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Abstract

A symmetry group classification for fourth-order reaction-diffusion equations, allow-
ing for both second-order and fourth-order diffusion terms, is carried out. The fourth-
order equations are treated, firstly, as systems of second-order equations that bear some
resemblance to systems of coupled reaction-diffusion equations with cross diffusion, sec-
ondly, as systems of a second-order equation and two first-order equations. The paper
generalizes the results of Lie symmetry analysis derived earlier for particular cases of
these equations. Various exact solutions are constructed using Lie symmetry reductions
of the reaction-diffusion systems to ordinary differential equations. The solutions include
some unusual structures as well as the familiar types that regularly occur in symmetry
reductions, namely, self-similar solutions, decelerating and decaying traveling waves, and
steady states.
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1 Introduction

We consider the fourth-order nonlinear partial differential equation (PDE) of the form:

ut = −
[
K(u)uxxx

]
x

+
[
D(u)ux

]
x

+ F (u), (1.1)

where K, D, and F are arbitrary smooth functions (hereafter the subscripts t and x denote
differentiation with respect to these variables). Equation (1.1) generalizes a wide range of the
known scalar reaction-diffusion equations arising in applications. The case with K identically
zero and D(u) > 0 for almost all u is the case of second-order reaction-diffusion which has
already been widely studied in many practical contexts including combustion, population
dynamics, population genetics, biological cellular growth, and adsorptive porous media, for
example [9, 11, 15, 38]. Hereinafter, we assume that K(u) is not identically zero, so that
the governing equation is of the fourth order, including a fourth-order diffusion term when
K is nonnegative. The simplest equation of the form (1.1), with F = 0 and D = 0, follows
from the approximations of lubrication theory to describe thin films of a Newtonian liquid
dominated by surface tension effects. The thin film equations are an active area of research
(see [6, 7, 26] and papers cited therein). The equation:

ut = −
[
uγuxxx

]
x

(1.2)
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with the nonnegative parameter γ was introduced in [33]. The case γ = 3 describes a classical
thin film of Newtonian fluid, as reviewed in [41]. γ = 1 occurs in the dynamics of a Hele-Shaw
cell [25], and γ = 2 arises in a study of wetting films with a free contact line between film
and substrate [6].

One important generalization of equation (1.2), which is also a particular case of equation
(1.1), can be written as

ut = −
[
uγuxxx

]
x

+
[
uµux

]
x
, (1.3)

where µ is a positive parameter (arbitrary positive coefficients of each term can be set to
one by rescaling variables). Equation (1.3) with γ = 0 can be considered as a semilinear
limit of the classical Cahn-Hilliard model of phase separation [13], which is also widely
studied (see [34] and the papers cited therein). The linear case γ = µ = 0 also follows from a
small-slope approximation to metal surface evolution with surface-diffusion and evaporation-
condensation represented by fourth-order and second-order diffusion terms [14, 37].

Several papers are devoted to the construction of exact solutions of the thin film equations
(1.2) by Lie symmetry reductions [4, 5, 12, 22, 30, 31, 45] or by searching for special invariant
finite vector spaces of solutions [29]. The symmetry classification is extended here to include
a reaction term. In some circumstances, the reaction term F should naturally arise in fourth-
order transport equations with a role similar to that in second-order reaction-diffusion. For
example, a particular case of equation (1.1) with F (u) = u occurs as the limiting case
of the unstable Cahn-Hilliard equation [27, 39]. In fabricated metal surface evolution, a
positive source term may represent ion beam sputtering [46], and a negative source term
may represent chemical decay or evaporation [32]. Other examples of equations of the form
(1.1) arising in applications and having a reaction term are presented in [27].

The first aim of this paper is to describe all possible Lie symmetries, which equation (1.1)
can admit depending on the function triplets (K, D, and F ), that is, to solve the so-called
group classification problem, which was formulated and solved for a class of nonlinear heat
equations in the pioneering work in [43]. This problem for the second-order reaction-diffusion
equation was solved in [24] (see also [19, 20], where the problem is solved for the general
reaction-diffusion-convection equation). Note that the most general results concerning non-
classical (Q-conditional) symmetries of reaction-diffusion equations were obtained in [2, 3,
23, 28].

It should be noted that we shall not directly search for Lie symmetries of equation (1.1)
but replace one scalar equation by an equivalent cross-diffusion system of equations. Using
the symmetries found, we construct exact solutions of equation (1.1) with such triplets (K,
D, and F ), which arise in applications and compare the results obtained with those derived
earlier.

Ovsiannikov’s method of Lie symmetry classification of differential equations [42] is based
on the classical Lie scheme and a set of equivalence transformations of a given equation.
The formal application of this method to equations containing several arbitrary functions
(equation(1.1) contains three arbitrary functions) usually leads to a large number of equations
admitting nontrivial Lie algebras of invariance. Our approach of Lie symmetry classification
of differential equations is based on the classical Lie scheme and on finding and then making
systematic use of the sets of local transformations that reduce any differential equation with
a Lie algebra of invariance, to one given in the relevant list, that is representative of each
equivalence class. This approach has earlier been applied also for reaction-diffusion systems
[16, 17, 18].
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The paper is organized as follows. Section 2 is devoted to a complete description of Lie
symmetries of equation (1.1), that is all possible Lie symmetries, which this equation can
admit depending on the form the functions K, D, and F , are found. In most applications, K
and D are nonnegative, so that the diffusive transport processes are dissipative [10]. However,
in solving a group classification problem, it is more common to allow the coefficient functions
to be arbitrary smooth functions. In Section 3, the symmetry reductions and some exact
solutions are constructed for particular cases of equation (1.1) that are likely to be useful in
applications. The main results of the paper are summarized in the last section.

