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BEST BILINEAR APPROXIMATIONS OF THE CLASSES S�
p;�

B

OF PERIODIC FUNCTIONS OF MANY VARIABLES

K. V. Solich UDC 517.5

We obtain exact-order estimates for the best bilinear approximations of the classes S �
p; �

B of periodic
functions of many variables in the space Lq under certain restrictions on the parameters p; q; and �:

Introduction

This paper is devoted to the investigation of the best bilinear approximations of periodic functions of many
variables in the space Lq under certain restrictions on the parameters p; q; and �: The paper consists of the
introduction and two sections. In the introduction, we give necessary notation and the definitions of classes under
investigation. Section 1 is auxiliary. In particular, we formulate and prove there a theorem on estimates for the
best M -term trigonometric approximations. The obtained results are used in Sec. 2 for finding upper bounds for
the best bilinear approximations of functions of 2d variables of the form f .x � y/; x; y 2 �d ; generated by
functions f .x/ 2 S �

p; �
B:

We now give necessary notation and definitions.
Let Rd ; d � 1; be the d -dimensional Euclidean space with elements x D .x1; : : : ; xd / and let Lp.�d /;

�d D
Yd

jD1
Œ�� I��; be the space of functions f .x/ D f .x1; : : : ; xd / 2�-periodic in each variable and

summable to the power p; 1 � p < 1 (essentially bounded for p D 1/: The norm in this space is defined as
follows:

kf kp D

0@.2�/�d Z
�d

jf .x/ jpdx

1A1=p ; 1 � p <1;

kf k1 D ess sup
x2�d

jf .x/j:

Denote a subset of functions f 2 Lp.�d / that satisfy the condition

�Z
��

f .x/dxj D 0; j D 1; d ;

by Lıp.�d /:
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We now define spaces S�
p;�
B � Lp.�d / whose properties are determined by a majorant function �.t/;

t D .t1; : : : ; td / 2 Rd
C
; for the mixed modulus of continuity of order l .l 2 N/ of a function f 2 Lp.�d / and

numerical parameters p and �; 1 � p; � � 1:
Thus, for an arbitrary function f 2 Lp.�d /; we consider its mixed modulus of continuity of order l; namely

�l.f; t/p D sup
jhj j�tj

jD1;d

k�lhf .�/kp;

where

�lhf .x/ D �
l
hd
: : : �lh1f .x/ D �

l
hd
.: : : .�lh1f .x///; h D .h1; : : : ; hd /;

is the mixed l th difference with step hj with respect to the variable xj ; j D 1; d ; and

�lhj f .x/ D

lX
nDo

.�1/l�nC nl f .x1; : : : ; xj�1; xj C nhj ; xjC1; : : : xd /:

Let �.t/ D �.t1; : : : ; td / be a given function of the type of a mixed modulus of continuity of order l that
satisfies the following conditions:

1. �.t/ > 0; tj > 0; j D 1; d ; �.t/ D 0; and
dY
jD1

tj D 0:

2. �.t/ is continuous on Rd
C
:

3. �.t/ does not decrease in each variable tj � 0; j D 1; d ; for any fixed values of the other variables ti ;
i ¤ j:

4. �.m1t1; : : : ; md td / � C

0@ dY
jD1

mj

1Al �.t/; where mj 2 N; j D 1; d ; and C > 0 is a certain

constant.

Denote the set of these functions � by ‰l;d : For d D 1; we write ‰l : Note that if f 2 Lp.�d /; then
�l.f; �/ 2 ‰l;d :

We impose additional conditions on the functions � 2 ‰l;d : We describe these conditions by using the
following two concepts introduced by Bernshtein in [1]:

(a) a nonnegative function '.�/; � 2 Œ0I1/; almost increases if there exists a constant C1 > 0 such that
'.�1/ � C1'.�2/ for any �1 and �2; 0 � �1 < �2I

(b) a positive function '.�/; � 2 .0I1/; almost decreases if there exists a constant C2 > 0 such that
'.�1/ � C2'.�2/ for any �1 and �2; 0 < �1 < �2:

Assume that d D 1 and � 2 ‰.1;2/
l

; i.e., for �.t/; t � 0; at least conditions 1 and 2 are satisfied.
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We write

(i) � 2 S˛; ˛ > 0; if the function
�.�/

�˛
almost increases for � > 0I

(ii) � 2 Sl if there exists ; 0 <  < l; such that the function
�.�/

�
almost decreases for � > 0:

The conditions for the function � to belong to the sets S˛ and Sl are often called the Bari–Stechkin
conditions [2].

In the case where d > 1; we assume for a function � 2 ‰.1;2/
l;d

that � 2 S˛ (respectively, � 2 Sl ; l 2 N/;

˛ D .˛1; : : : ; ˛d /; j̨ > 0; j D 1; d ; if �.t1; : : : ; td /; regarded as a function of tj ; j D 1; d ; belongs to the
set S j̨ (respectively, Sl/ for any values of the other variables ti ; i ¤ j; .

