УДК 546:548.3:543.442.2:548.24: (546.56+546.665+546.666.667+549.252) І. П. Руда – аспірант хімічного факультету Волинського державного університету імені Лесі Українки;
О. В. Марчук – кандидат хімічних наук, доцент кафедри фізичної та колоїдної хімії Волинського державного університету імені Лесі Українки;
Л. Д. Гулай – кандидат хімічних наук, доцент кафедри екології та охорони навколишнього середовища Волинського державного університету імені Лесі Українки;
І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського державного університету імені Лесі Українки;

Кристалічна структура сполук R_{1,32}Pb_{1,68}Ge_{1,67}Se₇ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho)

Роботу виконано у ВДУ ім. Лесі Українки

Рентгенівським методом полікристалу досліджено кристалічну структуру сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R= Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) (структурний тип Dy₃Ge_{1,25}S₇, просторова група *P*6₃, символ Пірсона *hP*23,34). Для атомів статистичної суміші M(R + Pb) многогранниками є тригональні призми з одним додатковим атомом. Атоми Ge1 i Ge2 мають тетраедричне і трикутне оточення відповідно. Атоми Se1 оточені тетраедрами, центрованими ззовні, a Se2 i Se3 – тетраедрами.

Ключові слова: халькогеніди, сполуки РЗМ, сполуки Рb, сполуки Ge, кристалічна структура, рентгенівська порошкова дифрактометрія.

<u>Ruda I. P., Marchuk O. V., Gulay L. D., Olekseyuk I. D. Crystal Structure of the $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ </u> (<u>R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) Compounds.</u> Crystal structure of the $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) (Dy₃Ge_{1,25}S₇ structure type, space group P6₃, Pearson symbol hP23,34) compounds were investigated using X-ray powder diffraction. The atoms of the statistical mixture M(R + Pb) are surrounded by trigonal prisms with one additional atom. The Ge₁ and Ge₂ atoms are surrounded by tetrahedra and triangles respectively. The Se1 atoms are surrounded by centered outside tetrahedra, the Se₂ and Se₃ by tetrshedra.

Key words: chalcogenides, rare earth compounds, Pb compounds, Ge compounds, crystal structur, X-ray powder diffraction.

Вступ

Наша робота є частиною систематичного дослідження взаємодії халькогенідів рідкісноземельних металів і плюмбуму. Кристалічна структура тетрарних сполук $R_2Pb_3Sn_3S_{12}$ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er i Tm) (структурний тип $Y_2Pb_3Sn_3S_{12}$, просторова група *Pmc2*₁) досліджена нами в роботах [1; 2]. Результати дослідження кристалічної структури сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) є предметом нашого дослідження.

Експериментальна частина

Зразки готувалися методом прямого сплавляння високочистих елементів у вакуумованих кварцових ампулах. Максимальна температура синтезу становила 1420 К. Гомогенізуючий відпал проводився при температурі 770 К протягом 500 год. Відпал здійснювався в муфельній печі з програмним управлінням технологічними процесами. Відпалені сплави загартовувались у 25%-му водному розчині NaCl. Дифрактограми зразків отримані з допомогою дифрактометра ДРОН-4-13 (CuK_α-випромінювання, 10°≤2Θ≤80°, крок зйомки 0,05°, час відліку в точці – 20 с). Визначення кристалічної структури проводилися з допомогою програми DBWS-9411 [3].

Результати дослідження та їх обговорення

При дослідженні ізотермічного перетину системи Y_2Se_3 -PbSe-GeSe₂ при температурі 770 К виявлено існування невідомої тетрарної сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$. Однофазного зразка цієї сполуки ми не отримали, тому для дослідження використовували кількафазний. На дифрактограмі зразка, крім *hkl* рефлексів нової сполуки, були присутні рефлекси сполук Pb₂GeSe₄ [4], Y_2Se_3 [5] та $Y_{1,84}Se_{3,17}$ [6]. Аналіз індексів *hkl* рефлексів невідомої сполуки та їх інтенсивностей вказав на приналежність її

[©] Руда І. П., Марчук О. В., Гулай Л. Д., Олексеюк І. Д., 2007

структури до структурного типу Dy₃Ge_{1,25}S₇ [7]. У табл. 1 наведено умови рентгенівського дослідження та кристалографічні параметри сполуки Y_{1,32}Pb_{1,68}Ge_{1,67}Se₇.

