УДК 546.22/.68

І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
І. А. Іващенко – кандидат хімічних наук, доцент кафедри загальної та наорганічної хімії Волинського національного університету імені Лесі Українки;
Л. Д. Гулай – доктор хімічних наук, завідувач кафедри екології та охорони навколишнього середовища Волинського національного університету імені Лесі Українки;
І. В. Данилюк – магістр кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

імені Лесі Українки

Система Ga₂Se₃-In₂Se₃

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Методами рентгенофазового та диференційно-термічного аналізів досліджено квазібінарну систему Ga₂Se₃-In₂Se₃. За результатами досліджень та літературними даними побудовано її діаграму стану. Підтверджено існування фази γ₁, ізоструктурної до γ-In₂Se₃ (пр. гр. *P*6₁) та фази γ₂, що кристалізується в тій же пр. гр. *P*6₁. **Ключові слова:** рентгенофазовий аналіз, диференційно-термічний аналіз, система Ga₂Se₃-In₂Se₃.

Олексеюк И. Д., Иващенко И. А., Гулай Л. Д., Данилюк И. В. Уточнение взаимодействия компонентов в системе Ga₂Se₃-In₂Se₃. Методами рентгенофазового и дифференциально-термического анализов исследована квазибинарная система Ga₂Se₃-In₂Se₃. По результатам исследований и литературным данным построена её диаграмма состояния. Подтверждено существование фазы γ₁, изоструктурной к γ-In₂Se₃ (пр. гр. *P*6₁) и фазы γ₂, которая кристаллизуется в той же пр. гр. *P*6₁.

Ключевые слова: рентгенофазовий анализ, дифференциально-термический анализ, система Ga₂Se₃-In₂Se₃.

<u>Olekseyuk I. D., Ivashchenko I. A., Gulay L. D., Danulyk I. V. The Specify of Interaction of Components in</u> <u>the Ga₂Se₃–In₂Se₃ System.</u> The quasi-binary system Ga₂Se₃–In₂Se₃ was investigated by XRD and differential-thermal measurements. The diagram of phase equilibrium was constructed from the investigation results and literature data. The existence of γ_1 phase, isostructural for γ -In₂Se₃ (sp. gr. P6₁) and phase γ_2 , which crystallises in the same sp. gr. P6₁ were confirmed.

Key words: X-ray phase analysis, differential thermal analysis, Ga₂Se₃–In₂Se₃ system.

Постановка наукової проблеми та її значення. Аналіз останніх досліджень із цієї проблеми. Сполуки Ga₂Se₃ та In₂Se₃, за даними кількох авторів, кристалізуються в різних просторових групах (табл. 1). У роботі [4] вказується на статистичний розподіл атомів Ме в тетраедричних та октаедричних пустотах. При відпалі цих сполук у певному температурному інтервалі на рентгенограмах спостерігаються надструктурні лінії, що свідчить про впорядковане розміщення атомів металу по пустотах. При цьому утворюється структура з більшою елементарною коміркою та нижчою симетрією. Здатність атомів Ме до впорядкування впливає на велику кількість варіантів розрахунку структур для однієї і тієї ж модифікації, що видно з табл. 1 для різних модифікацій Ga₂Se₃ і In₂Se₃. Оскільки процес впорядкування відбувається дуже повільно, то зразки, отримані різними методами, з різною термічною обробкою, дають у межах однієї модифікації різну дифракційну картину. У роботах [14; 15] вивчалися фазові рівноваги в системі Ga₂Se₃-In₂Se₃. За цими даними в системі існують чотири фази: In₂Se₃, Ga₂Se₃, γ_1 , γ_2 . Тверді розчини γ_1 існують у межах 2–55 мол. % Ga₂Se₃. Для складу (Ga_{0.4}In_{0.6})₂Se₃ дифрактограму проіндексовано в пр. гр. P6₁22 або P6₅22 з параметрами елементарної комірки a = 0,698(1) нм, c = 1,894(2) нм [16; 17]. У роботі [16] внесено поправку на пр. гр. Р6₁ і Р6₅ На думку авторів [14; 15], фаза γ_1 може бути ізоструктурною до γ -In₂Se₃. Тверді розчини γ_2 існують у межах 60-75 мол. % Ga₂Se₃. Дифрактограма, знята для складу (Ga_{0.6}In_{0.4})₂Se₃, проіндексована в гексагональній сингонії, пр. гр. $P6_1$, із періодами a = 0,682(1) нм, c = 1,930(2) нм [15; 17]. При нагріванні зразків фази у2 вище 1100 К і швидкому охолодженні в них фіксували рефлекси кубічної структури типу ZnS. Це пояснюється авторами [15] наявністю при 1100 К фазового перетво-