We also set ˆd
˛;l
D ‰l;d \ S

˛ \ Sl :

Thus, let 1 � p; � � 1 and � 2 ˆd
˛;l
: Then

S�p;�B D
¶
f 2 Lp.�d /W jf jS�

p;�
B <1

·
;

where the seminorm jf jS�
p;�
B is defined by the relation

jf jS�
p;�
B D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

 R
�d

�
�l.f; t/p

�.t/

�� dQ
jD1

dtj

tj

!1=�
; 1 � � <1;

sup
t�0

�l.f; t/p

�.t/
; � D1:

(1)

We define the norm in the space S�
p;�
B as follows:

kf kS�
p;�
B WD kf kp C jf jS�

p;�
B ; 1 � p; � � 1:

The definition of the spaces S�
p;�
B presented above is taken (with slight modification) from [3]. For � D1;

the spaces S�
p;�
B (denoted by S�p H/ were introduced in [4].

The scale of spaces S�
p;�
B is a natural generalization of the scale of Nikol’skii–Besov spaces Br

p;�
; r D

.r1; : : : ; rd /; rj > 0; j D 1; d (see, e.g., [5]), and S�
p;�
B � Br

p;�
for �.t/ D

Yd

jD1
t
rj
j ; rj < l; j D 1; d

(note that, for � D1; Br
p;�

are the Nikol’skii spaces H r
p [6]).

In what follows, we use order relations. The notation A � B means a two-sided inequality between expres-
sions A and B; i.e., C3B � A � C4B; where C3; C4 > 0 are constants whose values may be different in
different relations. If A � C5B; C5 > 0; and A � C6B; C6 > 0; then we write A � B and A � B;

respectively. The dependence of these constants on the corresponding parameters follows from the context. We do
not focus our attention on this in using the symbols �; �; and � :

We now formulate several known statements related to an equivalent representation of the norm kf kS�
p;�
B of

f 2 S�
p;�
B; 1 � p; � � 1; � 2 ˆd

˛;l
; and necessary for the proof of our results. These representations are

given in terms of the defined order of growth of the p-norms of certain trigonometric polynomials constructed on
the basis of the expansion of a function f 2 Lp.�d / in the Fourier series in a trigonometric system.
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Thus, assume that f 2 Lp.�d /;

ıs.f; x/ D
X
k2�.s/

Of .k/ei.k;x/; .k; x/ D k1x1 C : : :C kdxd ;

where

Of .k/ D .2�/�d
Z
�d

f .t/e�i.k;t/dt

are the Fourier coefficients of the function f; and, for every vector s D .s1; : : : ; sd /; sj 2 N; j D 1; d ;

�.s/ WD
¶
k D .k1; : : : ; kd / 2 Zd W 2sj�1 � jkj j < 2

sj ; j D 1; d
·
:

It was established in [3] that, for 1 < p <1; 1 � � � 1; � 2 ˆd
˛;l
; and f 2 S�

p;�
B \Lıp.�d /; one has

kf kS�
p;�
B �

8̂̂̂̂
<̂̂
ˆ̂̂̂:

 X
s

�.2�s/��kıs.f; �/k
�
p

!1=�
; 1 � � <1;

sup
s

kıs.f; �/kp

�.2�s/
; � D1;

(2)

where �.2�s/ D �.2�s1 ; : : : ; 2�sd /; sj 2 N; j D 1; d :
One can see that this representation of the norm does not include the cases p D 1 and p D 1: A certain

modification of the right-hand side of (2) enables one to establish an analogous representation that includes these
cases.

Let

Vn.t/ D 1C 2

nX
kD1

cos kt C 2
2n�1X
kDnC1

�
2n � k

n

�
cos kt

be the de la Vallée-Poussin kernel of order 2n and let, at a point x D .x1; : : : ; xd /;

As.x/ D

dY
jD1

.V2sj .xj / � V2sj�1.xj //; s D .s1; : : : ; sd /; sj 2 N; j D 1; d : (3)

If f 2 Lp.�d /; 1 � p � 1; then we set

As.f; x/ WD f � As:

It was established in [7] that, for 1 � p � 1; 1 � � <1; � 2 ˆd
˛;l
; and f 2 S�

p;�
B \Lıp.�d /; one has

kf kS�
p;�
B �

 X
s

�.2�s/��kAs.f; �/k
�
p

!1=�
; 1 � � <1: (4)



944 K. V. SOLICH

For � D1; the following relation is true [4]:

kf kS�p;1B � sup
s

kAs.f; �/kp

�.2�s/
: (5)

In what follows, we use the spaces S�
p;�
B in the case where the function � has the special form

�.t/ D !

