$	0,39230	2,0119	1,1611	[154]
39.	$Gd_2Pb_3Sn_3S_{12}$	0,39153	2,0206	1,1556	[154]

№ п/п	Сполука	Пері	Піт		
J1⊻ 11/11		а	b	С	5111.
40.	$Tb_2Pb_3Sn_3S_{12}\\$	0,39076	2,0174	1,1532	[154]
41.	$Dy_2Pb_3Sn_3S_{12}$	0,39000	2,0153	1,1524	[154]
42.	$Ho_2Pb_3Sn_3S_{12}$	0,38992	2,01175	1,15140	[154]
43.	$Tm_2Pb_3Sn_3S_{12}$	0,39006	2,0029	1,1513	[154]

4.3. Кристалічна структура тетрарних сполук.

4.3.1. Структурний тип La₂PbSiS₈ (ПГ R3c): a = 0,90522 нм, c = 2,6964 нм, [160]. Координати атомів для сполуки La₂PbSiS₈ наведені у таблиці 4.22. Елементарну комірку та координаційні многогранники атомів M(La, Pb) та Si у структурі сполуки La₂PbSiS₈ зображено на рисунку 4.6.

Таблиця 4.22.

Координати атомів для сполуки La₂PbSiS₈

			12	,	
Атом	ПСТ	x / a	y / b	z / c	G
М	18e	0,34803	0,01470	0,0833	0,696 La + 0,304 Pb
Si	12 <i>c</i>	2/3	1/3	-0,00684	1,0
S1	12 <i>c</i>	1/3	-1/3	0,08575	1,0
S2	36f	0,43233	0,30201	0,01982	1,0

(власний структурний тип)

Рис. 4.6. Елементарна комірка та координаційні многогранники атомів M (La + Pb) та Si у структурі сполуки La₂PbSiS₈.

У кристалічній структурі сполуки La₂PbSiS₈ атоми статистичної суміші координують навколо себе по вісім атомів Сульфуру [M(La + Pb)S1₂S2₆], а атоми Si – чотири атоми Сульфуру [SiS1₁S2₃].

Кристалічну структуру сполуки La₂PbSiS₈ можна розглядати як похідну від кристалічної структури сполуки Eu₃As₂S₈ [162] (2Eu³⁺ \rightarrow 2La³⁺, Eu²⁺ \rightarrow Pb²⁺). Атоми La і Pb у структурі La₂PbSiS₈ займають відповідні позиції атомів Eu у структурі сполуки Eu₃As₂S₈ (рис. 4.7.), а атоми Si – відповідні позиції атомів As.

Особливістю сполуки La₂PbSi₂S₈ є існування у її кристалічній структурі двовимірних сіток 3^6 та 6^3 , утворених атомами M(La + Pb) і Si відповідно (рис. 4.8.). Ці сітки є паралельними площині *ab*.

Рис. 4.7. Укладка многогранників у структурі сполук Eu₃As₂S₈ та La₂PbSiS₈.

Рис. 4.8. Двовимірні сітки 3^6 і 6^3 у структурі сполуки La₂PbSi₂S₈.

4.3.2. Структурний тип $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (ПГ $P6_3$): a = 1,0394 нм, c = 0,66361 нм, [161]. Координати атомів для сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ наведені у таблиці 4.23. Елементарну комірку та координаційні многогранники атомів М(Y, Pb) та Ge у структурі сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ зображено на рисунку 4.9.

Таблиця 4.23.

Координати атомів для сполуки Y_{1,32}Pb_{1,68}Ge_{1,67}Se₇

Атом	ПСТ	x / a	y / b	z / c	G
М	6 <i>c</i>	0,3843	0,1631	0,402	0,44 Y + 0,56 Pb
Ge1	2b	1/3	2/3	0,324	1,0
Ge2	2a	0	0	0	0,67
Se1	6 <i>c</i>	0,255	0,106	0,986	1,0
Se2	6 <i>c</i>	0,529	0,441	0,692	1,0
Se3	2b	1/3	2/3	0,679	1,0

(власний структурний тип)

Кристалічна структура сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ сформована тригональними призмами (із одним додатковим атомом) [M(Y + Pb)Se1₂Se2₄Se3₁], тетраедрами [Ge1Se2₃Se3₁] і трикутниками [Ge2Se1₃].

Особливості укладки координаційних многогранників у структурному типі Y_{1,32}Pb_{1,68}Ge_{1,67}Se₇ можна розглянути на прикладі

сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (ПГ $P6_3$, a = 1,0442, c = 0,6627 нм). Кристалічна структура сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ побудована із тригональних призм (із одним додатковим атомом) [M(Sm+Pb)Se_7], тетраедрів – [Ge1Se_4] і трикутників – [Ge2Se_3] (рис. 4.10.). У структурі сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ атом Ge2 лежить всередині октаедра, утвореного шістьма атомами Se. Оскільки він знаходиться недалеко від однієї із граней цього октаедра, то реальним координаційним многогранником для Ge2 є трикутник.

Рис. 4.10. Катіонні поліедри у структурі сполуки Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇.

Рис. 4.11. Катіонні поліедри у структурі сполуки Sm₃Ge_{1.48}Se₇.

Із літературного джерела [163] відомо, що у системі Sm – Ge – Se утворюється тернарна сполука Sm₃Ge_{1,48}Se₇ (ПГ $P6_3$, a = 1,04419 і c = 0,60283 нм).

Кристалічна структура сполуки Sm₃Ge_{1,48}Se₇ аналогічно сформована із тригональних призм [SmSe₇], тетраедрів [Ge1Se₄] і октаедрів [Ge2Se₆] (рис. 4.11.). Обидві структури Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇ та Sm₃Ge_{1,48}Se₇ мають подібні структурні елементи. Атоми Ge2 в структурі сполуки Sm₃Ge_{1,48}Se₇ розташовані майже в центрах октаедрів, утворених атомами Se, а атоми Ge2 в структурі Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇ розташовані поруч з однією з трикутних граней, таких октаедрів.

Структура сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ може бути отримана із структури сполуки $Sm_3Ge_{1,48}Se_7$ шляхом заміни атомів Sm, що займають одну кристалографічну позицію, атомами Pb.

Об'єм елементарної комірки сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ дорівнює 0,6257 нм³ і є більшим, ніж для $Sm_3Ge_{1,48}Se_7$, 0,5692 нм³. Параметри решітки *а* для обох сполук мають приблизно однакові значення, тоді як параметр *с* для $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ значно більший, ніж для $Sm_3Ge_{1,48}Se_7$. Аналогічні закономірності простежуються в тернарних $R_3Ge_{1+x}Se_7$ (R = La, Ce, Pr, Sm, Gd and Tb; x = 0,43–0,49) і тетрарних сполуках $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho).

Збільшення співвідношення c/a для тетрарних сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ в порівнянні з тернарними сполуками $R_3Ge_{1+x}Se_7$ пов'язане з існуванням у їх структурі великих за розміром іонів Pb^{2+} . Як результат, у структурі сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy і Ho) спостерігається видовження октаедра [Ge2Se₆] вздовж осі c.

4.3.3. Структурний тип $Y_2Pb_3Sn_3S_{12}$ (ПГ $Pmc2_1$). Досліджуючи фазові рівноваги у системі $Y_2S_3 - PbS - SnS_2$ за температури 770 К [151] при співвідношенні вихідних компонентів 1:3:3, нами встановлено існування нової тетрарної сполуки $Y_2Pb_3Sn_3S_{12}$.