[©] Олексеюк І. Д., Іващенко І. А., Гулай Л. Д., Данилюк І. В., 2010

Таблиця 1

рення, що підтверджується даними ДТА. За цими результатами побудовано метастабільну та стабільну діаграму стану системи Ga₂Se₃-In₂Se₃ (рис. 1, 2).

Полім. модиф.	Пр. гр., [л-ра]	Спосіб дослід- ження, [л-ра]	Періоди елементарної комірки, нм, [л-ра]	Т _{п.п.} , Т _{пл} , К, [л-ра]	
α -Ga ₂ Se ₃	$F \overline{4}3m$ [1]	полікристал [1]	a = 0,5429 [1]		
β-Ga ₂ Se ₃	<i>C</i> 1 <i>c</i> 1 [2; 3]	полікристал [2] монокристал [3]	a = 0,66608, b = 1,16516, c = 0,66491, b = 108,84 [2]; a = 0,6661, b = 1,165, c = 0,666, b = 108,12 [3]	1293 [4]	
α-In ₂ Se ₃	<i>Р</i> 6 ₃ [5-7] монокристал [5; 6]		a = 0,401, c = 1,924 [5]; a = 1,160, c = 1,924 [6]; a = 0,403, c = 1,910 [7]	473	
	<i>R</i> 3 <i>m</i> [5; 8]	монокристал [5; 8]	a = 0,403, c = 1,924 [5]; a = 0,405, c = 2,877 [8]	[0, 10, 12, 13]	
	<i>P</i> 6 ₃ / <i>mmc</i> [9]	полікристал [9]	a = 0,4025, c = 1,9235 [9]		
β-In ₂ Se ₃	<i>Р</i> 6 ₅ [6; 7] монокристал [6; 7]		a = 0,711, c = 1,930 [6]; a = 0,403, c = 2,890 [7]	923 [6]	
	<i>R</i> 3 <i>m</i> [8] монокристал [8]		a = 0,405, c = 2,941 [8]	915 [12]	
γ-In ₂ Se ₃	кубічна [6]	монокристал [6]	<i>a</i> = 1,010 [6]	1023 [6]	
	<i>P</i> 6 ₁ [10; 11]	монокристал [11]	<i>a</i> = 0,71286, <i>c</i> = 1,9381 [11]	1038 [12]	
δ-In-Se-	моноклінна [6]	монокристал [6]	_	1173 [6]	
0-1112Se3	гексагональна [9]	полікристал [9]	a = 0,4014, c = 0,964 [9]	1161 [13]	

Кристалічна структура та деякі фізичні властивості поліморфних модифікацій Ga2Se3 та In2Se3

Враховуючи те, що нами заплановано дослідження квазіпотрійної системи $Ag_2Se_-Ga_2Se_3-In_2Se_3$ у повному концентраційному та температурному інтервалах 875–1400 К, необхідні точні дані по фазових рівновагах у квазібінарній системі $Ga_2Se_3-In_2Se_3$. Оскільки остаточного варіанту її діаграми стану не існує, виникає потреба дослідити цю систему.