Результати дослідження кристалічно	структури сполуки	$Y_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$
------------------------------------	-------------------	------------------------------------

Формула	Y _{1,32} Pb _{1,68} Ge _{1,67} Se ₇
Число формульних одиниць	2
Просторова група	<i>P</i> 6 ₃
а (нм)	1,0394(1)
С (НМ)	0,66361(5)
Об'єм комірки (нм ³)	0,6209(2)
Кількість атомів у комірці	23,34
Розрахована густина (г/см ³)	6,092
R_{I}, R_{P}	0,0988 0,0359
Вісь текстури і параметр	[011] 0,16(3)

Уточнення координат та ізотропних теплових параметрів атомів у цій моделі привело до задовільних значень фактору розбіжності (табл. 2), що вказує на правильність вибраної моделі. З метою збереження електронейтральності зарядів, склад статистичної суміші M(Y+Pb) та коефіцієнт заповнення положення Ge2 зафіксовано при складах, близьких до обрахованих. Обрахований склад тетрарної сполуки – $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$. На рис. 1 представлено експериментальну, розраховану та різницеву між ними дифрактограми для зразка $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$.

Таблиця 2

Атом	ПСТ	x/a	y/b	z/c	Заповнення	$B_{i_{30}}$ $(10^2 (mm^2))$
М	6 <i>c</i>	0,3843(7)	0,1631(8)	0,402(6)	0,44Y+0,56Pb	2,3(1)
Ge1	2b	1/3	2/3	0,324(7)	1	2,3(1)
Ge2	2 <i>a</i>	0	0	0,000*	0,67	2,3(1)
^s e ¹	6 <i>c</i>	0,255(1)	0,106(1)	0,986(6)	1	2,3(1)
Se2	6 <i>c</i>	0,529(1)	0,441(1)	0,692(6)	1	2,3(1)
^s e ³	2b	1/3	2/3	0,679(7)	1	2,3(1)

Координати атомів та теплові параметри для сполуки Y_{1,32}Pb_{1,68}Ge_{1,67}Se₇

* Зафіксовано.

Рис. 1. Експериментальна, розрахована та різницева між ними дифрактограми для сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ ($1 - Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$, $2 - Y_2Se_3$, $3 - Y_{1,84}Se_{3,17}$, $4 - Pb_2GeSe_4$)

Нами також встановлено існування серії ізоструктурних сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) (табл. 3).

Таблиця З

	-			
Сполука	а, нм	с, нм	V, нм ³	<i>ρ</i> , г/см ³
$La_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0590(5)	0,6612(4)	0,6421(4)	6,23
$Ce_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0542(6)	0,6604(4)	0,6356(5)	6,31
Pr _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0520(6)	0,6623(4)	0,6347(5)	6,32
$Nd_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0499(5)	0,6640(4)	0,6339(4)	6,35
$Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_{7}$	1,0442(5)	0,6627(4)	0,6257(4)	6,48
Gd _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0428(2)	0,6638(2)	0,6250(3)	6,53
Tb _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0406(1)	0,66384(9)	0,6225(2)	6,57
Dy _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0389(4)	0,6647(3)	0,6212(4)	6,61
Ho _{1,32} Pb _{1,68} Ge _{1,67} Se ₇	1,0381(1)	0,6646(1)	0,6202(2)	6,64

Кристалографічні характеристики сполук R_{1,32}Pb_{1,68}Ge_{1,67}Se₇ (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho)

Міжатомні відстані та координаційні числа атомів M(Y + Pb), Ge1 та Ge2 у структурі сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ наведено в табл. 4. Міжатомні відстані добре узгоджуються з сумами відповідних іонних радіусів [8]. Елементарна комірка сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ і координаційні многогранники атомів у структурі цієї сполуки представлено на рис. 2. Для атомів статистичної суміші M(Y + Pb) многогранниками є тригональні призми з одним додатковим атомом. Атоми Ge1 і Ge2 мають тетраедричне і трикутне оточення відповідно; атоми Se1 оточені тетраедрами, центрованими ззовні, атоми Se2 і Se3 – тетраедрами.