Кристалічна структура цієї сполуки досліджена рентгенівським методом порошку. Відбиття на рентгенограмі проіндексовані в ромбічній сингонії (ПГ $Pmc2_1$, a = 0,39021 нм, b = 2,01003 нм, c = 1,15169 нм. Координати атомів для сполуки Y₂Pb₃Sn₃S₁₂ наведені у таблиці 4.24.

Таблиця 4.24.

Атом	ПСТ	x / a	y / b	z / c	G			
Y1	2 <i>a</i>	0	0,4108	0,9567	1,0			
Y2	2 <i>a</i>	0	0,1061	0,6305	1,0			
Pb1	2 <i>a</i>	0	0,3782	0,5739	1,0			
Pb2	2 <i>a</i>	0	0,2589	0,2121	1,0			
Pb3	2 <i>a</i>	0	0,0869	0	1,0			
Sn1	2 <i>b</i>	1/2	0,2501	0,8060	1,0			
Sn2	2 <i>b</i>	1/2	0,0868	0,3214	1,0			
Sn3	2 <i>b</i>	1/2	0,4258	0,2927	1,0			
S1	2 <i>a</i>	0	0,0150	0,2510	1,0			
S2	2 <i>a</i>	0	0,1660	0,4020	1,0			
S3	2a	0	0,2380	0,6430	1,0			
S4	2 <i>a</i>	0	0,2570	0,9590	1,0			
S5	2a	0	0,4800	0,2470	1,0			
S 6	2b	1/2	0,0240	0,5240	1,0			
S7	2b	1/2	0,1190	0,8020	1,0			

Координати атомів для сполуки Y₂Pb₃Sn₃S₁₂ (власний структурний тип)

Атом	ПСТ	x / a	y / b	z / c	G
S 8	2 <i>b</i>	1/2	0,1600	0,1380	1,0
<u>S</u> 9	2b	1/2	0,3180	0,4020	1,0
S10	2 <i>b</i>	1/2	0,3540	0,1090	1,0
S11	2 <i>b</i>	1/2	0,3770	0,8000	1,0
S12	2 <i>b</i>	1/2	0,4930	0,4990	1,0

У структурі сполуки $Y_2Pb_3Sn_3S_{12}$ атоми Y утворюють два види многогранників (рис. 4.12.): тригональні призми з двома додатковими атомами [Y1S4₁S5₁S10₂S11₂S12₂] та тригональні призми з одним додатковим атомом [Y2S1₁S2₁S3₁S6₂S7₂]. Атоми Pb1 та Pb3 координують по сім атомів Сульфуру [Pb1S3₁S9₂S11₂S12₂] і [Pb3S1₁S6₂S7₂S8₂], а атоми Pb2 – по вісім атомів Сульфуру [Pb2S2₁S4₁S8₂S9₂S10₂]. Атоми Sn1 та Sn2 утворюють октаедри [Sn1S3₂S4₂S7₁S11₁] і [Sn2S1₂S2₂S6₁S8₁], а атоми Sn3 координують навколо себе по п'ять атомів Сульфуру [Sn3S5₂S9₁S10₁S12₁].

Рис. 4.12. Елементарна комірка та координаційні многогранники атомів Y, Pb та Sn у структурі сполуки Y₂Pb₃Sn₃S₁₂.

Кристалічна структура сполуки Y2Pb3Sn3S12 є похідною від

кристалічної структури сполуки Eu₅Sn₃S₁₂ [164] (2Eu³⁺ \rightarrow 2Y³⁺, 3Eu²⁺ \rightarrow 3Pb²⁺). Атоми Y і Pb у структурі Y₂Pb₃Sn₃S₁₂ займають еквівалентні позиції атомів Eu у структурі Eu₅Sn₃S₁₂ (рис. 4.13.), позиції решти атомів є ідентичними.

Елементарна комірка сполуки $Eu_5Sn_3S_{12}$ утворена із фрагментів елементарних комірок сполук La_2SnS_5 [108] і $Eu_3Sn_2S_7$ [165]. Оскільки кристалічна структура сполуки $Y_2Pb_3Sn_3S_{12}$ походить зі структури $Eu_5Sn_3S_{12}$ впорядкованим заміщенням атомів Європію атомами Y і Pb, то фрагменти елементарних комірок сполук La_2SnS_5 і $Eu_3Sn_2S_7$ також спостерігаються у структурі сполуки $Y_2Pb_3Sn_3S_{12}$ (рис. 4.14.).

Рис. 4.13. Укладка многогранників у структурі сполук $Eu_5Sn_3S_{12}$ та $Y_2Pb_3Sn_3S_{12}$.

Рис. 4.14. Фрагменти елементарних комірок сполук $La_2SnS_5 i Eu_5Sn_3S_{12}$ у структурі сполуки $Y_2Pb_3Sn_3S_{12}$.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- [1]. Skums V. F. Solid solutions of the PbSe PbS system at high pressures
 / V. F. Skums, R. L. Pink, M. R. Allasov // Inorganic Materials. –
 1991. № 27(8). P.1336-1340.
- [2]. Kabalkina S. S. Phase transitions in group IV-VI compounds at high pressure / S. S. Kabalkina, N. R. Serebryanaya, L. F. Vereshchagin // Solid State – 1968. – № 10(3). – P.574-579.
- [3]. High pressure X-ray diffraction study on the structural phase transitions in PbS, PbSe and PbTe with synchrotron radiation / [Chattopadhyay T. K., von Schnering H. G., Grosshans W., Holzapfel W. B.] // Physica B and C (Netherland) – 1986. – Vol. 139-140. – P.356-360.
- [4]. Structural, electronic, optical and thermodynamic properties of PbS, PbSe and their ternary alloy PbS_{1-x}Se_x / Labidi M., Meradji H., Ghemid S. et al. // Modern Physics Letters B 2011. № 25(7). P.473-486.
- [5]. Mariano A. N. Polymorphism in some IV-VI compounds induced by high pressure and thin-film epitaxial growth / A. N. Mariano, K. L. Chopra // Appl. Phys. Lett. – 1967. – № 10. – P.282-284.
- [6]. An electron microscope examination of scandium sesquisulphide, Sc₂S₃, and its mode of disordering in the electron bea / [Otero-Diaz L. C., Hiraya K., Sellar J. R., Hyde B. G.] // Acta Crystallogr. B – 1984. – № 40. – P.355-359.
- [7]. Rodier N. Chimie minerale. Sur une nouvelle serie de combinaisons des sesquisulfures de terres rares et d'yttrium avec le sesquisulfure de scandium / N. Rodier, P. Laruelle, J. Flahaut // Comptes Rendus
Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques – 1969. – № 269. – P.1391-1393.