2 Lie symmetry of equation (1.1)

Firstly, we note that equation (1.1) can be reduced to the system:

ut = −
[
K(u)vx

]
x

+
[
D(u)ux

]
x

+ F (u), 0 = uxx − v (2.1)

by the substitution v = uxx, v = v(t, x). Physical motivation of this substitution is quite
natural because the thin film equation can be derived in the form of a system containing the
equation for pressure v(t, x), which is proportional to uxx (here u(t, x) means the thickness
of a film) [29].

From the mathematical point of view, Lie symmetries of this system could include nothing
more than extensions (prolongations) of Lie symmetries of the single fourth-order equation
for u(x, t) because second-order contact symmetries do not exist [1]. However, it is convenient
to analyze system (2.1) as a cross-diffusion system, in which the second equation contains
the time variable t as a parameter. The motivation follows from the well-known fact that
application of Lie’s algorithm in the case of high-order equations leads to very cumbersome
formulae. Moreover, each Lie symmetry of equation (1.1) can be easily established from one
of system (2.1) and there is one-to-one correspondence between solutions of (2.1) and (1.1).
Thus, we shall investigate system (2.1) instead of equation (1.1).

We note that the Lie symmetry classification problem may be solved by iterating a
symmetry-finding program, for example, program DESOLV [48]. However, such programs
usually produce many special cases of equations with additional symmetries, which are equiv-
alent up to the correctly specified local substitutions. Finding and systematically using the
sets of such substitutions often leads to a significant practical reduction in the number of
special cases that admit additional invariance. Thus, the problem under investigation here
will be tractable without the assistance of a computer, however, the resulting symmetries
have been checked by a symmetry-finding program. However, all possible local substitutions
will be used to construct the shortest list of “canonical” systems of the form (2.1) with
nontrivial Lie algebra of invariance.

Now we formulate the main theorem, which presents the classification of special forms of
system (2.1) (with K not identically 0) having additional symmetries.

Theorem 2.1. All possible maximal algebras of invariance (up to equivalent representations
generated by transformations of the form (2.2)) of system (2.1) for any fixed triplet (K, D,
and F ) are presented in Table 1. Any other system of the form (2.1) with nontrivial Lie
symmetry is reduced by a local substitution of the form:

t −→ C0t+ C1e
C2t, x −→ C3x,

u −→ C4 + C5t+ C6e
C7tu, v −→ C8e

C9tv
(2.2)
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to one of those given in Table 1 (the constants C with subscripts are determined by the form
of the system in question, some of them necessarily being zero in all particular cases).

Proof. According to the classical Lie scheme [8, 28, 40], we consider system (2.1) as the
manifold (S1, S2) determined by the restrictions:

S1 ≡ −ut −
[
K(u)vx

]
x

+
[
D(u)ux

]
x

+ F (u) = 0,

S2 ≡ uxx − v = 0
(2.3)

in the space of the variables t, x, u, v, ut, vt, ux, vx, uxx, and vxx. The maximal algebra of
invariance (MAI) of this system is generated by infinitesimal operators of the form:

X = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v, (2.4)

where the functions ξ0, ξ1, η1, and η2 are to be determined. In order to determine these
unknown functions, one needs to use the invariance conditions:

X2S1 ≡ X2
(
− ut −

[
K(u)vx

]
x

+
[
D(u)ux

]
x

+ F (u)
)∣∣
S1=0, S2=0

= 0,

X2S2 ≡ X2
(
uxx − v

)∣∣
S1=0, S2=0

= 0,
(2.5)

where X2 is the second prolongation of the operator X:

X2 = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v

+ τ1
10∂ut + τ1

01∂ux + τ2
10∂vt + τ2

01∂vx + τ1
20∂utt + τ1

11∂utx

+ τ1
02∂uxx + τ2

20∂vtt + τ2
11∂vxt + τ2

02∂vxx .

(2.6)

The coefficients with relevant subscripts τ1
t , τ1

x , τ2
10, τ2

01, τ1
20, τ1

11, τ1
02, τ2

20, τ2
11, and τ2

02 are
calculated by the well-known prolongation formulae (see, e.g., [8, 28, 40]).

Substituting operator (2.6) into system (2.5) and carrying out the relevant calculations,
we obtain the so-called system of determining equations for finding the functions ξ0, ξ1, η1,
and η2. This is an overdetermined system of PDEs that can be written in the explicit forms:

ξ0x = ξ0u = ξ0v = ξ1t = ξ1u = ξ1v = ξ1xx = 0, (2.7)

η1
v = η1

xu = η1
uu = 0, (2.8)

η2 = η1
xx + (η1

u − 2ξ1x)v, (2.9)

K(u)(ξ0t − 4ξ1x) +K ′(u)η1 = 0, (2.10)

D(u)(ξ0t − 2ξ1x) +D′(u)η1 = 0, (2.11)

η1
t +K(u)η1

xxxx + F (u)(η1
u − ξ0t )−D(u)η1

xx − F ′(u)η1 = 0. (2.12)

Of course, equations (2.7)–(2.9) are linear and do not depend on the functions K, D, and
F , hence their general solution can be easily constructed as follows:

ξ0 = ξ0(t), ξ1 = αx+ x0,

η1 = R(t)u+ P (t, x), η2 = Pxx(t, x) +
(
R(t)− 2α

)
v,

(2.13)

where P (t, x) andR(t) are arbitrary smooth functions, while α and x0 are arbitrary constants.
Equations (2.10)–(2.12) form the system of classification equations. Its general solution under
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assumption of arbitrarily given functions K, D, and F generates the invariance algebra that
consists only of generators of translations with respect to the x and t, that is, Pt = ∂

∂t ,
Px = ∂

∂x . The algebra with this basis is called the trivial Lie algebra of the system (2.1)
(note that other authors instead use “kernel of the basic Lie groups” [42] or “the principal
Lie algebra” [31] in this context). Thus, we aim to find all triplets (K, D, and F ) that
lead to extensions of the trivial Lie algebra. This means that one needs to solve equations
(2.10)–(2.12) with coefficients (2.13). The crucial step in solving this task is to analyze
differential consequences of equations (2.10)–(2.11) with respect to the variable x. Since
these consequences take the form K ′(u)Px(t, x) = 0 and D′(u)Px(t, x) = 0, respectively, one
arrives at two basic cases:

(i) [K ′(u)]2 + [D′(u)]2 6= 0
(ii) K ′(u) = D′(u) = 0.