Матеріали і методи. Для подальшого дослідження системи отримано 21 сплав у повному концентраційному інтервалі. Синтез сплавів проводили у кварцових ампулах, вакуумованих до залишкового тиску 0,1 Па, шляхом ступінчастого нагрівання простих речовин (Ga – 99,999 ваг.%, In – 99,999 ваг. %, Se – 99,9997 ваг. %) до максимальної температури 1300 К. Гомогенізуючий відпал проводили при 820 К протягом 300 год та при 1110 К протягом 240 год. Отримані зразки досліджували методом рентгенофазового аналізу (РФА), який проводили за дифрактограмами (рентгенівський дифрактометр ДРОН 4-13, СиК_{α}-випромінювання). Зйомка дифрактограми для складу (Ga_{0,65}In_{0,35})₂Se₃ проводилася на установці ДРОН 4-13, СиК_{α}-випромінювання, крок сканування 2 θ = 0,05°, час експозиції 15 с. Криві диференційно-термічного аналізу записувалися з використанням Pt/Pt-Rh термопари на установці, що складається з печі регульованого нагріву "Термодент" і двокоординатного самописця H307-1 *XY*.

Рис. 1. Метастабільна діаграма стану системи Ga₂Se₃–In₂Se₃ [15]: 1 - α -Ga₂Se₃; 2; 3 – α -Ga₂Se₃ + γ_2 ; 4 - α -Ga₂Se₃ + L; 5 - γ_2 + γ_1 ; 6 - L; 7 - γ_1 ; 8 - γ_1 + α -In₂Se₃; 9 - γ_1 + β -In₂Se₃; 10 - δ -In₂Se₃; 11 - γ -In₂Se₃; 12 - β -In₂Se₃; 13 - α -In₂Se₃

Рис. 2. Стабільна діаграма стану системи Ga₂Se₃–In₂Se₃ [15]: 1 - α-Ga₂Se₃; 2 - α-Ga₂Se₃ + γ₁; 3 - L; 4 - γ₁; 5 - δ-In₂Se₃; 6 - γ-In₂Se₃; 7 - β-In₂Se₃; 8 - α-In₂Se₃

Виклад основного матеріалу й обгрунтування отриманих результатів дослідження. Результати РФА зразків, відпалених при 820 К, наведено на рис. 3. Дифрактограма Ga₂Se₃ індексується в кубічній сингонії, пр. гр. F $\overline{43}m$, із періодом решітки a = 0,5423(4) нм. Область гомогенності на основі Ga₂Se₃ простягається до 17 мол. % In₂Se₃ при зміні періодів решітки до a = 0,5476(3) нм для зразка складу (Ga_{0,8}In_{0,2})₂Se₃. В області 32–42 мол. % In₂Se₃ існує фаза γ_2 , що була проіндексована в гексагональній сингонії, пр. гр. $P6_1$. Періоди елементарної комірки в області її існування змінюються від a = 0,68291(9) нм, c = 1,9324(3) нм для складу (Ga_{0,7}In_{0,3})₂Se₃ до a = 0,6871(8) нм, c = 1,9373(2) нм для

складу (Ga_{0,55}In_{0,45})₂Se₃, що добре збігається з літературними даними [14; 15; 17]. Дифрактограму знято для складу (Ga_{0,65}In_{0,35})₂Se₃, уточнено в гексагональній сингонії, пр. гр. Р6₁, результати розрахунку наведено в табл. 2–4, рис. 4. В області 57–97 мол. % In₂Se₃ існує фаза γ_1 , дифрактограму якої проіндексовано в гексагональній сингонії, пр. гр. Р6₁. Періоди елементарної комірки в області її існування змінюються від a = 0,6974(1) нм, c = 1,9003(4) нм для складу (Ga_{0,45}In_{0,55})₂Se₃ до a = 0,7120(1) нм, c = 1,9346(7) нм для складу (Ga_{0,05}In_{0,95})₂Se₃, що добре збігається з літературними даними [14; 15; 17]. Для In₂Se₃ при 820 К отримується низькотемпературна α-модифікація, що індексується у пр. гр. Р6₃/*mmc* із періодами елементарної комірки a = 0,40242(5) нм, c = 1,9251(2) нм, що добре узгоджується з даними [9].