- [8]. Range K. -J. Hochdruckmodifikationen der Lanthaniden (III) sulfide Ln_2S_3 (Ln = Lu Ho, Y) mit U_2S_3 -Struktur / K. -J. Range, R. Leeb // Z. Naturforsch. 1975. Bd. 30. S.889-895.
- [9]. Schleid T. Crystal structure of D-Y₂S₃ and Y₂OS₂ / T. Schleid // Eur. J. Solid State Inorg. Chem. – 1992. – Vol. 29. – P.1015-1028.
- [10]. Eatough N. L. High-Pressure Th₃P₄-Type Polymorphs of Rare Earth Sesquichalcogenides / N. L. Eatough, A. W. Webb, H. T. Hall // Inorg. Chem. – 1969. – Vol. 8. – P.2069-2071.
- [11]. Елисеев А. А. Взаимосвязь геометрии и структуры элементарных ячеек веществ в неорганической химии / А. А. Елисеев, Г. М. Кузьмичева // Доклады Академии наук СССР – 1979. – V. 246. – P.1162-1165.
- [12]. Zachariasen W. H. Crystal Chemical Studies of the 5f-Series of Elements. I. New Structure Types / W. H. Zachariasen // Acta Cryst. – 1948. – Vol. 1. – P.265-268.
- [13]. Marcon J. P. Sulfures et seleniures superieurs de plutonium et des lanthanides / J. P. Marcon, R. Pascard // J. of Inorg. Nucl. Chemi. – 1966. – Vol. 28. – P.2551-2560.
- [14]. Schleid Th. Röntgenstrukturanalysen an Einkristallen von Ce_2S_3 im A- und C-Typ / Th. Schleid, P. Lauxmann // Z. Anorg. Allg. Chem. – 1999. – V. 625. – P.1053-1055.
- [15]. Schleid Th. A-Pr₂S₃, D-Ho₂S₃ und E-Yb₂S₃: Synthese und Einkristallstrukturuntersuchungen / Th. Schleid, F. Lissner // Z. Naturforsch. 1996. Vol. B51. P.733-738.

- [16]. Lauxmann P. Einkristalle von CuPrS₂ im A- und Pr₂S₃ im C-Typ bei Versuchen zur Synthese ternärer Kupfer (I) – Praseodym (III) – Sulfide / P. Lauxmann, S. Strobel, Th. Schleid // Z. Anorg. Allg. Chem. – 2002. – Vol. 628. – P.2403-2408.
- [17]. Schleid Th. Einkristalle von A-Nd₂S₃, U-Ho₂S₃, D-Er₂S₃ und E-Lu₂S₃ durch Oxidation reduzierter Chloride der Lanthanide mit Schwefel / Th. Schleid, F. Lissner // Z. Anorg. Allg. Chem. 1992. Vol. 615. P.19-26.
- [18]. Comparative study of some rare earth sulfides: doped γ -[A]M₂S₃ (M = La, Ce and Nd, A = Na, K and Ca) and undoped γ -M₂S₃ (M = La, Ce and Nd) / [Mauricot R. Gressier P, Evain M, Brec R.] // J. Alloys Compd. 1995. Vol. 223. P.130-138.
- [19]. Рентгеноструктурное исследование монокристалов халькогенидов самария SmSe_{2-х} и Sm₂Se₃ / А. А. Елисеев, Ж. Лаурьер, Г. Кола и др. // Журн. структ. химии. 1968. Т.9. С.464-465.
- [20]. Sur les varietes alpha et beta des sulfures L₂S₃ des terres rares /
 [Basancon P., Adolphe C., Flahaut J., Laruelle P.] // Mater. Res. Bull.
 1969. Vol. 4. P.227-238.
- [21]. Lissner F. Üeber Sulfide und Oxidsulfide des Samariums / F Lissner, Th. Schleid // Z. Naturforsch. – 1992. – V. 47. – P.1614-1620.
- [22]. Aruga A. Crystal structure of samarium sesquisulfide / A. Aruga,
 S. Tsujimi, I. Nakai // Phase Transition. 1992. V. 38. P.127-220.
- [23]. Определение кристаллических структур γ-La₂S₃ и γ-Sm₂S₃.
 Соотношение структур Th₃P₄ и циркона / Н. В. Подберезская,
 Н. В. Кожемяк, Л. Г. Голубева и др. // Журн. структ. химии. –

1979. – T. 20. – C. 1092-1095.

- [24]. Palazzi M. Affinement de la structure cristalline de Eu_3S_4 / M. Palazzi, S. Jaulmes // Mater. Res. Bull. 1978. Vol. 13. P.1153-1155.
- [25]. Schleid Th. Das System Na_zGdClH_x/S. II. Einkristalle von Gd₂S₃ im U₂S₃-Typ / Th. Schleid // Z. Anorg. Allgem. Chem. – 1990. – V. 590. – P.111-119.
- [26]. Schleid Th. C-Gd₂S₃ und C-Tb₂S₃: Darstellung und Röntgenstrukturanalyse von Einkristallen / Th. Schleid, F. A. Weber // Z. Anorg. Allg. Chem. – 1998. – V. 624. – P.557-558.
- [27]. Schleid Th. Neue Sesquisulfide der Lanthanoide im U_2S_3 -Typ: Tb_2S_3 und Dy_2S_3 / Th. Schleid // Z. Naturforsch. 1992. Bd. B47. S.45-50.
- [28]. Орлова И. Г. Физико-химическое исследование взаимодействия серы и тербия / И. Г. Орлова, А. А. Елисеев // Изв. АН СССР. Неорган. материалы. – 1983. – Т. 28, Вып. 1. – С.65-68.
- [29]. Ballestracci R. Combinaisons sulfurée de terres rares et d'argent de type Th₃P₄ / R. Ballestracci // C. R. Acad. Sci. Paris. – 1966. – № 262. – P.1155-1156.
- [30]. Structure of Two Modifications of Dysprosium Sesquisulfide Dy₂S₃ / A. Meetsma, G. A. Wiegers, R. J. Haange et al. // Acta Cryst. 1991. Vol. 47. P.2287-2291.
- [31]. White J. G. Structure determination and crystal preparation of monoclinic rare earth sesquisulfides / J. G. White, P. N. Yocom, S. Lerner // Inorg. Chem. – 1967. – Vol.6. – P.1872-1875.
- [32]. Synthesis and crystal structure of F-type erbium sesquisulfide, F-Er₂S₃

/ [Fang C. M., Meetsma A., Wiegers G. A., Boom G.] // J. Alloys Compd. – 1993. – V. 201. – P.255-259.

- [33]. Range K.-J. Darstellung und Kristallstruktur der Hochdruckphase Tm₂S₃-II / K.-J. Range, R. Leeb // Z. Naturforsch. – 1976. – Bd. B31. – S.311-314.
- [34]. Structure refinement of Tm₂S₃-IV, a defect-Th₃P₄-type high pressure modification of thulium sesquisulphide / [Range K. J., Gietl A, Klement U, Lange K. G.] // J. Less-Common Met. – 1990. – Vol. 158. – P.L21-L25.
- [35]. Tm₂S₃-V a Corundum-Type Modification of Thulium Sesquisulfide / Range K. J., Drexler H., Gietl A. et al. // Acta Cryst. – 1990. – Vol. 46. – P.487-488.
- [36]. Кристаллическая структура Θ-Tm₂S₃ / [Кузьмичева Г. М., Смарина Е. И., Хлыстова С. Ю., Чернышев В. В.] // Журн. неорган. химии. – 1990. – Т. 35, Вып. 4. – С.869-873.
- [37]. Flahaut J. Structure cristalline des sulfures de lutécium et d'ytterbium Lu₂S₃ et Yb₂S₃ / J. Flahaut, L. Domange, M. P. Pardo // C. R. Acad. Sci. Paris. – 1964. – T. 258. – P.594-596.
- [38]. Кузьмичева Г. М. Кристаллическая структура ε-Yb₂S₃ / Γ. М. Кузьмичева, А. А. Елисеев // Журн. неорган. химии. 1977. Т. 22, Вып. 4. С.897-900.
- [39]. Кузьмичева Г. М. Кристаллическая структура δ-Yb₂S₃ / Γ. М. Кузьмичева, А. А. Елисеев // Журн. неорган. химии. 1976. Т. 21. С.2838-2840.
- [40]. Schleid Th. Single crystals of F-Tm₂S₃ and T-Yb₂S₃ / Th. Schleid,
 F. Lissner // J. Alloys Compd. 1992. V. 189. P.69-74.