Consider case (i). In this case Px(t, x) = 0, so that equations (2.10)–(2.12) take the forms:

K(u)
[
ξ0t (t)− 4α

]
+K ′(u)

[
R(t)u+ P (t)

]
= 0, (2.14)

D(u)
[
ξ0t (t)− 2α

]
+D′(u)

[
R(t)u+ P (t)

]
= 0, (2.15)

Rt(t)u+ Pt(t) + F (u)
[
R(t)− ξ0t (t)

]
− F ′(u)

[
R(t)u+ P (t)

]
= 0. (2.16)

Setting R(t) = P (t) = 0, we immediately arrive at case 1 of Table 1. In fact, equations
(2.14)–(2.16) with R(t) = P (t) = 0 and nonzero K(u) are equivalent to

ξ0t (t) = 4α 6= 0, D(u) = 0, F (u) = 0,

and K(u) is an arbitrary smooth function. This means that the triplet (K(u), 0, 0) forms the
system from case 1 of Table 1 and the coordinates of the infinitesimal operator (2.4) take
the form:

ξ0 = 4αt+ t0, ξ1 = αx+ x0, η1 = η2 = 0, (2.17)

where α, t0, and x0 are arbitrary parameters. Operator (2.4) with coordinates (2.17) gener-
ates exactly the operators Pt (for t0 = 1, α = x0 = 0), Px (for t0 = α = 0, x0 = 1), and D1

(for α = 1, x0 = t0 = 0) listed in case 1 of Table 1.
If R2(t) + P 2(t) 6= 0 then two possible subcases arise ia. R(t) 6= 0 and ib. R(t) = 0,

P (t) 6= 0.
Consider subcase ia. Integrating equation (2.14) as an ODE on the function K(u), one

obtains

K(u) = k

[
u+

P (t)
R(t)

] 4α−ξ0t (t)
R(t)

, (2.18)

where k is a nonzero constant, which can be reduced to k = 1 (by scaling time t → kt)
without losing generality. Since the function K must depend only on u, the restrictions

ξ0t (t) = 4α− γR(t), P (t) = γ0R(t) (2.19)

are obtained. Here, γ and γ0 are arbitrary constants. Thus, solving equation (2.14), we arrive
at the power function:

K(u) = (u+ γ0)γ , (2.20)

and restrictions (2.19).
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To solve equations (2.15)-(2.16), we need to analyze two subcases ia1 D(u) 6= 0 and ia2
D(u) = 0.

In subcase ia1, equation (2.15) can be solved as an ODE on the function D(u), so that
one obtains

D(u) = d(u+ γ0)µ, (2.21)

and the condition

ξ0t (t) = 2α− µR(t), (2.22)

where d 6= 0 and µ are arbitrary constants.
If γ 6= µ, then solving equations (2.19) and (2.22) and substituting the found functions

R(t), P (t), and ξ0 into equation (2.16), we arrive at the ODE:

(u+ γ0)F ′(u) + (γ − 2µ− 1)F (u) = 0. (2.23)

The general solution of equation (2.23) and the functions K(u) and D(u) found above form
the system:

ut = −
[(
u+ γ0

)γ
vx
]
x

+ d
[(
u+ γ0

)µ
ux
]
x

+ λ
(
u+ γ0

)2µ−γ+1
, uxx − v = 0, (2.24)

which is reduced to the system listed in case 3 of Table 1 by renaming u+γ0 → u. Substituting
the functions R(t), P (t), and ξ0 into (2.13), we obtain the infinitesimal operator (2.4), which
generates three basic operators listed in case 3 of Table 1.

If γ = µ, then equations (2.19) and (2.22) are compatible only under restriction α = 0. It
turns out that this restriction does not lead to any new cases but to case 3 of Table 1 with
γ = µ. In fact, equations (2.14) and (2.15) have identical structure, hence D(u) = d(u+γ0)γ ,
d = const. The general solution of (2.16) has the form F (u) = λ(u+γ0)1+γ+λ1(u+γ0), where
λ and λ1 6= 0 are arbitrary constants. The relevant coordinates of infinitesimal operator (2.4)
take the forms:

ξ0 =
r1
λ1
e−λ1γt + t0, ξ1 = x0,

η1 = r1e
−λ1γt

(
u+ γ0

)
, η2 = r1e

−λ1γtv,
(2.25)

where t0, r1, and x0 are arbitrary parameters. Thus, the system:

ut = −
[(
u+ γ0

)γ
vx
]
x

+ d
[(
u+ γ0

)γ
ux
]
x

+ λ
(
u+ γ0

)1+γ + λ1

(
u+ γ0

)
,

uxx − v = 0
(2.26)

is invariant under three-dimensional MAI with the basic operators:

Pt, Px, Q∗ = e−γλ1t
(
∂t + λ1

((
u+ γ0

)
∂u + v∂v

))
. (2.27)

However, we found the local substitution:

t∗ =
1
λ1γ

eλ1γt, x∗ = x, u∗ =
(
u+ γ0

)
e−λ1t, v∗ = ve−λ1t, (2.28)

which reduces system (2.26) and Lie algebra (2.27) to the system and Lie algebra listed in
case 3 of Table 1 with γ = µ.
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The analysis of subcase ia2 is straightforward because equation (2.15) vanishes for D(u) =
0, while equation (2.16) can be treated in a similar way. In conclusion, we found that the
system:

ut = −
[(
u+ γ0

)γ
vx
]
x

+ λ1

(
u+ γ0

)
, uxx − v = 0, (2.29)

is invariant under four-dimensional MAI with the basic operators:

Pt, Px, Q
∗, D∗ = x∂x +

4
γ

(
u+ γ0

)
∂u +

(
4
γ
− 2
)
v∂v. (2.30)

Direct checking shows that system (2.29) and Lie algebra (2.30) are reduced to the system
and Lie algebra listed in case 6 of Table 1 if one applies substitution (2.28).