Рис. 3.	Результати	РФА зразкі	ів системи G	a_2Se_3 — In_2Se_3 ,	відпалених пр	pu 820 K: 1 -	– Ga ₂ Se ₃ ; 2	$-(Ga_{0,95}In_{0,05})$	$)_{2}Se_{3};$
3 -	$-(Ga_{0.90}In_{0.10})_{2}$	$_{2}Se_{3}; 4 - (Ge)$	$a_{0.85}In_{0.15})_2Se_3$; $5 - (Ga_{0.80}I)$	$n_{0.20})_2 Se_3; 6-6$	$(Ga_{0.75}In_{0.25})_2$	$_{2}Se_{3}; 7-(G_{2})$	$a_{0.70}In_{0.30})_2Se_3;$;

$$\begin{split} & 8 - (Ga_{0,65}In_{0,35})_2Se_3; \ 9 - (Ga_{0,60}In_{0,40})_2Se_3; \ 10 - (Ga_{0,55}In_{0,45})_2Se_3; \ 11 - (Ga_{0,50}In_{0,50})_2Se_3; \ 12 - (Ga_{0,45}In_{0,55})_2Se_3; \ 13 - (Ga_{0,40}In_{0,60})_2Se_3; \ 14 - (Ga_{0,35}In_{0,65})_2Se_3; \ 15 - (Ga_{0,30}In_{0,70})_2Se_3; \ 16 - (Ga_{0,25}In_{0,75})_2Se_3; \ 17 - (Ga_{0,20}In_{0,80})_2Se_3; \ 18 - (Ga_{0,15}In_{0,85})_2Se_3; \ 19 - (Ga_{0,10}In_{0,90})_2Se_3; \ 20 - In_2Se_3 \end{split}$$

46

Таблиця 2

Результати уточнення кристалічної структури зразка складу (Ga_{0,65}In_{0,35})₂Se₃ з області існування фази γ₂

Склад сплаву	$(Ga_{0,65}In_{0,35})_2Se_3$
Просторова група	<i>P</i> 6 ₁
а, нм	0,68328(2)
С, НМ	1,93335(7)
$V(\mathrm{HM}^3)$	0,78169(7)
Кількість атомів у комірці	30,0
Розрахована густина (г/см ³)	5,2214(5)
Коефіцієнт абсорбції (1/см)	615,09
Випромінювання; довжина хвилі (нм)	Cu; 1,54178
Дифрактометр	ДРОН 4-13
Спосіб обрахунку	повнопрофільний
Кількість вільних параметрів	22
$R_{\rm I}, Rp$	0,0761, 0,1153
Шкальний фактор	0,942(7)
Вісь текстури і параметр	[101], 1,40(6)

Таблиця 3

Параметри атомів у структурі зразка складу (Ga_{0,65}In_{0,35})₂Se₃ з області існування фази γ₂

Атом	ПСТ	x/a	y/b	z/c	Зайнятість позицій	$B_{\rm i30T.} \times 10^2$, $\rm Hm^2$
M1	6(a)	0,649(2)	0,662(2	0,1611(2)	0,80(4) Ga + 0,20(4) In	1,0(2)
M2	6(a)	0,3397(10)	0,336(2)	0,00000	0,54(2) In + 0,46(2) Ga	0,8(2)
Se1	6(a)	0,342(2)	0,333(2)	0,2076(2)	1	1,1(2)
Se2	6(a)	0,004(2)	0,3694(13)	0,0333(2)	1	0,8(2)
Se3	6(a)	0,011(2)	0,6990(14)	0,2000(3)	1	0,9(2)