- [41]. Range K. J. Die Kristallstruktur von Lu_2S_3 / K. J. Range, R. Leeb // Z. Naturforsch. – 1975. – Bd. B30. – S.637-638.
- [42]. Les sulfures, seleniures et tellurures L₂X₃ de terres rares, d'yttrium et de scandium orthorhombiques du type Sc₂S₃ / [Flahaut J., Laruelle P., Pardo M. P., Guittard M.] // Inorg. Chem. 1965. № 4(7). P.970-973.
- [43]. N₀ 206.- Les sulfures, séléniures et tellurures L₂X₃ de terres rares, d'yttrium et de scandium orthorhombiques du type Sc₂S₃ / [Flahaut J., Laruelle P., Pardo M. P., Guittard M.] // Bull. Soc. Chim. Fr. 1965. N
 ^o 1965. P.1399-1404.
- [44]. Eatough N. L. High-Pressure Th₃P₄-Type Polymorphs of Rare Earth Sesquiselenides / N. L. Eatough, Webb A. W., H. T. Hall // Inorg. Chem. 1970. Vol. 9. P.417–418.
- [45]. Folchnandt M. Single Crystals of C-La₂Se₃, C-Pr₂Se₃, and C-Gd₂Se₃ with Cation-Deficient Th₃P₄-Type Structure / M. Folchnandt, Th. Schleid // Z. Anorg. Allg. Chem. 2001. Vol. 627. P.1411-1413.
- [46]. Folchnandt M. Über Sesquiselenide der Lanthanoide: Einkristalle von Ce₂Se₃ im C- Gd₂Se₃ im U- und Lu₂Se₃ im Z-Typ / M. Folchnandt, Ch. Schneck, Th. Schleid // Z. Anorg. Allg. Chem.– 2004. – V. 630. – P.149-155.
- [47]. Guittard M. Les seleniures L₂Se₃ et L₃Se₄ des elements des terres rares / M. Guittard, M. A. Benacerraf, J. Flahaut // Ann. Chim. – 1964. – T.9. – P. 25-34.
- [48]. Grundmeier T. Zur Polymorphie von Sm₂Se₃ / T. Grundmeier,
 W. Urland // Z. Anorg. Allg. Chemie. 1995. Vol. 621. P.1977-1979.

- [49]. Елисеев А. А. Рентгенографическое исследование селенидов европия / А. А. Елисеев, О. С. Садовская, Ван Там Нгуен // Изв. АН СССР. Неорган. материалы. – 1975. – Т. 11. – С.361-364.
- [50]. Grundmeier T. Zur Kristallstruktur von Tb₂Se₃ / T. Grundmeier,
 W. Urland // Z. Anorg. Allg. Chem. 1997. Vol. 623. P.1744-1746.
- [51]. Demoncy P. Combinaisons des composes d'uranium UX et U₃X₄ (X = S, Se, Te) avec les sulfures, seleniures et tellurures de lanthanides, d'yttrium et de scandium / P. Demoncy, P. Khodadad // Ann. Chim. 1970. T. 5. P.341-356.
- [52]. Range K. J. Die Kristallstruktur von Dy₂Se₃ / K. J. Range, R. Leeb //
 Z. Naturforsch. 1976. Bd. B31. S.685-686.
- [53]. Urland W. Zur Kristallstruktur von Ho₂Se₃ / W. Urland, P. Helmut //
 Z. Naturforsch. 1998. V. 53. P.900-902.
- [54]. Range K. J. Crystal data for rare earth sesquiselenides Ln₂Se₃ (Ln Ho, Er, Tm, Yb, Lu) and structure refinement of Er₂Se₃ / K. J. Range, C. Eglmeier // J. Less-Common Met. 1991. V. 171. P.L27-L30.
- [55]. Synthesis and crystal structure of erbium sesquiselenide Er₂Se₃ / G.-C. Guo, J.-N. Zhuang, J.-T. Chen et al. // Jiegou Huaxue. 1996. Vol. 15. P.243-245.
- [56]. Dismukes J. P. Rare Earth Sesquiselenides and Sesquitellurides with the Sc₂S₃ Structure / J. P. Dismukes, J. G. White // Inorg. Chem. – 1965. – Vol. 4. – P.970-973.
- [57]. Peters J. Silicon disulphide and silicon diselenide: A reinvestigation / J. Peters, B. Krebs // Acta Cryst. – 1982. – Vol. B38. – P.1270-1272.

- [58]. Prewitt C. T. Germanium and silicon disulfides: Structure and synthesis / C. T. Prewitt, H. S. Young // Science. – 1965. – Vol. 149. – P.535-537.
- [59]. Dittmar G. Die Kristallstruktur von L.T.-GeS₂ / G. Dittmar,
 H. Schäfer // Acta Cryst. 1976. Vol. 32. P.1188-1192.
- [60]. Dittmar G. Die Kristallstruktur von H.T.-GeS₂ / G. Dittmar,
 H. Schäfer // Acta Cryst. 1975. Vol. 31. P.2060-2064.
- [61]. Zachariasen W. H. The Crystal Structure of Germanium Disulphide /
 W. H. Zachariasen // J. Chem. Phys. 1936. Vol. 4. P.618-619.
- [62]. Synthesis and Crystal Structure of δ-GeS₂, The First Germanium Sulfide with an Expanded Framework Structure / M. J. MacLachlan, S. Petrov, R. L. Bedard et al. // Angew. Chem. – 1998. – Vol. 37. – P.2075-2079.
- [63]. Arora S. K. Microtopographical Characterization of Vapour-grown SnS₂ Single Crystals / S. K. Arora, D. H.Patel, M. K. Agarwal // Crystal Research and Technology. – 1993. – Vol.28. – P.623-627.
- [64]. Popovic Z. V. Infrared and Raman spectra of germanium dichalcogenides-II: GeSe₂ / Z. V. Popovic, H. J. Stolz // Physica Status Solidi, Sectio B: Basic Research – 1981. – Vol. 108. – P.153.
- [65]. Shimizu Y. Germanium disulfide and diselenide: Phase diagram and polymorphs / Y. Shimizu, T. Kobayashi // Kristallografiya. – 1979. – V. 24. – P.83-87.
- [66]. Structural properties of GeSe₂ at high pressures / T. Grande, M. Ishii,
 M. Akaishi et al. // J. Solid State Chem. 1999. Vol. 145. P.167-173.
- [67]. Structural Transformations in Three-Dimensional Crystalline GeSe₂ at

High Pressures and High Temperatures / A. Grzechnik, S. Stølen, E. Bakken et al. // J. Solid State Chem. – 2000. – Vol. 150. – P.121-127.