Таблиця 4

Міжатомні відстані d (нм) і координаційні числа (к. ч.) атомів М та Ge в структурі сполуки Y_{1,32}Pb_{1,68}Ge_{1,67}Se₇

	Атоми	<i>d</i> , нм	к. ч.
М	-1Se3	0,296(3)	7
	-1Se2	0,300(4)	
	-1Se1	0,300(5)	
	$-{}^{15}e^{1}$	^{0,3} 09 ⁽²⁾	

Науковий вісник Волинського державного університету імені Лесі Українкі	u
---	---

	IS I	$0_{312}(2)$	
	– e	, 13	
	$-{}^{1S}e^{2}$	^{0,3} 19 ⁽⁴⁾	
	$-{}^{15}e^2$	^{0,3} 25 ⁽³⁾	
Gel	-1Se3	0,236(7)	4
	$-{}^{3}Se^{2}$	0 242(3)	
Ge2	-3Se1	0,2300	3

Рис. 2. Елементарна комірка сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ та координаційні многогранники атомів

Укладку центрованих атомами M(Y + Pb), Ge1 та Ge2 многогранників у структурі сполуки $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ показано на рис. 3. Три тригональні призми, центровані атомами M, формують блок. Центровані атомами Ge2 трикутники розташовані в цих блоках. У той же час тетраедри, центровані атомами Ge1, розташовані в кільцях із шести тригональних призм.

Залежність значень періодів комірок (*a* і *c*) та об'ємів комірок (*V*) від іонних радіусів РЗМ для сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Y і Ho) показана на рис. 4. Цей рисунок ілюструє ефект лантаноїдного стиску в ряду від La до Ho. Зменшення об'ємів комірок та періоду *a* добре узгоджується зі зменшенням іонних радіусів РЗМ. Зміна періоду *c* є незначною і не носить систематичного характеру.

Рис. 4. Залежність значень періодів комірок (a і c) та об'ємів комірок (V) від іонних радіусів РЗМ для сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Y i Ho)

Висновки

Рентгенівським методом полікристалу досліджено кристалічну структуру сполук $R_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy i Ho) (структурний тип Dy₃Ge_{1,25}S₇, просторова група *P*6₃, символ Пірсона *hP*23,34).

Для атомів статистичної суміші M(R + Pb) многогранниками є тригональні призми з одним додатковим атомом. Атоми Ge1 і Ge2 мають тетраедричне і трикутне оточення відповідно. Атоми Se₁ оточені тетраедрами, центрованими ззовні, атоми Se2 і Se3 – тетраедрами.

Література

- Marchuk O. V., Ruda I. P., Gulay L. D., Olekseyuk I. D. Investigation of the Y₂S₃-PbS-SnS₂ System at 770 K // Polish J. Chem.- 2007.- Vol. 81.- P. 425-432.
- Gulay L. D., Ruda I. P., Marchuk O. V., Olekseyuk I. D. Crystal structures of the R₂Pb₃Sn₃S₁₂ (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm) compounds // J. Alloys Comp. – У друці.
- Young R. A., Sakthivel A., Moss T. S., Paria-Santos C. O. Program DBWS-9411 for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, Georgia Institute of Technology, Atlanta, GA, 1995.
- Poduska K. M., Cario L., DiSalvo F. J., Min K., Halasyamani P. S. Structural studies of a cubic, high-temperature (α) polymorph of Pb₂GeS₄ and the isostructural Pb_{2-x}Sn_xGeS_{4-y}Se_y solid solution // J. Alloys Compd.–2002.– Vol. 335– P. 105–110.
- Flahaut J., Laruelle P., Pardo M. P., Guittard M. N°206.– Les sulfures, selenides et tellurures L₂X₃ de terres rares, d'yttrium et de scandium orthorhombiques du type Sc₂S₃ // Bull. Soc. Chim. Fr.– 1965– P. 1399–1404.
- Kim S. J., Oh H. J. Structure and physical properties of YSe_{1,83} // Bull. Kor. Chem. Soc.- 1995.- Vol. 16.-P. 515-518.
- Michelet A., Mazurier A., Collin G., Laruelle P., Flahaut J. Etude structurale des systemes Ln₂S₃–GeS₂ // J. Solid State Chem.– 1975.– Vol. 13.– P. 63–76.
- Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Cryst.- 1976.- Vol. A39.- P. 751-767.

Статтю подано до редколегії 18.10.2007 р.