Examination of subcase ib is much simpler because equations (2.14)–(2.16) with R(t) = 0
can be easily integrated. Finally, one obtains cases 2 and 5 of Table 1.

To complete the proof, we need to examine case (ii) K ′(u) = D′(u) = 0, that is K(u) =
k = const, D(u) = d = const. Since K(u) 6= 0, we can again set k = 1 without losing
generality.

Thus, the classification equations (2.10)–(2.11) with coefficients (2.13) can be essentially
simplified and one obtains

ξ0(t) = 4αt+ t0, αd = 0. (2.31)

The third classification equation (2.12) takes the form:

Rt(t)u+ Pt(t, x) + Pxxxx(t, x)− dPxx(t, x) + F (u)[R(t)− 4α]

− F ′(u)[R(t)u+ P (t, x)] = 0.
(2.32)

Differentiating equation (2.32) with respect to x and u, we find the condition F ′′(u)Px(t, x) =
0. Hence, two different subcases should be examined:

iia F ′′ = 0
iib F ′′ 6= 0, Px(t, x) = 0.

Consider subcase iia. Since F ′′(u) = 0, we immediately obtain F (u) = λ1u+ λ0, so that
the triplet of functions (K, D, and F ) is known.

Substituting the function F into equation (2.32) and splitting the obtained expression
into two equations (with the variable u and without it), we arrive at R(t) = 4αλ1t+ r1 and
the linear PDE:

Pt(t, x) + Pxxxx(t, x)− dPxx(t, x)− λ1P (t, x) + λ0

(
4αλ1t+ r1 − 4α

)
= 0 (2.33)

to find the function P (t, x). Thus, the coordinates of infinitesimal operator (2.4) take the
form:

ξ0 = 4αt+ t0, ξ
1 = αx+ x0,

η1 =
(
4αλ1t+ r1

)
u+ P (t, x), η2 =

(
4αλ1t+ r1 − 2α

)
v + Pxx(t, x),

(2.34)

where P (t, x) is the general solution of equation (2.33).
The last step is to take into account the second condition from (2.31). If d 6= 0, then

α = 0 and, applying the relevant simplifications, we arrive at the case 7 of Table 1.
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Case Systems of the form (2.1) Restrictions Basic operators of MAI

1. ut = −[K(u)vx]x Pt, Px,

uxx − v = 0 D1 = 4t∂t + x∂x − 2v∂v
2. ut = −[eγuvx]x+d[eµuux]x

+λe(2µ−γ)u
γ2 + µ2 6= 0 Pt, Px,

uxx − v = 0 d2 + λ2 6= 0
D2 = 2(γ−2µ)t∂t+(γ−µ)x∂x

+2(∂u − (γ − µ)v∂v)
3. ut = −[uγvx]x + d[uµux]x

+λu2µ−γ+1
γ2 + µ2 6= 0 Pt, Px,

uxx − v = 0 d2 + λ2 6= 0
D3 = 2(γ−2µ)t∂t+(γ−µ)x∂x

+2(u∂u+(µ−γ+1)v∂v)
4. ut = −vxx + duxx + λu lnu λ 6= 0 Pt, Px,

uxx − v = 0 Q1 = eλt(u∂u + v∂v)

5. ut = −[eγuvx]x γ 6= 0 Pt, Px,

uxx − v = 0 D1, D2 with µ = γ

6. ut = −[uγvx]x γ 6= 0 Pt, Px,

uxx − v = 0 D1, D3 with µ = γ

7. ut = −vxx + duxx d 6= 0 Pt, Px, I = u∂u + v∂v,

uxx − v = 0 X∞ = P (t, x)∂u + Pxx(t, x)∂v,

where Pt + Pxxxx − dPxx = 0

8. ut = −vxx Pt, Px, I, D1,

uxx − v = 0 X∞ = P (t, x)∂u + Pxx(t, x)∂v,

where Pt + Pxxxx = 0

Table 1. Lie symmetries of (2.1).

If d = 0, then equation (2.33) takes the form:

Pt(t, x) + Pxxxx(t, x)− λ1P (t, x) + λ0

(
4αλ1t+ r1 − 4α

)
. (2.35)

The corresponding system is

ut = −vxx + λ1u+ λ0, uxx − v = 0. (2.36)

It turns out that system (2.35) is reduced to the form listed in case 8 of Table 1 if one applies
the local substitutions:

u∗ = u− λ0t, λ1 = 0, v∗ = v, (2.37)

and

u∗ = e−λ1t

(
u+

λ0

λ1

)
, λ1 6= 0, v∗ = e−λ1tv. (2.38)
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Simultaneously, operator (2.4) with coordinates (2.34) is transformed in such a way that the
basic operators Pt, Px, I, D1, and X∞ = P (t, x)∂u + Pxx(t, x)∂v, listed in case 8 of Table 1,
can be easily derived.