- [68]. Liu Huifang. Phase relations in systems of tin chalcogenides / Huifang Liu, Chang L. Y. // J. Alloys Compd. – 1992. – Vol. 185(1). – P.183-190.
- [69]. Iglesias J. E. Thernary Chalcogenide compounds AB₂X₄: The crystal structures of SiPb₂S₄ and SiPb₂Se₄ / J. E. Iglesias, H. Steinfink // J. Solid State Chem. – 1973. – Vol.6. – P.93-98.
- [70]. Susa K. Ternary sulfide compounds AB₂S₄: The crystal structures of GePb₂S₄ and SnBa₂S₄ / K. Susa, H. Steinfink // J. Solid State Chem. – 1971. – V.3. – P.75-82.
- [71]. Structural studies of a cubic, high-temperature (alpha) polymorph of Pb₂GeS₄ and the isostructural Pb_{2-x}Sn_xGeS_{4-y} Sey solid solution / K. M. Poduska, L. Cario, F. J. DiSalvo et al. // J. Alloys Compd. 2002. V.335. P.105-110.
- [72]. Structure cristalline d'un thiogermanate de plomb a chaines infinies (PbGeS₃)_n / [Ribes M., Olivier-Fourcade J., Philippot E., Maurin M.] // Acta Cryst. – 1974. – Vol.30. – P.1391-1395.
- [73]. Sur le systeme SnS₂ PbS. Structure cristalline de PbSnS₃ / [Jumas J. C., Ribes M., Philippot E., Maurin M.] // C. R. Seances Acad. Sci. 1972. Vol.275. P.269-272.
- [74]. Glass formation and properties of chalcogenide systems XII. The phase diagram of the system PbSe – GeSe₂ and on the compound Pb₂GeSe₄ / [Feltz A., Ludwig W., Senf L., Simon C.] // Kristall und Technik. – 1980. – Bd.15., №8. – S.895-901.

- [75]. Crystal structure of the Sc_2PbX_4 (X = S and Se) compounds / V. Ya. Shemet, L. D. Gulay, Yu. Stepen' Damm et al. // J. Alloys Compd. 2006. Vol.407. P.94-97.
- [76]. Gulay L. D. Crystal structure of the RE₂PbS₄ (RE = Y, Dy, Ho, Er, Tm) compounds and a comparison with the crystal structures of other rare earth lead chalcogenides / L. D. Gulay, M. Daszkiewicz, V. Ya. Shemet // Z. Anorg. Allg Chem. 2008. Vol.634(11). P.1887-1895.
- [77]. Patrie M. N° 655 Systèmes L_2X_3 PbX (L = lanthanides, X = S, Se, Te) / M. Patrie, M. Guittard, M. P. Pardo // Bull. Soc. Chim. Fr. – 1969. – P.3832-3834.
- [78]. Crystal structure of the R_2PbS_4 (R = Yb and Lu) compounds / [Gulay L. D., Daszkiewicz M., Shemet V. Ya., Pietraszko A.] // J. Alloys Compd. – 2008. – Vol.453. – P.143-146.
- [79]. Crystal structure of the $R_6Pb_2Se_{11}$ (R = Y, Dy and Ho) compounds / Gulay L. D., Shemet V. Ya., Stepen' Damm Yu. et al. // J. Alloys Compd. – 2005. – Vol.403. – P.206-210.
- [80]. Investigation of the Pr₂Se₃ Cu₂Se PbSe and Pr₂Se₃ Ag₂Se PbSe systems / [Marchuk O. V., Gulay L. D., Shemet V. Ya., Olekseyuk I. D.] // J. Alloys Compd. 2006. Vol.416. P.106-109.
- [81]. Синтез и свойства Ln₂PbSe₄ и Ln₂Pb₄Se₇ (Ln Nd, Sm) / [Насибов И. О., Султанов Т. И., Шафагатова Г. Г., Мамедханова С. А.] // Изв. АН СССР. Неорган. материалы. – 1992. – Т. 28, № 7. – С.1572-1574.
- [82]. Investigation of the $Ho_2Se_3 Cu_2Se PbSe$ and $Er_2Se_3 Cu_2Se PbSe$ systems at 870 K / Gulay L. D., Olekseyuk I. D., Wolcyrz M.

et al. // J. Alloys Compd. – 2006. – Vol.416. – P.173-178.

- [83]. Crystal structure of the R₂PbSe₄ (R = Er and Yb) compounds /
 [Gulay L. D., Daszkiewicz M., Stepen' Damm Yu., Pietraszko A.] // J.
 Alloys Compd. 2007. Vol.429. P.111-115.
- [84]. Investigation of the Tm₂Se₃ Cu₂Se PbSe and Lu₂Se₃ Cu₂Se PbSe) systems at 870 K / [Gulay L. D., Wolcyrz M., Pietraszko A., Olekseyuk I. D.] // Polish J. Chem. 2006. V.80. P.1703-1714.
- [85]. Michelet A. Chimie minerale. Sur de nouvelles familles de composes formes par les sulfures des terres rares avec le sulfure de germanium ou le sulfure de silicium / A. Michelet, J. Flahaut // J. Solid State Chem. – 1975. – Vol.13. – P.65-86.
- [86]. Личманюк О. С. Дослідження систем Y₂S₃ Cu₂S SiS₂ та Y₂Se₃
 Cu₂Se SiSe₂ при 870 К / О. С. Личманюк, Л. Д. Гулай,
 I. Д. Олексеюк // Науковий Вісник ВДУ, хім. науки. 2006. №4.
 С.118-124.
- [87]. Chimie minerale. Sur une nouvelle famille de combinaisons des terres rares de formules Ln₂SiS₅ (Ln = La a Nd) et Ln₂GeS₅ (Ln = La) / [Michelet A., Perez G., Etienne J., Darriet-Duale M.] // J. Solid State Chem. 1975. Vol.13. P.65-76.
- [88]. La₂SiS₅ / M. Daszkiewicz, L. D. Gulay, I. R. Ruda et al. // Acta Cryst. - 2007. - Vol. 63(12). - i197.
- [89]. Etude structurale des systemes Ln₂S₃ GeS₂ / A. Michelet, A. Mazurier, G. Collin et al. // J. Solid State Chem. – 1975. – Vol. 13. – P.65-76.
- [90]. Syntheses, structures and optical properties of yellow Ce_2SiS_5 , $Ce_6Si_4S_{17}$ and $Ce_4Si_3S_{12}$ materials / G. Gauthier, S. Jobic, M. Evain

et al. // Chem. Mat. – 2003. – Vol.15. – P.828-837.

- [91]. Perez G. Chimie minerale. Sur une nouvelle famille de combinaisons sulfurees des terres rares de formule generale Ln₄Si₃S₁₂ (Ln = Ce-Gd) / G. Perez, M. Duale // C. R. Acad. Sci., Serie C. 1969. Vol.269. P.984-986.
- [92]. The crystal structure of the R₆Si₄S₁₇ (R = Pr, Nd and Sm) compounds
 / [Gulay L. D., Daszkiewicz M., Lychmanyuk O. S., Pietraszko A.] //
 J. Alloys Compd. 2008. Vol.453. P.197-202.
- [93]. Hatscher S. T. Synthesis, structure and magnetic behaviour of a new gadolinium thiosilicate: Gd₄(SiS₄)₃ / S. T. Hatscher, W. Urland // J. Solid State Chem. – 2003. – Vol.172. – P.417-423.
- [94]. Hatscher S. T. Kristallstruktur und magnetische Eigenschaften eines neuen Thiosilicats des Terbiums: Tb₄(SiS₄)₃ / S. T. Hatscher, W. Urland // Z. Anorg. Allg. Chem. – 2002. – Vol.628. – P.1673-1677.
- [95]. Hatscher S. T. Dysprosium thiosilicate, Dy₄(SiS₄)₃ / S. T. Hatscher,
 W. Urland // Acta Cryst. 2002. Vol.58. P.74-75.
- [96]. Investigation of the Ho₂X₃ Cu₂X ZX₂ (X = S, Se; Z = Si, Ge) systems / O. S. Lychmanyuk, L. D. Gulay, I. D. Olekseyuk et al. // Polish J. Chem. 2007. Vol.81 P.353-367.
- [97]. Crystal structure and magnetic properties of the R₆Si₄Se₁₇ (R = La and Ce) compounds / [Marchuk O. V., Daszkiewicz M., Gulay L. D., Kaczorowski D.] // J. Alloys Compd. 2012. Vol.528. P.99-102.
- [98]. Gulay L. D. Crystal structure of the R₃Si_{1.25}Se₇ (R= Pr, Nd and Sm) compounds / L. D. Gulay, O. S. Lychmanyuk // J. Alloys Compd. 2008. Vol.458. P.174-177.
- [99]. Isothermal section of the $Y_2S_3 Cu_2S GeS_2$ system at 870 K and