0@ dY
jD1

tj

1A ; ! 2 ˆ1˛;l ; ˛ > 0: (6)

Thus, !.�/ is an arbitrary function (of one variable) of the type of a modulus of continuity of order l and
! 2 ˆ1

˛;l
: According to the previous definitions, it is clear that

! 2 ˆ1˛;l H) � 2 ˆd˛;l ; ˛ D .˛; : : : ; ˛„ ƒ‚ …
d

/:

Note that the set ˆ1
˛;l
; l 2 N; contains, e.g., the function

!.u/ D

8̂̂̂̂
<̂
ˆ̂̂:

ur�
logC

1

u

�ˇ ; u > 0;

0; u D 0;

where logC � D maxf1; log �g; 0 < r < l; ˇ 2 R:
In what follows, we use the same notation for the unit ball in the space S�

p;�
B \ Lıp.�d / as for the space

S�
p;�
B itself, i.e.,

S�p;�B WD ff 2 S
�
p;�B \ L

ı
p.�d /W kf kS�

p;�
B � 1g:

1. Auxiliary Statements

We present several auxiliary statements that are used in the proof of the main results. First, we establish
exact-order estimates for the best M -term trigonometric approximations of functions from the classes S�

1;�
B:

For f 2 Lq.�d /; 1 � q � 1; we set

eM .f /q WD inf
kj ; cj

f .�/ �
MX
jD1

cj e
i.kj ;�/


q

; (7)

where fkj gMjD1 is a system of vectors kj D .k
j
1 ; : : : ; k

j

d
/ with integer-valued coordinates and cj are arbitrary

complex numbers. Quantity (7) is called the best M -term trigonometric approximation of the function f in the
space Lq: If F � Lq.�d / is a certain functional class, then we denote

eM .F /q WD sup
f 2F

eM .f /q: (8)
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For a function of one variable, the quantity eM .f /2 was introduced by Stechkin in [8] in the formulation of
a criterion for the absolute convergence of trigonometric series. Later, the quantities eM .f /q and eM .F /q were
investigated from the viewpoint of approximation. In particular, the behavior of quantity (8) for some classes of
functions of many variables was studied in [9, 10] (see also the references therein). Also note that the behavior
of the quantities of the best M -term approximation of the classes S�

p;�
B considered in the present paper was

investigated in [11–13].
For f 2 Lq.�d /; 1 � q � 1; we introduce the quantity

e?M .f /q WD inf
kj

f .�/ �
MX
jD1

Of .kj /ei.k
j ;�/


q

;

which is called the best M -term orthogonal trigonometric approximation of the function f in the space Lq: If
F � Lq.�d / is a certain functional class, then we set

e?M .F /q WD sup
f 2F

e?M .f /q: (9)

According to the definition, quantities (8) and (9) satisfy the relation

eM .F /q � e
?
M .F /q: (10)

Theorem A (Littlewood–Paley theorem; see, e.g., [6, p. 65]). Let 1 < p < 1 be given. Then there exist
positive numbers C7 and C8 such that, for every function f 2 Lp.�d /; the following relations are true:

C7kf kp �


¼X

s

jıs.f I �/j
2

½1=2
p

� C8kf kp: (11)

Using inequalities (11), one can easily obtain the following relation (see, e.g., [14, p. 17]):

kf kp �

¼X
s

kıs.f I �/k
p0
p

½1=p0
; (12)

where p0 D minf2Ipg:
The following statement is true:

Theorem 1. Suppose that 1 < q <1; 1 � � � 1; and

�.t/ D !

0@ dY
jD1

tj

1A ;
where

! 2 ˆ1˛;l ; ˛ > max
º
0I
1

�
�
1

2

»
:
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Then, for any sequence M D .Mn/
1
nD1 of natural numbers such that M � 2nnd�1; the following order equality

is true:

eM .S
�
1;�B/q � e

?
M .S

�
1;�B/q � !.2

�n/n.d�1/.1=2�1=�/: (13)

Proof. For the determination of the upper bound for eM .S�1;�B/q we use inequality (10), the imbedding
S�
1;�

B � S�
p;�
B; 1 � p < 1; and the upper bound for e?M .S

�
p;�
B/q; 1 < q � p <1; p � 2; established

in [15]. As a result, we get

eM .S
�
1;�B/q � e

?
M .S

�
1;�B/q � e

?
M .S

�
p;�B/q � !.2�n/n.d�1/.1=2�1=�/:

In [12], the following order relation was established:

eM .S
�
1;�B/q � !.2�n/n.d�1/.1=2�1=�/; 1 < q � 2; 1 � � � 1; M � 2nnd�1:

Using the monotonicity of the norm k � kq with respect to the parameter 2 � q <1; we get

eM .S
�
1;�B/q � eM .S

�
1;�B/2 � !.2�n/n.d�1/.1=2�1=�/; M � 2nnd�1:

The theorem is proved.

Remark 1. Theorem 1 complements the estimates obtained in [12, 13].

2. Best Bilinear Approximations

We define the quantity that is investigated in this section.
Let Lq.�2d /; q D .q1; q2/; be the set of functions f .x; y/; x; y 2 �d ; with the finite mixed norm

kf .x; y/kq1;q2 D
kf .�; y/kq1q2 ;

where the norm is calculated first in the space Lq1.�d / with respect to the variable x 2 �d and then in the space
Lq2.�d / with respect to the variable y 2 �d : For f 2 Lq.�2d /; we define the best bilinear approximation of
order M as follows:

�M .f /q1;q2 WD inf
uj .x/;vj .y/

f .x; y/ �
MX
jD1

uj .x/vj .y/


q1;q2

;

where uj 2 Lq1.�d / and vj 2 Lq2.�d /:
If F � Lq.�2d / is a class of functions, then we set

�M .F /q1;q2 WD sup
f 2F

�M .f /q1;q2 : (14)

The aim of this section is to establish exact-order estimates for the quantity
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�M .S
�
p;�B/q1;q2 D sup

f 2S�
p;�
B

�M .f /q1;q2 ;

where the bilinear approximations �M .f /q1;q2 are considered for functions of the form f .x � y/; x; y 2 �d :

Note that the classic result for bilinear approximations belongs to Schmidt [17]. In [9, p. 10], Temlyakov
formulated this result in a form more general than in [17].