Таблиця 4

Міжатомні відстані та координаційні числа атомів у структурі зразка складу (Ga_{0,65}In_{0,35})₂Se₃ з області існування фази γ₂

Атоми	Відстань, нм	К. ч.
M1 1 Se1	2,356(15)	
1 Se3	2,48(2)	4
1 Se3	2,486(7)	4
1 Se2	2,50(2)	
M2 1 Se1	2,464	
1 Se2	2,502	4
1 Se3	2,513	4
1 Se2	2,586	
Se1 1 M1	2,356(15)	2
1 M2	2,464	2
Se2 1 M1	2,501(14)	
1 M2	2,502	3
1 M2	2,586	
Se3 1 M1	2,48(2)	
1 M1	2,486(7)	3
1 M2	2,513	

Додатково сплави перерізу відпалено при 1110 К і проведено їх РФА (рис. 5). Порівнюючи рис. 3 і 5, видно, що характер фазових рівноваг суттєво не змінився, лише області гомогенності γ_1 і γ_2 зазнають деякого, до 5 мол. %, зменшення. Область гомогенності Ga₂Se₃ збільшується до 22 % In₂Se₃,

а зразки складів (Ga_{0,1}In_{0,9})₂Se₃ і (Ga_{0,05}In_{0,95})₂Se₃ стають двофазними і містять, окрім відбиттів γ_1 -фази, ще додаткові рефлекси, які належать одній із модифікацій In₂Se₃. Для чистого зразка In₂Se₃ отримано α -модифікацію, з домішками γ -In₂Se₃.

Рис. 5. Результати РФА зразків системи Ga_2Se_3 — In_2Se_3 , відпалених при 1110 К: $1 - (Ga_{0,95}In_{0,05})_2Se_3$; $2 - (Ga_{0,90}In_{0,10})_2Se_3$; $3 - (Ga_{0,85}In_{0,15})_2Se_3$; $4 - (Ga_{0,80}In_{0,20})_2Se_3$; $5 - (Ga_{0,75}In_{0,25})_2Se_3$; $6 - (Ga_{0,70}In_{0,30})_2Se_3$; $7 - (Ga_{0,65}In_{0,35})_2Se_3$; $8 - (Ga_{0,60}In_{0,40})_2Se_3$; $9 - (Ga_{0,55}In_{0,45})_2Se_3$; $10 - (Ga_{0,50}In_{0,50})_2Se_3$; $11 - (Ga_{0,45}In_{0,55})_2Se_3$; $12 - (Ga_{0,40}In_{0,60})_2Se_3$; $13 - (Ga_{0,35}In_{0,65})_2Se_3$; $14 - (Ga_{0,30}In_{0,70})_2Se_3$; $15 - (Ga_{0,25}In_{0,75})_2Se_3$; $16 - (Ga_{0,20}In_{0,80})_2Se_3$; $17 - (Ga_{0,15}In_{0,85})_2Se_3$; $18 - (Ga_{0,05}In_{0,95})_2Se_3$; $19 - In_2Se_3$

За даними ДТА та літературними даними побудовано діаграму фазових рівноваг системи Ga₂Se₃–In₂Se₃ (рис. 6). При температурах 1150 К та 1130 К відбуваються евтектичні процеси L $\leftrightarrow \alpha + \gamma_1$ та L $\leftrightarrow \epsilon + \gamma_1$ відповідно, де α – тверді розчини на основі Ga₂Se₃ зі структурою сфалериту, γ_1 – фаза, існування якої встановлено за даними РФА, ізоструктурна до γ -In₂Se₃, та ϵ -тверді розчини на основі ϵ -модифікації In₂Se₃. При температурі 1120 К у системі проходить твердофазне утворення γ_2 -фази за рівнянням $\alpha + \gamma_1 \leftrightarrow \gamma_2$. Область гомогенності цієї фази зі зниженням температури збільшується і при температурі відпалу сягає до 11 мол. %. α -тверді розчини мають протяжність до 50 мол. % In₂Se₃ при температурі 1150 К, зі зниженням температури вони зменшуються і при температурі відпалу становлять 17 мол. % In₂Se₃. Фаза γ_1 має велику область існування, від 60 до 88 мол. % In₂Se₃ при температурі 1110 К, і збільшується до 97 мол. % In₂Se₃ при температурі 820 К. На нашу думку, γ_1 -фаза – це стабілізована присутністю катіонів Ga³⁺ γ -модифікація In₂Se₃. При складі (Ga_{0,2}In_{0,8})₂Se₃