crystal structures of the $Y_3Ge_{1.25}S_7$ and Y_3CuGeS_7 compounds / L. D. Gulay, O. S. Lychmanyuk, Yu. Stepen' Damm et al. // J. Alloys Compd. – 2006. – Vol.414 – P.113-117.

- [100]. Syntheses and single-crystal structures of La₃AgSnS₇, Ln₃M_xMS₇ (Ln = La, Ho, Er; M = Ge, Sn; $0.25 \le x \le 0.5$) / [Huiyi Zeng, Fakun Zheng, Cong Guo Guo, Jinshun Huang] // J. Alloys Compd. – 2008. – Vol.458. – P.123-129.
- [101]. Mazurier A. Structure cristalline de LaGeS₅ / A. Mazurier, J. Etienne
 // Acta Cryst. 1973. Vol.29. P.817-821
- [102]. Mazurier A. Structure cristalline de La₄GeS₁₂ / A. Mazurier,
 J. Etienne // Acta Cryst. 1974. Vol.30. P.759-762.
- [103]. Michelet A. Chimie minerale. Sur une nouvelle famille de combinaisons sulfurees des terres rares, de formule generale $L_4Ge_3S_{12}$, avec L = La a Gd / A. Michelet, P. Laruelle, J. Flahaut // C. R. Acad. Sci., Serie C. 1966. Vol.262 P.753-755.
- [104]. Choudhury A. Synthesis, structure, magnetic and optical properties of ternary thiogermanates: Ln₄(GeS₄)₃ (Ln Ce, Nd) / A. Choudhury, P. K. Dorhout // Z. Anorg. Allg. Chem. 2008. Vol.634(4). P.649-656.
- [105]. Pr₄Ge₃S₁₂: structure determination from high-resolution powder diffraction data / [Helmholdt R. B., Goubitz K., Sonneveld E. J., Schenk H.] // Acta Cryst. – 2003. – Vol. 59 – P.i119-i121.
- [106]. Bakakin V. V. Crystal structure of praseodymium thiogermanate / V. V. Bakakin, E. N. Ipatova, L. P. Solov'eva // Zhurnal Strukturnoi Khimii. – 1974. – Vol.15(3) – P.460-464.
- [107]. Loireau-Lozach A. M Systeme ternaire La₂Se₃ Ga₂Se₃ GeSe₂.

Diagramme de phase – Etude des verres / A. M Loireau-Lozach, M. Guittard // Mat. Res. Bull. – 1977. – Vol.12. – P.887-893.

- [108]. Jaulmes S. Structure cristalline du sulfure d'etain et de lanthane La₂SnS₅ / S. Jaulmes // Acta Cryst. – 1974. – Vol.30. – P.2283-2285.
- [109]. Systemes $Ln_2X_3 SnX_2$ (Ln = terres rares et X = S ou Se). Composes Ln_2SnS_5 , definition et etude structurale / [Guittard M., Julien-Pouzol M., Jaulmes S., Lavenant C.] // Mat. Res. Bull. – 1976. – Vol.11. – P.1073-1080.
- [110]. Daszkiewicz M. Crystal architecture of R₂SnS₅ (R = Pr, Nd, Gd and Tb): crystal relationships in chalcogenides / M. Daszkiewicz, L. D. Gulay, V. Ya. Shemet // Acta Cryst. 2008. Vol.64(2). P.172-176.
- [111]. Julien-Pouzol M. Structure du pentasulfure de disamarium et d'etain
 / M. Julien-Pouzol, S. Jaulmes // Acta Cryst. 1979. Vol.35. P.2672-2674.
- [112]. Sulfures ternaires d'europium et d'etain, contenant l'europium aux etats de valence II et III / J. Flahaut, P. Laruelle, M. Guittard et al. // J. Solid State Chem. – 1979. – Vol.29 – P.125-136.
- [113]. Murguzov M. I. The SnSe Ce₂Se₃ System / M. I. Murguzov,
 A. P. Gurshumov, B. Sh. Gadirov // J. Inorg. Chem. 1986. –
 Vol.31(7). P.1098-1100.
- [114]. Srinivasa R. B. Structural and elastic properties of sodium halides at high pressure / R. B. Srinivasa, S. P. Sanyal // Physical Review., Condensed Matter. – 1990. – Vol.42. – P.1810-1816.
- [115]. Bissert G. Verfeinerung der Struktur von Germanium(II)-sulfid, GeS
 / G. Bissert, K. F. Hesse // Acta Cryst. 1978. Vol.34. P.1322-

1323.

- [116]. Cortona P. Direct determination of self-consistent total energies and and charge densities of solids: a study of the cohesive properties of the alkali halides / P. Cortona // Physical Review. – 1992. – Vol.46. – P.2008-2014.
- [117]. Helmholz L. The crystal structure of the low temperature modification of thallous iodide. / L. Helmholz // Phase Transition. – 1992. – Vol.38. – P.127-220.
- [118]. Rodier N. Structure du sulfure mixte d'yttrium et de scandium YScS₃ et de certains composes isotypes / N. Rodier, P. Laruelle // C. R. Acad. Sci., Serie C. – 1970. – Vol.270. – P.2127-2130.
- [119]. Magnetic propertie of the uranium sesquichalcigenides / Suski W., Wojakowski A., Blaise A. et al. // J. of Magnetism and Magnetic Materials. – 1976. – Vol.3. – P.195-200.
- [120]. Rasneur J. Determination des propprietes electrique et de la stoechimetrie de Y₂S₃ a haute temperature en fonction de la pression de soufre d'equilibre / J. Rasneur, C. Cauchemont // C. R. Acad. Sci., Serie C. – 1978. – Vшд.21. – P.3208-3211.
- [121]. Le ferro- and antiferromagnetisme des composes d'uranium avec les elements du Veme groupe / W. Trzebiatowski, T. Palewski, A. Sepichowska et al. // J. of Nuclear Materials. 1967. Vol.24. P.74-79.
- [122]. Besancon P. Sur la variete alpha des sulfures de terres rares /
 P. Besancon, P. Laruelle // C. R. Acad. Sci., Serie C. 1969. Vol.48.
 P.48-53.
- [123]. Range K. J. Darstellung und Kristallstruktur der Hochdruckphase

 Tm_2S_3 -II / K. J. Range, R. Leeb // Golden Book of Phase Transitions. – 2002. – Vol.1. – 123 p.