Consider subcase iib. Since Px(t, x) = 0, equation (2.32) takes the form:

Rt(t)u+ Pt(t) + F (u)
[
R(t)− 4α

]
− F ′(u)

[
R(t)u+ P (t)

]
= 0. (2.39)

Differentiating equation (2.39) with respect to the variables t and u, we find

F ′′(u)
[
Rt(t)u+ Pt(t)

]
= Rtt(t). (2.40)

Because equation (2.40) has a simple structure, we prefer to solve this equation and check
when the solution obtained will satisfy equation (2.39). We note that the special case Rt(t) =
Pt(t) = 0 does not lead to new results, so that R2

t (t)+P 2
t (t) 6= 0. Moreover, since the function

F depends only on u, the relations:

Pt(t) = γRt(t), Rtt(t) = λRt(t), (2.41)

where γ and λ 6= 0 are arbitrary constants, should take place. The general solution of equation
(2.40) with the coefficients (2.41) is

F (u) = λ(u+ γ) ln(u+ γ) + λ1u+ λ0, (2.42)

where λ0 and λ1 are arbitrary constants. Now, we substitute (2.42) and the general solution
of the linear ODEs system (2.41) into equation (2.39) and find conditions when the obtained
expression can be fulfilled. The simple calculations give

R(t) = r1e
λt, P (t) = γr1e

λt, α = 0, λ0 = λ1γ. (2.43)

So the system:

ut = −vxx + duxx + λ(u+ γ) ln(u+ γ) + λ1(u+ γ), uxx − v = 0 (2.44)

admits MAI generated by operator (2.4) with coordinates:

ξ0 = t0, ξ1 = x0, η1 = r1e
λt(u+ γ), η2 = r1e

λtv. (2.45)

Finally, the system (2.44) and operator (2.4) with (2.45) are simplified by the substitution:

u∗ = e
λ1
λ (u+ γ), v∗ = e

λ1
λ v, (2.46)

so that the system and MAI listed in case 4 of Table 1 are obtained.
Thus, the system of determining equations (2.7)–(2.12) is completely solved, and eight dif-

ferent systems of the form (2.1) have been found, which admit three- and higher-dimensional
Lie algebras. Simultaneously, we have shown that all other systems admitting nontrivial Lie
algebra are reduced to those listed in Table 1 by the substitutions of the form (2.28), (2.37),
(2.38), and (2.46). One notes that all of these substitutions can be united to the form (2.2).

The proof is now completed.

One easily notes that cases 2 and 3 of Table 1 generalize the results of Lie symmetry
analysis for the Cahn-Hilliard equation derived in [22, 30]. For example, the systems:

ut = −vxx + d
[
eµuux

]
x
, uxx − v = 0, (2.47)
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and

ut = −vxx + d
[
uµux

]
x
, uxx − v = 0, (2.48)

which are the particular cases of the corresponding systems from Table 1, admit the Lie
symmetry operators:

4µt∂t + µx∂x − 2
(
∂u + µv∂v

)
, (2.49)

and

4µt∂t + µx∂x − 2
(
u∂u + (µ+ 1)v∂v

)
, (2.50)

respectively. The table also includes the results obtained in [30] for equation (1.1) with
K(u) = const and F (u) = 0.

A natural question is can we claim that eight systems listed in Table 1 are inequivalent up
to any local substitutions (not only of the form (2.2))? It turns out that, using the theorem
presented below, one easily checks that answer is positive. Thus, Table 1 contains a complete
list of canonical systems of the form (2.1) with nontrivial MAI.

Consider the most general form of local substitutions:

τ = a(t, x, u, v), y = b(t, x, u, v), w = f(t, x, u, v), z = g(t, x, u, v) (2.51)

with the restrictions:

41 =
∣∣∣∣ax at
bx bt

∣∣∣∣ 6= 0, 42 =
∣∣∣∣fu fv
gu gv

∣∣∣∣ 6= 0 (2.52)

on the smooth functions a, b, f , and g, which guarantee that (2.51) is nondegenerate.

Theorem 2.2. Any nonlinear system of the form (2.1) can be reduced to another system of
the same form:

wτ = −
(
K̃(w)zy

)
y

+
(
D̃(w)wy

)
y

+ F̃ (w), wyy − z = 0 (2.53)

by the substitution (2.51) if and only if

τ = a = a(t), y = b = β1x+ β0, w = f = ξ(t)u+ ζ(t), z = g =
ξ(t)
β2

1

v, (2.54)

where a(t), ξ(t), and ζ(t) are the correctly-specified functions satisfying the following rela-
tions:

at(t)K̃(w) = β4
1 ·K

(
1
ξ(t)

w − ζ(t)
ξ(t)

)
, (2.55)

at(t)D̃(w) = β2
1 ·D

(
1
ξ(t)

w − ζ(t)
ξ(t)

)
, (2.56)

at(t)F̃ (w) = ξ(t) · F
(

1
ξ(t)

w − ζ(t)
ξ(t)

)
+
ξt(t)
ξ(t)

[
w − ζ(t)

]
+ ζt(t) (2.57)

provided atβ1ξ 6= 0.
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Proof. It is quite similar to the proof presented in [21] (see Theorem 4 therein) for the
general reaction-diffusion-convection equation and omitted here because its bulk.

Remark 2.3. The transformations presented in Theorem 2.2 are nothing else but the set
of the so-called form-preserving point transformations [36] for the class of systems (2.1).
These transformations present the most general form of local substitutions, which can map
an equation (system) from a given class to another one belonging to the same class. In
the particular case, transformation (2.51) with (2.54) contain those arising in Theorem 2.1.
Form-preserving transformations also contain as particular cases the well-known equivalence
transformations and discrete transformations used in Ovsiannikov’s method of group (Lie
symmetry) classification.

To finish the Lie symmetry description, we note that equation (1.1) can be reduced to an
equivalent system of PDEs in different ways. One sees that the system:

ut = −
[
K(u)vx

]
x

+
[
D(u)ux

]
x

+ F (u), 0 = ux − w, 0 = wx − v (2.58)

by introducing new unknown functions v = v(t, x), w = w(t, x) can be obtained from equation
(1.1). Since the system includes the first-order variable w = ux, point symmetries of this
system include contact symmetries of the original single fourth-order equation. System (2.58)
is nothing else but a cross-diffusion system, in which the second and third equations contain
the time variable t as a parameter. Thus, we may investigate also system (2.58) instead of
equation (1.1). There is an essential difference between systems (2.1) and (2.58) because the
second system contains the equations of different orders. In fact, according to the classical
Lie scheme, MAI of this system is generated by the infinitesimal operator:

X = ξ0(t, x, u, v, w)∂t + ξ1(t, x, u, v, w)∂x + η1(t, x, u, v, w)∂u
+ η2(t, x, u, v, w)∂v + +η3(t, x, u, v, w)∂w,

(2.59)

where the functions ξ0, ξ1, η1, η2, and η3 are to be determined. Applying the second prolon-
gation of the operator (2.59) to system (2.58) and using the invariance conditions, one can
derive the determining equations for finding the functions ξ0, ξ1, η1, η2, and η3. It should
be stressed that the relevant invariance conditions must take into account the differential
consequences (with respect to the variable x) of the second and third equations of system
(2.58). We omit cumbersome calculations and present the final result in the explicit forms:

ξ0x = ξ0u = ξ0v = ξ0w = ξ1t = ξ1u = ξ1v = ξ1w = ξ1xx = 0, (2.60)

η1
v = η1

w = η1
xu = η1

uu = 0, (2.61)

η2 = η1
xx +

(
η1
u − 2ξ1x

)
v, (2.62)

η3 = η1
x +

(
η1
u − ξ1x

)
w, (2.63)

K(u)
(
ξ0t − 4ξ1x

)
+K ′(u)η1 = 0, (2.64)

D(u)
(
ξ0t − 2ξ1x

)
+D′(u)η1 = 0, (2.65)

η1
t +K(u)η1

xxxx + F (u)
(
η1
u − ξ0t

)
−D(u)η1

xx − F ′(u)η1 = 0. (2.66)

Now we note that the determining equations obtained (of course, without equation (2.63))
are equivalent to those (2.7)–(2.12) for the system (2.1), so that no new Lie point symmetries
or contact symmetries can be found.
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3 Symmetry reduction and exact solutions

Some of the systems presented in Table 1 are equivalent to known fourth-order PDEs arising
in applications. For example, the system listed in case 6 is nothing else but the thin film
equation (1.2). Since the motivation to this study is to consider this equations with nonzero
reaction terms, which naturally arise in some processes [27, 32, 39, 46]; henceforth we restrict
our attention mainly to case 3 of Table 1, involving the most common nonlinearities.

It is well known that a Lie symmetry allows one to reduce the given PDE (system of PDEs)
to an equation (system of equations) of lower dimensionality. Here, we reduce systems arising
in case 3 of Table 1 to systems of ordinary differential equations (ODEs); furthermore, these
ODE systems are solved in particular cases, and exact solutions of the initial PDE systems
are constructed. Finally, these solutions are compared with those obtained by other authors.

Consider the system arising in the case 3 of Table 1:

ut = −
[
uγvx

]
x

+ d
[
uµux

]
x

+ λu2µ−γ+1, uxx − v = 0, (3.1)

where γ2 + µ2 6= 0. The most general Lie symmetry operator of system (3.1) has the form:

X = α1Pt + α2Px + α3D3 =
[
α1 + 2α3(γ − 2µ)t

]
∂t +

[
α2 + α3(γ − µ)x

]
∂x

+
[
2α3u

]
∂u +

[
2α3(1− γ + µ)v

]
∂v,

(3.2)

where αi, i = 1, 2, 3 are arbitrary constants. To construct the relevant ansatz, one needs to
solve the Pfaffian system of characteristic equations:

dt

α1 + 2α3(γ − 2µ)t
=

dx

α2 + α3(γ − µ)x
=

du

2α3u
=

dv

2α3(1− γ + µ)v
. (3.3)

The general solution of (3.3) essentially depends on the parameters α1, α2, α3, γ, and µ, and
five different cases occur.

Case 1. α3 = 0 leads to the plane wave solutions of the form:

ω = α1x− α2t, u = φ(ω), v = ψ(ω), (3.4)

where φ and ψ are new unknown functions. These functions should satisfy the ODE system:

− α2φ
′ = −α2

1φ
γ−1[γφ′ψ′ + φψ′′] + dα2

1φ
µ−1
[
µ(φ′)2 + φφ′′

]
+ λφ1−γ+2µ,

ψ = α2
1φ
′′.

(3.5)

It should be noted that this system is equivalent to the fourth-order ODE:

α4
1φ

γφiv + γα4
1φ

γ−1φ′φ′′′ − dα2
1φ

µφ′′ − dα2
1µφ

µ−1(ω)(φ′)2 − α2φ
′ − λφ1−γ+2µ=0. (3.6)

This equation is not integrable because there are no general solutions for this equation in
terms of elementary functions and known special functions [44]. However, it can be noted
that the special case with γ = 3µ possesses the particular solution:

φ(ω) = αω
1
µ , (3.7)

where α is a solution of algebraic equation:

α4
1(1− µ)(1− 2µ)α4µ − dα2

1µ
2α2µ − α2µ

3αµ − λµ4 = 0. (3.8)
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Hence the system:

ut = −
[
u3µvx

]
x

+ d
[
uµux

]
x

+ λu1−µ, uxx − v = 0 (3.9)

possesses the exact solution:

u = α
(
α1x− α2t

) 1
µ , v = α2

1α
1
µ

(
1
µ
− 1
)(
α1x− α2t

) 1
µ
−2
, (3.10)

where α satisfies (3.8).

Case 2. α3 6= 0, γ = 2µ 6= 0, α1 = 0 lead to the ansatz:

ω = t, u = φ(t)x
2
µ , v = ψ(t)x

2
µ
−2
. (3.11)

The corresponding ODE system takes the form:

φ′ = −2
(

1
µ
− 1
)(

1 +
2
µ

)
φ2µψ + d

2
µ

(
2
µ

+ 1
)
φµ+1 + λφ,

ψ =
2
µ

(
2
µ
− 1
)
φ,

(3.12)

and can be rewritten as the single ODE:

φ′ = − 4
µ

(
1
µ
− 1
)(

4
µ2
− 1
)
φ2µ+1 + d

2
µ

(
2
µ

+ 1
)
φµ+1 + λφ. (3.13)

It should be noted that this ODE with λ = 0 coincides with the one derived in the
recently published paper [31] for the fourth-order PDE, which is equivalent to (3.1) with
λ = 0. However, system (3.1) with λ 6= 0 cannot be reduced to the one with λ = 0, so that
the solutions presented below cannot be obtained from [31].