Lemma A. Suppose that kK.x; y/k2;2 < 1; K is the integral operator with kernel K.x; y/; K� is the
operator adjoint to K; and �j is the nonincreasing sequence of eigenvalues of the operator K�K: Then

inf
ui .x/;vi .y/

K.x; y/ �
MX
iD1

ui .x/vi .y/


2;2

D

0@ 1X
jDMC1

�j

1A1=2 :
Quantity (14) with the classes Wr

p;˛ and H r
p taken as F was investigated by Temlyakov in [9, 18–20] (see

also the references therein). The bilinear approximations of the Besov classes Br
p;�

were studied by A. Romanyuk
and V. Romanyuk in [16] and A. Romanyuk in [21].

We shall comment the obtained results by comparing them with estimates for the Kolmogorov widths.
Recall that the M -dimensional Kolmogorov width of a centrally symmetric set ˆ of a Banach space X is

defined as follows:

dM .ˆ;X / WD inf
LM

sup
f 2ˆ

inf
u2LM

kf � ukX ; (15)

where LM is an arbitrary subspace of X of dimension M:
Let F be a certain class of functions and let f .x/ be a fixed function from F: By Ff we denote the set

that consists of functions of the form f .x � y/ obtained from f .x/ by the displacement of its argument x by an
arbitrary vector y 2 �d : Then the following equality is true (see, e.g., [9, p. 85]):

�M .f .x � y//q1;1 D dM .Ff ; Lq1/: (16)

Thus, if the functional class F is invariant under the displacement of the argument of a function f 2 F; then, ac-
cording to (16), the values of �M .f .x � y//q1;1 can be lower bounds for the Kolmogorov widths dM .Ff ; Lq1/:

The following statement is true:

Theorem 2. Suppose that 2 � q1 � 1; 1 � q2; � � 1; and

�.t/ D !

0@ dY
jD1

tj

1A ;
where

! 2 ˆ1˛;l ; ˛ > max
º
0;
1

�
�
1

2

»
:

Then, for any sequence M D .Mn/
1
nD1 of natural numbers such that M � 2nnd�1; the following order equality

is true:

�M .S
�
1;�B/q1;q2 � !.2

�n/n.d�1/.1=2�1=�/: (17)
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Proof. The upper bounds in (17) can easily be obtained by using Theorem 1.
On the one hand, according to the estimate

eM .S
�
1;�B/q1 � !.2

�n/n.d�1/.1=2�1=�/; M � 2nnd�1;

for an arbitrary function f from the class S�
1;�

B one can find a set of vectors k1; : : : ; kM ; kj D .k
j
1 ; : : : ; k

j

d
/;

kj 2 Zd ; j D 1;M; and numbers c1; : : : ; cM such thatf .x/ �
MX
jD1

cj e
i.kj ;x/


q1

� !.2�n/n.d�1/.1=2�1=�/: (18)

On the other hand, the left-hand side of (18) can be represented in the formf .x/ �
MX
jD1

cj e
i.kj ;x/


q1

D

f .x � y/ �
MX
jD1

cj e
i.kj ;x�y/


q1;1

D

f .x � y/ �
MX
jD1

cj e
i.kj ;x/e�i.k

j ;y/


q1;1

: (19)

Using (18) and (19), we obtainf .x � y/ �
MX
jD1

cj e
i.kj ;x/e�i.k

j ;y/


q1;1

� !.2�n/n.d�1/.1=2�1=�/: (20)

Setting cj e
i.kj ;x/ D uj .x/ and e�i.k

j ;y/ D vj .y/ in (20), we establish the required upper bound for
�M .S

�
1;�

B/q1;1 and, hence, for �M .S�1;�B/q1;q2 :
Let us obtain the lower bound in (17).
Let M be an arbitrary natural number. We choose n 2 N so that the number of elements of the set

Qn D
[
ksk1Dn

�.s/

satisfies the inequality jQnj > 4M: Also note that jQnj � 2nnd�1:
Consider the functions

f1.x/ D C9!.2
�n/2�n=2n�.d�1/=�

X
ksk1Dn

dY
jD1

Rsj .xj /; C9 > 0; 1 � � <1;

and

f2.x/ D C10!.2
�n/2�n=2

X
ksk1Dn

dY
jD1

Rsj .xj /; C10 > 0; � D1;
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where

Rsj .xj / D

2
sj�1X

lD2
sj�1

"le
ilx; "l D ˙1; j D 1; d ;

are the Rudin–Shapiro polynomials, which, as is known, satisfy the order inequality kRsj k1 � 2sj =2 (see, e.g.,
[22, p. 155]).