48

на ліквідусі системи існує максимум при температурі 1165 К, який пояснюється конгруентним характером плавлення γ_1 -фази. Наявність двофазної області $\beta + \gamma_1$ зумовлене зниженням температури поліморфного перетворення γ -In₂Se₃ $\leftrightarrow \beta$ -In₂Se₃ за присутності катіонів Ga³⁺, що для чистого In₂Se₃ відбувається при 923 К. При 1023 К проходить поліморфне перетворення ϵ -In₂Se₃ $\leftrightarrow \gamma$ -In₂Se₃, що добре узгоджується з літературними даними [6]. Розчинність на основі ϵ -In₂Se₃ ϵ незначною, до 5 мол. %, при температурі евтектичного процесу 1130 К.

Рис. 6. Діаграма стану системи Ga_2Se_3 - In_2Se_3 : 1 – L; 2 – L + α ; 3 – L + γ_1 ; 4 – L + ε , 5 – α + γ_1 ; 6 – ε + γ_1 ; 7 – ε , 8 – γ_1 ; 9 – γ_1 + γ_2 ; 10 – γ_2 ; 11 – α + γ_2 ; 12 – α ; 13 – β ; 14 – γ_1 + β

Висновки. Характер взаємодії компонентів у системі Ga₂Se₃–In₂Se₃ виявився досить складним, що зумовлено утворенням двох проміжних фаз γ_1 та γ_2 із широкими областями гомогенності, а також твердих розчинів на основі вихідних компонентів. Утворення проміжних фаз характерне для такого типу систем, наприклад Al₂Se₃–In₂Se₃ (AlInSe₃) [18], Al₂S₃–In₂S₃ (AlInS₃) [19], Ga₂S₃–In₂S₃ (GaInS₃) [20], які, як правило, кристалізуються в гексагональній сингонії, пр. гр. *P*6₁ або *P*6₅. Для фаз, що утворюються в системі Ga₂S₃–In₂S₃, характерна більша різноманітність структур, що, очевидно, пояснюється різним впорядкуванням атомів Ме в цих структурах.

Література

- Hahn H. Ueber die Kristallstrukturen von Ga₂S₃, Ga₂Se₃ und Ga₂Te₃ / H. Hahn, W. Klingler // Z. Anorg. Allg. Chem. – 1949. – Vol. 259. – P. 135.
- Luebbers D. The crystal structure of beta-Ga₂Se₃ / D. Luebbers, V. Leute // J. Solid State Chem. 1982. Vol. 43. – P. 339.
- Ghemard G. Structure de la phase ordonnee du sesquiseleniure de gallium, Ga₂Se₃ / G. Ghemard, S. Jaulmes, J. Etienne, J. Flahaut // Acta Cryst. C. – 1983. – Vol. 39. – P. 968.
- Полупроводниковые халькогениды и сплавы на их основе / Н. Х. Абрикосов, В. Ф. Банкина, Л. В. Порецкая и др. – М. : Наука, 1975. – 219 с.