- [124]. Kondo S. Structural evolution of corundum at high temperatures /
 S. Kondo, K. Tateishi, N. Ishizawa // Jpn. J. Appl. Phys. 2008. –
 Vol.47. P.616-619.
- [125]. Klein H. The quality of precession electron diffraction data is higher than necessary for structure solution of unknown crystalline phases / H. Klein, J. David // Acta Cryst. – 2011. – Vol.67. – P.297-302.
- [126]. Oles A. Neutron diffraction study of UAs $_2$ / A. Oles // J. Phys. France 1965. Vol.26. P.561-564.
- [127]. Oswald H. R. Zur Struktur der wasserfreien Zinkhalogenide. I. Die wasserfreien Zinkchloride / H. R. Oswald, H. Jaggi // Golden Book of Phase Transitions, Wroclaw. – 2002. – Vol.1. – P.1-123.
- [128]. Shimizu Y. Germanium disulfide and diselenide: Phase diagram and polymorphs / Y. Shimizu, T. Kobayashi // Reference unknown. – 1982.
 – Vol.21. – P.1-13.
- [129]. Chieh C. Crystal structure of anhydrous zinc bromide / C. Chieh, M. A. White // Zeitschrift fuer Kristallographie. – 1984. – Vol.166. – P.189-197.
- [130]. Synthesis and crystal structure of delta-(GeS₂), the first germanium sulfide with an expanded framework structure / M. J. MacLachlan, S. Petrov, R. L. Bedard et al. // Angew. Chem. Int. ed. 1998. Vol.37(15). P.2076-2079.
- [131]. Palosz B. Lattice parameters and spontaneous strain in AX₂ polytypes: CdI₂, PbI₂, SnS₂ and SnSe₂ / B. Palosz, E. Salje // J. Appl. Cryst. 1989. Vol.22. P.622-623.

- [132]. Flux synthesis and isostructural relationship of cubic Na_{1.5}Pb_{0.75}PSe₄, Na_{0.5}Pb_{1.75}GeS₄ and Li_{0.5}Pb_{1.75}GeS₄ / J. A. Aitken, G. A. Marking, M. Evain et al. // J. Solid State Chem. 2000. Vol.153 P.158-169.
- [133]. Brasseur H. The crystal structure of ammonium cadmium chloride, NH₄CdCl₃ / H. Brasseur, L. Pauling // J. of the American Chemical Society. – 1938. – Vol.60 – P.2886-2890.
- [134]. Structural and magnetic properties of the $(Ca_{1-x}Na_x)(Fe_{2-x}Ti_x)O_4$ solid solution $(0 \le x \le 1) / S$. Zouari, L. Ranno, A. Cheikhrouhou et al. // J. Alloys Compd. – 2008. – Vol.452. – P.234-240.
- [135]. Mazurier A. Structure cristalline de La₂GeS₅ / A. Mazurier,
 J. Etienne // Acta Cryst. 1973. Vol.29. P.817-821.
- [136]. Mazurier A. Structure cristalline de La₄Ge₃S₁₂ / A. Mazurier,
 J. Etienne // Acta Cryst. 1974. Vol.30. P.759-762.
- [137]. Potel M. Structure de U₂PbSe₅ / M. Potel, R. Brochu, J. Padiou // Mat. Res. Bull. – 1975. – Vol.10. – P.205-208.
- [138]. Фазові рівноваги та кристалічна структура сполук в квазіпотрійних системах Y₂X₃ – PbX – D^{IV}X₂ (D^{IV} – Si, Ge, Sn; X – S, Se) / [Руда І. П., Марчук О. В., Гулай Л. Д., Олексеюк І. Д.] // Матеріали IV Міжнародної наукової конференції "Релаксаційно-, нелінійно- та акустичнооптичні процеси, метеріали та методи їх отримання". – Луцьк – Шацькі озера, 1-5 червня 2008 р. – Луцьк: PBB "Вежа" BHУ ім. Лесі Українки, 2008. – С. 72-76.
- [139]. Фазові рівноваги в системах Y₂S(Se)₃ PbS(Se) SiS(Se)₂ при 770 К / [Марчук О. В., Руда І. П., Гулай Л. Д., Олексеюк І. Д.] // Наук. вісн. ВНУ. – № 13. – 2008. – С.24-27.
- [140]. Система $La_2S_3-PbS-SiS_2$ при 770 К / [Середа Л. В., Руда І. П.,

Марчук О. В., Гулай Л. Д.] // Матеріали III Міжнародної науковопрактичної конференції студентів і аспірантів "Волинь очима молодих науковців: минуле, сучасне, майбутнє". Луцьк, 13-14 травня 2009 р. – Луцьк: РВВ "Вежа" ВНУ імені Лесі Українки, 2009. Том. 2. – С.295-296.

- [141]. Марчук О. В. Фазові рівноваги та кристалічна структура сполук в квазіпотрійних системах La₂X₃ – PbX – D^{IV}X₂ (D^{IV} – Si, Ge, Sn; X – S, Se) / О. В. Марчук, І. П. Руда, Л. Д. Гулай // Матеріали V Міжнародної наукової конференції "Релаксаційно-, нелінійно- та акустичнооптичні процеси, метеріали та методи їх отримання". – Луцьк – Шацькі озера, 1-5 червня 2010 р. – Луцьк: PBB "Вежа" ВНУ ім. Лесі Українки, 2010. – С.146-149.
- [142]. Марчук О. В. Фазові рівноваги у системах La₂X₃ PbX SiX₂ (X S, Se) за температури 770 К / О. В. Марчук, Л. Д. Гулай // Наук. вісн. ВНУ, серія "Хімічні науки". № 17(242). 2012. С.93-97.
- [143]. Фазові рівноваги у системі Er₂S₃ PbS SiS₂ за температури 770 К / [Козлинець В. С., Марчук О. В., Олексеюк І. Д., Гулай Л. Д.] // Релаксаційні, нелінійні й акустооптичні процеси та матеріали: матеріали VII Міжнар. наук. конф. – Луцьк : Вежа – Друк, 2014. – С.153-157.
- [144]. Система La₂Se₃ PbSe SiSe₂ при 770 К та кристалічна структура сполуки La₂PbSi₂Se₈ / [Ходаковська Л. В., Руда І. П., Марчук О. В., Гулай Л. Д.] // Матеріали III Міжнародної науковопрактичної конференції студентів і аспірантів "Волинь очима молодих науковців: минуле, сучасне, майбутнє". Луцьк, 13-14 травня 2009 р. – Луцьк: PBB "Вежа" BHУ ім. Лесі Українки,

2009. Том. 2. – С.296-298.

- [145]. Марчук О. В. Фазові рівноваги в системі PbS GeS₂ Pr₂S₃ за температури 770 К / О. В. Марчук, Л. Д. Гулай, Н. М. Блашко // Матеріали VI Міжнародної наукової конференції " Релаксаційні, нелінійні й акустооптичні процеси та матеріали". Луцьк Шацькі озера, 25-29 травня 2012 р. Луцьк: ПФ "Смарагд", 2012. С.158-160.
- [146]. Блашко Н. М. Система Pr₂S₃ PbS GeS₂ за температури 770 К / Н.М. Блашко, О. В. Марчук // Матеріали VI Міжнародної науковопрактичної конференції студентів і аспірантів "Молода наука Волині:пріорітети та перспективи досліджень" (14-15 травня 2012 року) : у 3 т. Т.3. – Волининський національний університет імені Лесі Українки, 2012. – С.115-116.
- [147]. Олексеюк І. Д. Системи Sm(Er)₂Se₃ PbSe GeSe₂ при температурі 770 К / І. Д. Олексеюк, Л. Д. Гулай, О. В. Марчук // Наук. вісн. ВНУ. – 2009. – № 24.– С.14-19.
- [148]. Марчук О. В. Системи R₂X₃ PbX GeX₂ (R P3M, X S, Se) за температури 770 К / О. В. Марчук, Л. Д. Гулай // XI Міжнарода конференція з кристалохімії інтерметалічних сполук. Тези конференції. Львів, 30 травня – 2 червня 2010 р. – Львів: ВЦ Львів. нац. ун-ту імені Івана Франка, 2010. – P.51.
- [149]. Система La₂Se₃ PbSe GeSe₂ при 770 К / [Блашко Н. М., Руда І. П., Марчук О. В., Гулай Л. Д. // Матеріали IV Міжнародної науково-практичної конференції студентів і аспірантів "Волинь очима молодих науковців: минуле, сучасне, майбутнє". Луцьк, 12-13 травня 2010 р. – Луцьк: PBB "Вежа" ВНУ ім. Лесі Українки,

2010. Том. 2. – С.331-332.