We set

Fn.x/ D
X
ksk1Dn

dY
jD1

Rsj .xj /:

Let us show that, for a certain value of the constant C9; the function f1 belongs to the class S�
1;�

B;

1 � � <1; and the function f2 with a certain constant C10 belongs to the class S�1;1B: To this end, we
first determine the norm of the function Fn in the corresponding spaces. For 1 � � <1; we have

kFnkS�
1;�

B �

 X
s

!�� .2�ksk1/kAs.Fn; x/k
�
1

!1=�

D

0B@X
s

!�� .2�ksk1/

As.x/ �
X

ks�s0k1�1

ıs0.Fn; x/


�

1

1CA
1=�

�

0B@X
s

!�� .2�ksk1/kAsk
�
1


X

ks�s0k1�1

ıs0.Fn; x/


�

1

1CA
1=�

:

Taking into account that kAsk1 � 6 (see, e.g., [14, p. 35]), we continue the estimate as follows:

kFnkS�
1;�

B �

0B@X
s

!�� .2�ksk1/


X

ks�s0k1�1

ıs0.Fn; x/


�

1

1CA
1=�

�

0B@X
s

!�� .2�ksk1/

0@ X
ks�s0k1�1

kıs0.Fn; x/k1

1A�
1CA
1=�

D

0B@X
s

!�� .2�ksk1/

0@ X
ks�s0k1�1


dY
jD1

Rs0
j
.xj /


1

1A�
1CA
1=�
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�

0B@ X
ksk1�nCd

!�� .2�ksk1/

0@ X
ks�s0k1�1

2
ks0k1
2

1A�
1CA
1=�

�

0@ X
ksk1�nCd

!�� .2�ksk1/2
ksk1�

2

1A1=�

D

0@ X
ksk1�nCd

!�� .2�ksk1/

2˛�ksk1
2
ksk1�

2 2˛�ksk1

1A1=�

�
!�1.2�.nCd//

2˛.nCd/

0@ X
ksk1�nCd

2ksk1�.1=2C˛/

1A1=�

�
!�1.2�.nCd//

2˛.nCd/
2.nCd/.1=2C˛/.nC d/.d�1/=� � !�1.2�n/2n=2n.d�1/=� :

If � D1; then

kFnkS�1;1B � !�1.2�n/2n=2:

This implies that, for certain values of the constants C9 and C10; the functions f1 and f2 belong to the classes
S�
1;�

B; 1 � � <1; and S�1;1B; respectively.
We need the following auxiliary statement:

Lemma B [9, p. 98]. Let a number M be given and let a number n 2 N be such that the number of elements
of the set

Qn D
[
ksk1Dn

�.s/

satisfies the condition jQnj > 4M: Then, for an arbitrary function

g.x/ D
X
k2Qn

yg.k/ei.k;x/

such that jyg.k/j D 1; the following relation is true:

inf
uj .x/; �j .y/

g.x � y/ �
MX
jD1

uj .x/ �j .y/


2;1

�M 1=2:

Since the function Fn satisfies the conditions of Lemma B, for �M .f1.x � y//2;1 we get
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�M .f1.x � y//2;1 � !.2�n/2�n=2n�.d�1/=��M .Fn.x � y//2;1

�M 1=2!.2�n/2�n=2n�.d�1/=� � !.2�n/n.d�1/.1=2�1=�/:

By analogy, for the function f2 we obtain

�M .f2.x � y//2;1 � !.2�n/n.d�1/=2:

The lower bound and the theorem are proved.

Remark 2. If !.u/ D ur ; i.e.,

�.t/ D

dY
jD1

trj ;

then, under certain restrictions on the parameter r; Theorems 1 and 2 yield the corresponding results for the classes
Br
1;�

; which were established in [16].

Remark 3. Comparing Theorem 2 with the estimate for the Kolmogorov width dM .S�1;�B;Lq1/ established
in [23], we obtain the order equalities

�M .S
�
1;�B/q1;1 � dM .S

�
1;�B;Lq1/

for 2 � � <1 and

�M .S
�
1;�B/q1;1 � dM .S

�
1;�B;Lq1/.logd�1M/.1=2�1=�/

for 1 � � < 2:

Theorem 3. Suppose that 1 � p � 2 � q1 <1; 1 � q2; � � 1; and

�.t/ D !

0@ dY
jD1

tj

1A ;
where

! 2 ˆ1˛;l ; ˛ >
1

p
; l >

�
1

p

�
:

Then, for any sequence M D .Mn/
1
nD1 of natural numbers such that M � 2nnd�1; the following order equality

is true:

�M .S
�
p;�B/q1;q2 � !.2

�n/2n.1=p�1=2/n.d�1/.1=2�1=�/: (21)
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Proof. As in the previous theorem, we establish the upper bounds by using the estimates for eM .S�p;�B/
obtained in [12, 13].