If µ = 1 or µ = 2, then the known solutions of the reaction-diffusion equations:

ut = d
[
uux

]
x

+ λu, µ = 1,

and

ut = d
[
u2ux

]
x

+ λu, µ = 2

are obtained because uxxx = 0 (see (3.11)). If µ = −2, then

φ(t) = Ceλt, (3.14)

and there follows an exact solution:

u =
Ceλt

x
, v =

2Ceλt

x3
(3.15)

of the system:

ut = −
[

1
u4
vx

]
x

+ d

[
1
u2
ux

]
x

+ λu, uxx − v = 0. (3.16)
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If µ 6= 1,±2, then two subcases, λ = 0 and λ 6= 0 should be separately considered.
Both of them lead to the function φ(t) in the implicit form, and one can be found from the
transcendental equation:

ln

∣∣∣∣∣1 +
d

2
(
1− 1

µ

)(
2
µ − 1

) 1
φµ

∣∣∣∣∣− d

2
(
1− 1

µ

)(
2
µ − 1

) 1
φµ

=
d2
(

2
µ + 1

)(
1− 1

µ

)(
2
µ − 1

)(t− t0), (3.17)

if λ = 0 and from the equation:

ln
φ2µ(t)∣∣φ2µ(t) + αφµ(t) + β

∣∣ − α ∫ φµ(t)

0

dz

z2 + αz + β
= 2λµ

(
t− t0

)
, (3.18)

α = dµ2

2(1−µ)(µ−2) , β = λµ4

4(1−µ)(µ2−4)
if λ 6= 0.

Thus, the system:

ut = −
[
u2µvx

]
x

+ d
[
uµux

]
x
, uxx − v = 0 (3.19)

possesses the exact solution:

u = φ(t)x
2
µ , v =

2
µ

(
2
µ
− 1
)
φ(t)x

2
µ
−2
, (3.20)

where φ(t) satisfies the equation (3.17). Note that the function φ(t) tends to 0 if t→∞ and
this function blows up if t → t0. These properties follow from the simple analysis of (3.17).
Analogously, the system:

ut = −
[
u2µvx

]
x

+ d
[
uµux

]
x

+ λu, uxx − v = 0 (3.21)

possesses the exact solution (3.20) with φ(t) satisfying equation (3.18).

Case 3. α3 6= 0, γ = 2µ 6= 0, α1 6= 0 lead to the ansatz:

ω = xe
−α3µ

α1
t
, u = φ(ω)e

2α3
α1

t
, v = ψ(ω)e

2α3
α1

(1−µ)t
, (3.22)

which reduces the initial system to the ODE system:

−α3µωφ
′ + 2α3φ = −α1φ

2µ−1
[
2µφ′ψ′ + φψ′′

]
+ dα1φ

µ−1
[
µ(φ′)2 + φφ′′

]
+ α1λφ, ψ = φ′′.

(3.23)

System (3.23) is equivalent to the 4th-order equation:

α1φ
2µφiv + 2µα1φ

2µ−1φ′φ′′′ − dα1φ
µφ′′ − dα1µφ

µ−1(ω)(φ′)2

− α3µωφ
′ −
(
α1λ− 2α3

)
φ = 0,

(3.24)

which possesses the particular solution:

φ(ω) = αω
2
µ . (3.25)

Here, α must be a solution of the algebraic equation:

4
(
4− µ2

)
(1− µ)α2µ − 2dµ2(µ+ 2)αµ − λµ4 = 0, (3.26)

which is simply a quadratic equation for αµ.
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Thus, the cross-diffusion system:

ut = −
[
u2µvx

]
x

+ d
[
uµux

]
x

+ λu, uxx − v = 0 (3.27)

has the stationary solution:

u = αx
2
µ , v = 2α

2− µ
µ2

x
2
µ
−2
, (3.28)

where α satisfies (3.26).

Case 4. α3 6= 0, γ = µ 6= 0 lead to the ansatz:

ω = x+
α2

2µα3
ln t, u = φ(ω)t−

1
µ , v = ψ(ω)t−

1
µ . (3.29)

The corresponding ODE system takes the form:

α2φ
′ − 2α3φ = −2α3µφ

µ−1[µφ′ψ′ + φψ′′] + 2α3µdφ
µ−1
[
µ(φ′)2 + φφ′′

]
+ 2α3µλφ

µ+1, ψ = φ′′
(3.30)

and is equivalent to the 4th-order equation:

2α3µφ
µφiv + 2α3µ

2φµ−1φ′φ′′′ − 2α3µdφ
µφ′′ − 2dα3µ

2φµ−1(φ′)2

+ α2φ
′ − 2α3µλφ

µ+1 − 2α3φ = 0.
(3.31)

For α2 6= 0, the solutions u(x, t) are traveling waves whose speed decreases in proportion to
t−1 and whose amplitude decreases in proportion to t−1/µ.