- 5. Miyazawa H. Phase transition of In₂Se₃ / H. Miyazawa, S. Sugaike // J. Phys. Soc. Japan. 1957. Vol. 12. P. 312.
- 6. Медведева 3. С. Выращивание монокристалов селенида индия из газовой фазы / 3. С. Медведева, Т. Н. Гулиев // Изв. АН СССР. Неорган. материалы. – 1965. – Т. 1, № 6. – С. 848.
- 7. De Blasi C. Electron diffraction study of In₂Se₃ melt grown crystals / C. De Blasi, D. Manno, G. Micocci, A. Tepore // J. Crystal Growth. 1989. Vol. 96. P. 947.
- Osamura K. Crystal structues of α- and β-Indium Selenide, In₂Se₃ / K. Osamura, J. Murakami, J. Tomile // Japan J. Phys. Soc. – 1966. – Vol. 21, № 9. – P. 1848.
- Popovic S. Revised and new crystal data for indium selenides / S. Popovic, A. Tonejc, B. Grzeta-Plencovic, B. Celustka, R. Trojko // J. Appl. Cryst. – 1979. – Vol. 12. – P. 416.
- 10. Hahn H. Zur kristallstructur des In₂Se₃ / H. Hahn, G. Frank // Naturwiss. 1957. Vol. 44. P. 533.
- Pfitzner A. Redetermination of the crystal structure of r-In₂Se₃ by twin crystal X-Ray method / A. Pfitzner, H. D. Lutz // J. Solid State Chem. – 1996. – Vol. 124. – P. 305.
- 12. Никольская Г. Ф. К вопросу о проводимости триселенида индия в твёрдом и жидком состояниях / Г. Ф. Никольская, Т. Н. Гулиев, И. В. Евфимовский, Г. Н. Кагирова // Изв. АН СССР. Неорган. материалы. – 1965. – Т. 1, № 2. – С. 171.
- Гриндберг Я. Х. р-Т-х диаграмма состояния и термодинамические свойства In₂Se₃ / Я. Х. Гриндберг, В. А. Борякова, В. Ф. Шевельков, З. С. Медведева // Изв. АН СССР. Неорган. материалы. – 1972. – Т. 8, № 12. – С. 2099.
- 14. Popovic S. et al. X-Ray Diffraction Study and semiconducting properties of the system Ga₂Se₃–In₂Se₃ / S. Popovic et al. // Phys. Stat. Sol. (a). 1977. Vol. 41. P. 255.
- 15. Tonejc A. Phases, lattice parameters and thermal expansion of $(Ga_xIn_{1-x})_2Se_3$, $1 \ge x \ge 0$, between room temperature and melting point / A. Tonejc // I. Appl. Cryst. 1980. Vol. 13. P. 24.
- 16. Popovic S. The spase group of γ -In₂Se₃ and γ_1 -(Ga_xIn_{1-x})₂Se₃: erratum / S. Popovic // J. Appl. Cryst. 1980. Vol. 13. P. 611.
- 17. Ye J. X-ray crystallographic study of the optically active semiconductor $(Ga_xIn_{1-x})_2Se_3$ / J. Ye, T. Hanada, Y. Nakamura, O. Nittono // Phys. Rev. B. 2000. Vol. 62. P. 16549.
- 18. B. Grzeta-Plenkovic. An X-ray diffraction study of the system Al₂Se₃ In₂Se₃ in the In-rich region / B. Grzeta-Plenkovic, S. Popovic, D. Desnica, U. Desnica // J. Appl. Cryst. 1980. Vol. 13. P. 454.
- Schulte-Kellinghaus M. Structure of aluminium indium trisulphide / M. Schulte-Kellinghaus, V. Kraemer // Acta Cryst. B. – 1979. – Vol. 35. – P. 3016.
- 20. Guseinov G. G. Crystal structure of GaInS₃ and GaInSe₃ / G. G. Guseinov, I. R. Amiraslanov, A. S. Kuliev, Kh. S. Mamedov // Izv. Akad. Nauk SSSR, Neorgan. Mat. 1987. Vol. 23. P. 854.

Статтю подано до редколегії 10.03.2010 р.