Further, we show that, for 1 � p � 2; ˛ >
1

p
�
1

2
; and 1 � � � 1; one has the order inequality

�M .S
�
p;�B/2;1 � !.2�n/2n.1=p�1=2/n.d�1/.1=2�1=�/; M � 2nnd�1; (22)

which yields the lower bound in (21).
Consider the case p D 1: For a given M; we choose a natural number n so that the number of elements of

the set

Qn D
[
ksk1Dn

�.s/

satisfies the relations jQnj > 2M and jQnj �M:
Consider the functions

g1.x/ D C11n
�.d�1/=�

X
n�ksk1�nCd

!.2�ksk1/
X

k2�C.s/

ei.k;x/; C11 > 0; 1 � � <1;

and

g2.x/ D C12
X

n�ksk1�nCd

!.2�ksk1/
X

k2�C.s/

ei.k;x/; C12 > 0; � D1;

where �C.s/ D
¸
kW k D .k1; : : : ; kd /; 2

sj�1 � kj < 2
sj ; j D 1; d

¹
:

For the properly chosen constants C11 and C12; the function g1 belongs to the class S�
1;�
B; 1 � � <1;

and the function g2 belongs to the class S�1;1B: Indeed,

kg1kS�
1;�
B �

0@ X
n�ksk1�nCd

!�� .2�ksk1/kAs.g1; x/k
�
1

1A1=�

� n�.d�1/=�

0@ X
n�ksk1�nCd

!�� .2�ksk1/!� .2�ksk1/

1A1=�

D n�.d�1/=�

0@ X
n�ksk1�nCd

1

1A1=� � n�.d�1/=�n.d�1/=� D 1;

kg2kS�1;1B
� sup
n�ksk1�nCd

kAs.g2; x/k1

!.2�ksk1/
� sup

n�ksk1�nCd

!.2�ksk1/

!.2�ksk1/
D 1:
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Using the function g as a kernel (here, for convenience, g is understood as g1 for 1 � � <1 and g2 for
� D1/; we consider the following integral operator GWL2 �! L2 :

.Gf /.x/ D .2�/�d
Z
�d

g.x � y/f .y/dy:

Let G� be the operator adjoint to G and let �j be the eigenvalues of the operator G�G arranged in the

nonascending order. Since the eigenvalues �j coincide with the numbers bn�
2.d�1/
� !2.2�ksk1/; b > 0 (re-

spectively, b!2.2�ksk1/ for � D1/; by virtue of Lemma A we get

inf
ui .x/;vi .y/

kg1.x � y/ �

MX
iD1

ui .x/vi .y/k2;2

D

0@ X
j�MC1

�j

1A1=2 �
0@ X
ksk1�nC1

n�
2.d�1/
� !2.2�ksk1/

1A1=2

� n�.d�1/=�

0@ X
ksk1�nC1

!2.2�ksk1/
X

k2�C.s/

1

1A1=2

� n�.d�1/=�

0@ X
ksk1�nC1

!2.2�ksk1/2ksk1

1A1=2

D n�.d�1/=�

0@ X
ksk1�nC1

!2.2�ksk1/

2�2˛ksk1
2.1�2˛/ksk1

1A1=2

� n�.d�1/=�
!.2�n/

2�˛n

0@ X
ksk1�nC1

2.1�2˛/ksk1

1A1=2

� n�.d�1/=�
!.2�n/

2�˛n
2.1�2˛/n=2n.d�1/=2

D !.2�n/n.d�1/.1=2�1=�/2n=2: (23)

By analogy, for � D1 we obtain

inf
ui .x/;vi .y/

g2.x � y/ �
MX
iD1

ui .x/vi .y/


2;2

� !.2�n/2n=2n.d�1/=2:
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Further, let certain systems of functions fuj .x/gMjD1 2 L2.�d / and fvj .y/gMjD1 2 L1.�d / be given. Without
loss of generality, we can assume that the functions vj .y/; j D 1;M; are continuous. Let ug.x; y/ denote the
orthogonal projection of the function g.x � y/; for fixed y; to the subspace U D L.fuj .x/g

M
jD1/ (the linear

span of the functions uj .x/; j D 1;M/: We set

r.x; y/ D g.x � y/ � ug.x; y/:

Since the function ug.x; y/ has the form

ug.x; y/ D

MX
jD1

uj .x/'j .y/; (24)

for an arbitrary y 2 �d we obtaing.� � y/ �
MX
jD1

uj .�/vj .y/


2

� kr.�; y/k2; (25)

kr.�; y/k2 � kg.� � y/k2: (26)

The function r.x; y/ satisfies the inequality

kr.x; y/k22;2 � kr.x; y/k2;1kr.x; y/k2;1: (27)

On the one hand, taking (24) into account, by analogy with (23) we get

kr.x; y/k2;2 D kg.x � y/ � ug.x; y/k2;2 � !.2�n/2n=2n.d�1/.1=2�1=�/: (28)

On the other hand, we can estimate kr.x; y/k2;1 from above. It follows from (26) that

kr.x; y/k2;1 � kgk2: (29)