Equation (3.31) is not integrable but we were able to find the particular solutions if µ = 1,
α2 = 0, and λ 6= 0:

φ(ω) = − 2
3λ

+
2

3|λ|
sin(θω + θ0), θ4 + dθ2 − λ

2
= 0, (3.32)

and

φ(ω) = − 2
3λ

+ C1e
θω +

1
9C1λ2

e−θω, θ4 − dθ2 − λ

2
= 0. (3.33)

Thus, using ansatz (3.29), we arrive at the solutions:

u =
− 2

3λ + 2
3|λ| sin(θx+ θ0)

t
, v =

− 2
3|λ|θ

2 sin(θx+ θ0)

t
, (3.34)

which is a spatial sinusoid for which amplitude varies in proportion to 1/t and

u =
− 2

3λ + C1e
θx + 1

9C1λ2 e
−θx

t
, v =

C1θ
2eθx + θ2

9C1λ2 e
−θx

t
(3.35)

of the system:

ut = −
[
uvx
]
x

+ d
[
uux

]
x

+ λu2, uxx − v = 0. (3.36)

In formulae (3.34) and (3.35), we can also shift the time t to t − t0 or t + t0 with the
positive parameter t0. The first shift leads to a solution having blow up at t = t0, the second
leads to a solution that avoids singularity at t = 0 and tends to 0 as t approaches ∞. Blow
up and extinction are interesting phenomena in some applications.
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Case 5. α3 6= 0, γ 6= 2µ, γ 6= µ lead to the similarity reduction:

ω = xt
µ−γ

2(γ−2µ) , u = φ(ω)t
1

γ−2µ , v = ψ(ω)t
1−γ+µ
γ−2µ , (3.37)

and to the ODE system:

(µ− γ)ωφ′ + 2φ = −2(γ − 2µ)φγ−1[γφ′ψ′ + φψ′′]

+ 2(γ − 2µ)dφµ−1
[
µ(φ′)2 + φφ′′

]
+ 2(γ − 2µ)λφ1−γ+2µ, ψ = φ′′.

(3.38)

The equivalent 4th-order equation has the form:

2(γ − 2µ)φγφiv + 2(γ − 2µ)γφγ−1φ′φ′′′ − 2(γ − 2µ)dφµφ′′

− 2d(γ − 2µ)µφµ−1(φ′)2 + (µ− γ)ωφ′ − 2(γ − 2µ)λφ1−γ+2µ + 2φ = 0,
(3.39)

whose solutions are self-similar by a scaling invariance. Although this equation is again
not integrable, one may try to construct particular solutions in the form of a high-order
polynomial. For example, setting d = 0, γ = 1, µ = 0, the exact solution:

φ(ω) =
1

120
ω4 +

5
6
λ (3.40)

is obtained. Thus, we arrive at the solution:

u =
1

120
x4

t
+

5
6
λt, v =

1
10
x2

t
(3.41)

of the system:

ut = −
[
uvx
]
x

+ λ, uxx − v = 0. (3.42)

Remark 3.1. Following [35], let us consider the ad hoc ansatz:

u = φ0(t) + φ1(t)x+ φ2(t)x2 + φ3(t)x3 + φ4(t)x4,

v = 2φ2(t) + 6φ3(t)x+ 12φ4(t)x2.
(3.43)

Using this ansatz, solution (3.41) can be generalized to the form:

u =
C0

t
1
5

+ 30
C1C3

t
2
5

+ 900
C2C

2
3

t
3
5

+ 6750
C4

3

t
+

5
6
λt

+
(
C1

t
2
5

+ 60
C2C3

t
3
5

+ 900
C3

3

t

)
x+

(
C2

t
3
5

+ 45
C2

3

t

)
x2 +

C3

t
x3 +

1
120

1
t
x4,

v = 2
(
C2

t
3
5

+ 45
C2

3

t

)
+

6C3

t
x+

1
10

1
t
x2,

(3.44)

where Ci (i = 0, . . . , 3) are arbitrary constants.
Similarly, setting d = 0, γ = 1, µ = 1

4 in (3.39), the solution:

φ(ω) =
(

1√
120

ω2 +
5
11
λ

)2

(3.45)
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can be derived. Thus, the system:

ut = −
[
uvx
]
x

+ λ
√
u, uxx − v = 0 (3.46)

possesses the exact solution:

u =
(

1√
120

x2

√
t

+
5
11
λt

)2

, v =
1
10
x2

t
+

10
11
√

30
λ
√
t. (3.47)

It should be noted that solutions (3.41) and (3.47) have been earlier obtained in [29] via
the method of invariant subspaces. Indeed, the formulas (3.29) and (3.76) [29] contain (3.41)
and (3.47), respectively.

4 Conclusions

In this paper, the Lie symmetry classification of a class of fourth-order reaction-diffusion
equations was carried out. Equation (1.1) has been treated, firstly, as a system of second-
order equations that bears some resemblance to a system of coupled reaction-diffusion equa-
tions with cross diffusion, secondly, as a system of a second-order equation and two first-order
equations. It turns out that both systems lead to the same result of symmetry group classifica-
tion. Our paper generalizes the results of Lie symmetry analysis derived earlier for particular
cases of equation (1.1). Moreover, we were able to construct all possible Lie symmetries, in
which equation (1.1) can admit depending on the function triplets (K, D, and F ). This
distinguishes our investigation from those that have focussed on Lie symmetry of particular
cases of the given fourth-order evolution equation. However, our result is analogous to those
derived in recent papers [20, 21, 47] for different classes of second-order evolution equations,
where form-preserving point transformations [36] were used to construct shortest lists of the
relevant equations with nontrivial MAI.

To the best of our knowledge, there is only the recently published book [29], where exact
solutions have been found for some equations of the form (1.1) with F 6= 0. Thus, a fourth-
order nonlinear equation with the nonzero reaction term in the form of system (3.1) was
examined by applying the Lie symmetry reduction, where possible, we have constructed
exact solutions to the ordinary differential equations that were obtained from this reaction-
diffusion system. The solutions include some unusual structures as well as the familiar types
that regularly occur in symmetry reductions, namely, self-similar solutions, decelerating and
decaying traveling waves, and steady states. Many of the functional relationships between
the two symmetry invariants are quite simple, involving polynomials, algebraic functions,
logarithms, exponentials, and sinusoids. However, there are some that have been reduced
only to the solutions of transcendental equations (see formulas (3.17) and (3.18)).

Finally, it should be also noted that the nonlinear fourth-order ODEs obtained in Section
3 can be solved by numerical methods, and therefore solutions of the relevant generalized
thin film equations will be constructed.
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