- [150]. Фазові рівноваги в системах PbSe Gd(Ho)₂Se₃ GeSe₂ за температури 770 К / [Марчук О., Олексеюк І., Гулай Л., Шемет В.]
 // Наук. вісн. СНУ, серія "Хімічні науки". № 20(297). 2014. С.30-35.
- [151]. Investigation of the Y_2S_3 PbS SnS₂ system at 770 K / [Marchuk O.V., Ruda I. P., Gulay L. D., Olekseyuk I. D.] // Polish J. Chem. – 2007. – Vol.81. – P. 425-432.
- [152]. Дослідження системи Y₂S₃ PbS SnS₂ при 770 К / [Руда І. П., Гулай Л. Д., Марчук О. В., Олексеюк І. Д.] // Матеріали І Міжнародної науково-практичної конференції студентів і аспірантів "Волинь очима молодих науковців: минуле, сучасне, майбутнє". Луцьк, 18-19 квітня 2007 р. – Луцьк: PBB "Вежа" BHУ ім. Лесі Українки, 2007. Том. 2. – С.26-27.
- [153]. Ізотермічний переріз системи Er₂S₃ PbS SnS₂ при 770 К /
 [Моружко А. С., Гулай Л. Д., Марчук О. В., Олексеюк І. Д.] //
 Матеріали І Міжнародної науково-практичної конференції студентів і аспірантів "Волинь очима молодих науковців: минуле, сучасне, майбутнє". Луцьк, 18-19 квітня 2007 р. Луцьк: PBB
 "Вежа" ВНУ ім. Лесі Українки, 2007. Том. 2. С.145-146.
- [154]. Crystal structures of the R₂Pb₃Sn₃S₁₂ (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er and Tm) compounds / [Gulay L. D., Ruda I.P., Marchuk O.V., Olekseyk I. D.] // J. Alloys Compd. 2008. Vol. 457. P. 204-208.
- [155]. Системи Y₂X₃ PbX SnX₂ при 770 К / [Руда І. П., Марчук О. В., Гулай Л. Д., Олексеюк І. Д.] // Матеріали II

Міжнародної науково-практичної конференції студентів і аспірантів "Волинь очима молодих науковців: минуле, сучасне, майбутнє". Луцьк, 16-17 квітня 2008 р. – Луцьк: РВВ "Вежа" ВНУ ім. Лесі Українки, 2008. Том. 2. – С.149-151.

- [156]. Гулай Л. Д. Фазові рівноваги в системах Sm(Ho)₂S₃ PbS SnS₂ при температурі 770 К / Л. Д. Гулай, О. В. Марчук // Наук. вісн. ВНУ, серія "Хімічні науки". – № 16. – 2010. – С.50-54.
- [157]. Марчук О. В. Фазові рівноваги у системі PbS Pr₂S₃ SnS₂ за температури 770 К / О. В. Марчук, Л. Д. Гулай, В. Я. Шемет / Міжвузівський збірник "Наукові нотатки". Випуск № 47. 2014. Луцьк: PBB ЛНТУ, 2014. С.99-102.
- [158]. Марчук О. В. Система Pr₂S₃ PbS SnS₂ за температури 770 К / О. В. Марчук, В. Я. Шемет, Л. Д. Гулай // Хімічні проблеми сьогодення. Тези VIII Всеукраїнської наукової конференції студентів, аспірантів і молодих учених з міжнародною участю. – Донецьк, 17-20 березня 2014 р. – С.32.
- [159]. Crystal structures and magnetic properties of R₂PbSi₂S₈ (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho), R₂PbSi₂Se₈ (R = La, Ce, Pr, Nd, Sm, Gd) and R₂PbGe₂S₈ (R = Ce, Pr) compounds / [Daszkiewicz M., Marchuk O. V., Gulay L. D. Kaczorowski D.] // J. Alloys Compd. 2012. Vol. 519 P.85-91.
- [160]. La₂Pb(SiS₄)₂ / [Gulay L. D., Daszkiewicz M., Ruda I. P., Marchuk O. V.] // Acta Cryst. – 2010. – Vol. 66, № 12. – i19-i21.
- [161]. Кристалічна структура сполук R_{1,32}Pb_{1,68}Ge_{1,67}Se₇ (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) / [Руда І. П., Марчук О. В., Гулай Л. Д., Олексеюк І. Д.] // Вісник ВДУ, серія "Хімічні науки".

– № 13. – 2007. – C.7-12.

- [162]. Eu₃(AsS₄)₂ and A_xEu_{3-y}As_{5-z}S₁₀ (A = Li, Na): Compounds with simple and complex thioarsenate building blocks / [Bera T. K., Iyer R. G., Malliakas C. D., Kanatzidis M. G.] // Inorganic Chem. $-2007. N_{2} 46(21). P.8466-8468.$
- [163]. Crystal structure of $R_3Ge_{1+x}Se_7$ (R = La, Ce, Pr, Sm, Gd and Tb, x = 0,43 - 0,49) and magnetic properties of $Ce_3Ge_{1,47}Se_7$ / [Daszkiewicz M.. Strok O. M., Gulay L. D., Kaczorowski D.] // J. Alloys Compd. – Vol.508. – 2010. – C.258-261.
- [164]. Jaulmes S. Structure cristalline du sulfure mixte d'europium et d'etain $Eu_5Sn_3S_{12}$ / S. Jaulmes, M. Julien-Pouzol // Acta Cryst. 1977. Vol.33. P.1191-1193.
- [165]. Jaulmes S. Sulfure d'europium et d'etain Eu₃Sn₂S₇ / S. Jaulmes,
 M. Julien-Pouzol // Acta Cryst. 1977. Vol.33. P.3898-3901.

Для нотаток

Для нотаток

Наукове видання

Марчук Олег Васильович Гулай Любомир Дмитрович

Квазіпотрійні халькогенідні системи $R_2X_3 - PbX - D^{IV}X_2$ (R – P3M; D^{IV} – Si, Ge, Sn; X – S, Se)

Монографія

Друкується в авторській редакції

Формат 60х84 ¹/₁₆. Обсяг 7,67 ум. друк. арк., 6,59 обл.-вид. арк. Наклад 300 пр. Зам. 2. Видавець і виготовлювач – Вежа-Друк (м. Луцьк, вул. Винниченка, 14, тел. (0332) 29-90-65). Свідоцтво Держ. комітету телебачення та радіомовлення України ДК № 4607 від 30.08.2013 р.