Let us estimate kgk2: Setting g D g1; we obtain

kg1k2 D

C11n�.d�1/=�
X

n�ksk1�nCd

!.2�ksk1/
X

k2�C.s/

ei.k;x/


2

� n�.d�1/=�


X

n�ksk1�nCd

!.2�ksk1/
X

k2�C.s/

ei.k;x/


2

� n�.d�1/=�

0@ X
n�ksk1�nCd

!2.2�ksk1/
X

k2�C.s/

1

1A1=2
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� n�.d�1/=�

0@ X
n�ksk1�nCd

!2.2�ksk1/2ksk1

1A1=2

D n�.d�1/=�

0@ X
n�ksk1�nCd

!2.2�ksk1/

2�2˛ksk1
2.1�2˛/ksk1

1A1=2

� n�.d�1/=�
!.2�n/

2�˛n

0@ X
n�ksk1�nCd

2.1�2˛/ksk1

1A1=2

D n�.d�1/=�
!.2�n/

2�˛n

0@nCdX
jDn

X
ksk1Dj

2.1�2˛/ksk1

1A1=2

� n�.d�1/=�
!.2�n/

2�˛n

0@nCdX
jDn

2.1�2˛/j j d�1

1A1=2

� n�.d�1/=�
!.2�n/

2�˛n
2.1�2˛/n=2n.d�1/=2 D !.2�n/2n=2n.d�1/.1=2�1=�/:

Setting g D g2; we get

kg2k2 D

C12
X

n�ksk1�nCd

!.2�ksk1/
X

k2�C.s/

ei.k;x/


2

� !.2�n/2n=2n.d�1/=2:

Using the estimates for kg1k2 and kg2k2 and inequality (29), for an arbitrary 1 � � � 1 we obtain

kr.x; y/k2;1 � kgk2 � !.2
�n/2n=2n.d�1/.1=2�1=�/: (30)

Relations (27)–(30) yield

kr.x; y/k2;1 � !.2�n/2n=2n.d�1/.1=2�1=�/:

Using inequality (25), we now obtain the required estimate for p D 1:
Consider the case 1 < p � 2: For a given M; we choose n 2 N so that the number of elements of the set

Qn D
[
ksk1Dn

�.s/

satisfies the relations jQnj > 4M and jQnj �M: Consider the functions

f3.x/ D C13!.2
�n/2�n.1�1=p/n�.d�1/=�dn.x/; 1 � � <1;



956 K. V. SOLICH

and

f4.x/ D C14!.2
�n/2�n.1�1=p/dn.x/; � D1;

where

dn.x/ D
X
k2Qn

ei.k;x/

and C13 and C14 are positive constants.
Since 

2
sj�1X

kjD2
sj�1

eikjxj


p

� 2sj .1�1=p/; j D 1; d ;

we have

kıs.dn; x/kp D


X
k2�.s/

ei.k;x/


p

D

dY
jD1


2
sj�1X

kD2
sj�1

eikjxj


p

�

dY
jD1

2sj .1�1=p/ D 2ksk1.1�1=p/:

According to (2), for 1 � � <1 we get

kf3kS�
p;�
B �

0@ X
ksk1Dn

!�� .2�ksk1/kıs.f; x/k
�
p

1A1=�

� !.2�n/2�n.1�1=p/n�.d�1/=�

0@ X
ksk1Dn

!�� .2�ksk1/kıs.dn; x/k
�
p

1A1=�

� !.2�n/2�n.1�1=p/n�.d�1/=�

0@!�� .2�n/ X
ksk1Dn

kıs.dn; x/k
�
p

1A1=�

� 2�n.1�1=p/n�.d�1/=�

0@ X
ksk1Dn

2�ksk1.1�1=p/

1A1=�

� 2�n.1�1=p/2n.1�1=p/n�.d�1/=�

0@ X
ksk1Dn

1

1A1=� � 1:

For � D1; we have
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kf4kS�p;1B � sup
ksk1Dn

kıs.f; x/kp

!.2�ksk1/
� !.2�n/2�n.1�1=p/ sup

ksk1Dn

kıs.dn; x/kp

!.2�ksk1/

� !.2�n/2�n.1�1=p/ sup
ksk1Dn

2ksk1.1�1=p/

!.2�ksk1/

� !.2�n/2�n.1�1=p/!�1.2�n/2n.1�1=p/ D 1:

Thus, the functions f3 and f4 belong to the classes S�
p;�
B; 1 � � <1; and S�p;1B; respectively, for

certain values of the constants C13; C14 > 0: Since the function dn satisfies the conditions of Lemma B, for the
functions f3 and f4 we get

�M .f3/2;1 � !.2�n/2�n.1�1=p/n�.d�1/=�M 1=2

� !.2�n/2�n.1�1=p/n�.d�1/=�2n=2n.d�1/=2

D !.2�n/2n.1=p�1=2/n.d�1/.1=2�1=�/;

�M .f4/2;1 � !.2�n/2�n.1�1=p/M 1=2
� !.2�n/2n.1=p�1=2/n.d�1/=2:

The lower bound and the theorem are proved.

Remark 4. Comparing Theorem 3 with the estimate for the Kolmogorov width dM .S�p;�B;Lq1/ obtained in
[3], we conclude that the following order equalities are true:

�M .S
�
p;�B/q1;1 � dM .S

�
p;�B;Lq1/

for 2 � � <1 and

�M .S
�
p;�B/q1;1 � dM .S

�
p;�B;Lq1/.logd�1M/.1=2�1=�/

for 1 � � < 2:

Theorem 4. Suppose that 2 � p < q1 <1; 1 � q2; � � 1; and

�.t/ D !

0@ dY
jD1

tj

1A ;
where

! 2 ˆ1˛;l ; ˛ >
1

2
:
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Then, for any sequence M D .Mn/
1
nD1 of natural numbers such that M � 2nnd�1; the following estimate is

true:

�M .S
�
p;�B/q1;q2 � !.2

�n/n.d�1/.1=2�1=�/:

Proof. As in the previous theorems, we obtain the upper bound by using the estimate for eM .S�p;�B/p;
2 � p < q1 <1; established in [13].

We now pass to the determination of the lower bounds. For a given M; we choose n so that M � 2nnd�1

and 2nnd�1 > 4M:
Consider the functions

f5.x/ D C15!.2
�n/2�n=2n�.d�1/=�

X
ksk1Dn

dY
jD1

Rsj .xj /; C15 > 0; 1 � � <1;

and

f6.x/ D C16!.2
�n/2�n=2

X
ksk1Dn

dY
jD1

Rsj .xj /; C16 > 0; � D1;

where

Rsj .xj / D

2s
j
�1X

lD2
sj�1

"le
ilxj ; "l D ˙1; j D 1; d ;

are the Rudin–Shapiro polynomials, for which, as indicated above, one has kRsj k1 � 2sj =2:

Let us show that, for a certain choice of the positive constants C15 and C16; these functions belong to the
classes S�

p;�
B; 1 � � <1; and S�p;1B; respectively. Since

ıs.f5; x/ D C15!.2
�n/2�n=2n�.d�1/=�

dY
jD1

Rsj .xj /;

ıs.f6; x/ D C16!.2
�n/2�n=2

dY
jD1

Rsj .xj /;

for 1 � � <1 we get

kf5kS�
p;�
B �

 X
s

!�� .2�ksk1/kıs.f5; x/k
�
p

!1=�

� !.2�n/2�n=2n�.d�1/=�

0B@ X
ksk1Dn

!�� .2�ksk1/


dY
jD1

Rsj .xj /


�

p

1CA
1=�
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� !.2�n/2�n=2n�.d�1/=�

0@ X
ksk1Dn

!�� .2�ksk1/2
ksk1��

2

1A1=�

� !.2�n/2�n=2n�.d�1/=�!�1.2�ksk1/2n=2

0@ X
ksk1Dn

1

1A1=�

� n�.d�1/=�n.d�1/=� D 1:

For � D1; we obtain

kf6kS�p;1B � sup
s

kıs.f6; x/kp

!.2�ksk1/
� !.2�n/2�n=2 sup

ksk1Dn

Yd

jD1
Rsj .xj /


p

!.2�ksk1/

< !.2�n/2�n=2 sup
ksk1Dn

Yd

jD1
Rsj .xj /


1

!.2�ksk1/
� !.2�n/2�n=2 sup

ksk1Dn

2
ksk1
2

!.2�ksk1/
D 1:

Taking into account that the function

�.x/ D
X
ksk1Dn

dY
jD1

Rsj .xj /

satisfies the conditions of Lemma B, we get

�M .f5/2;1 �M 1=2!.2�n/2�n=2n�.d�1/=� � !.2�n/n.d�1/.1=2�1=�/;

�M .f6/2;1 �M 1=2!.2�n/2�n=2 � !.2�n/n.d�1/=2:

The theorem is proved.

Remark 5. Comparing the estimate for the Kolmogorov width dM .S
�
p;�
B;Lq1/ obtained in [3] with Theo-

rem 4, we conclude that the following relations are true:

�M .S
�
p;�B/q1;1 � dM .S

�
p;�B;Lq1/

for 2 � � <1 and

�M .S
�
p;�B/q1;1 � dM .S

�
p;�B;Lq1/.logd�1M/.1=2�1=�/

for 1 � � < 2:
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Theorem 5. Suppose that 2 � q1 � p <1; 1 � q2; � � 1; and

�.t/ D !

0@ dY
jD1

tj

1A ; ! 2 ˆ1˛;l ; ˛ > max
º
0I
1

�
�
1

2

»
:

Then, for any sequence M D .Mn/
1
nD1 of natural numbers such that M � 2nnd�1; the following order inequal-

ity is true:

�M .S
�
p;�B/q1;q2 � !.2

�n/n.d�1/.1=2�1=�/:

Proof. The upper bound follows from the estimate for e?M .S
�
p;�
B/q; 1 < q1 � p < 1; p � 2; obtained

in [15]. The lower bound is established in the same way as in Theorem 4.

Remark 6. Comparing the estimate for the Kolmogorov width dM .S
�
p;�
B;Lq1/ obtained in [24] with The-

orem 5, we conclude that

�M .S
�
p;�B/q1;1 � dM .S

�
p;�B;Lq1/

for � � 2 and

�M .S
�
p;�B/q1;1 � dM .S

�
p;�B;Lq1/.logd�1M/.1=2�1=�/

for 1 � � < 2:

Remark 7. If

�.t/ D

dY
jD1

trj ;

then, under certain restrictions on the parameter r; Theorems 3–5 yield the known results for the classes Br
p;�

established in [21].
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