УДК 546:548.3:539.26: 546.22.23. (546.65+546.682) **М. Р. Гуч** – аспірант кафедри загальної та неорганічної хімії Волинського державного університету імені Лесі Українки;

 Л. Д. Гулай – кандидат хімічних наук, доцент кафедри екології та охорони навколишнього середовища Волинського державного університету імені Лесі Українки;
І. Д. Олексеюк – доктор хімічних наук, професор, завідувач

кафедри загальної та неорганічної хімії Волинського державного університету імені Лесі Українки

Ізотермічні перерізи систем R₂S₃-Cu₂S-In₂S₃ (R=La, Pr, Y, Er) при 870 К

Роботу виконано на кафедрі загальної та неорганічної хімії ВДУ ім. Лесі Українки

Взаємодія між компонентами в системах R_2S_3 - Cu_2S - In_2S_3 (R=La, Pr, Y, Er) при 870 К досліджена методами рентгенівської порошкової дифрактометрії. В системі La_2S_3 - In_2S_3 встановлена кристалічна структура нової тернарної сполуки $La_3In_{1.67}S_7$ (структурний тип $Ce_3Al_{1.67}S_7$, просторова група $P6_3$). У системах R_2S_3 - Cu_2S - In_2S_3 (R=La i Pr) підтверджено існування тетрарних сполук R_2CuInS_5 (структурний тип La_2CuInS_5 , просторова група Pnma). У системах R_2S_3 - Cu_2S - In_2S_3 (R=Y, Er) виявлено існування тетрарних сполук $Y_4Cu_2In_4S_{13}$ (структура невідома).

Ключові слова: халькогеніди, сполуки РЗМ, сполуки Сu, сполуки In, сполуки S, ізотермічний перетин, кристалічна структура.

Huch M. R., Gulay L. D., Olekseyuk I. D. Isothermal Sections of the R_2S_3 -Cu₂S-In₂S₃ (R=La, Pr, Y, Er) <u>Systems at 870 K.</u> Interactions of the components in the R_2S_3 -Cu₂S-In₂S₃ (R=La, Pr, Y, Er) systems at 870 K were investigated using X-ray powder diffraction. The crystal structure of new ternary La₃In_{1.67}S₇ compound (Ce₃Al_{1.67}S₇ structure type, space group *P*6₃) in the La₂S₃-In₂S₃ system was investigated. The formation of the R₂CuInS₅ (La₂CuInS₅ structure type, space group *Pnma*) in the R₂S₃-Cu₂S-In₂S₃ (R=La and Pr) was confirmed. The formation of new quaternary ~Y₄Cu₂In₄S₁₃ (unknown structure) compounds in the R₂S₃-Cu₂S-In₂S₃ (R=Y and Er) was estanlished.

Key words: chalcogenides; rare earth compounds, Cu compounds, In compounds, S compounds, isothermal section, crystal structure.

Халькогенідні системи інтенсивно вивчаються в останні роки з метою пошуку нових матеріалів для інфрачервоної та нелінійної оптики. Вивчення фазових рівноваг у складних системах та дослідження кристалічних структур халькогенідів є важливим кроком у пошуку нових матеріалів.

Кристалічна структура сполук RCuS₂ (структурний тип LaCuS₂, просторова група $P2_1/c$) систем R₂S₃-Cu₂S (R=La i Pr) вивчена в роботі [1]. Кристалічна структура сполук RCuS₂ (R=Y, Er) систем R₂S₃-Cu₂S (R=Y, Er) (структурний тип YCuS₂, просторова група $P2_12_12_1$) встановлена в роботах [2; 3]. У роботі [3] також досліджено тверді розчини Y_{(2+x)/3}Cu_{2-x}S₂ (0≤x≤0,52), Er_{(2+x)/3}Cu_{2-x}S₂ (0≤x≤0,58) із структурою Er_{2/3}Cu₂S₂ (просторова група $P\overline{3}$) при температурі 870 К. Існування сполуки ErCu₅S₄ (гексагональна сингонія) встановлено в роботі [4].

Утворення сполук R_3InS_6 (структурний тип La_3InS_6 , просторова група $P2_12_12$), $RInS_3$ (ромбічна сингонія) і RIn_3S_6 (ромбічна сингонія) в системах R_2S_3 – In_2S_3 (R=La, Pr, Y i Er) встановлено в роботах [5; 6].

Сполуки CuInS₂ (структурний тип FeCuS₂, просторова група I42d) [7] і CuIn₅S₈ (структурний тип MgAl₂O₄, просторова група $Fd\overline{3}m$) [8] існують у системі Cu₂S–In₂S₃.

Кристалічна структура сполук R_2CuInS_5 (R=La i Pr) (структурний тип La₂CuInS₅, просторова група *Pnma*) систем R_2S_3 –Cu₂S–In₂S₃ (R=La, Pr) вивчена в роботі [9].

Наша робота є частиною систематичного дослідження халькогенідів РЗМ. У ній подані ізотермічні перерізи систем R_2S_3 – Cu_2S – In_2S_3 (R=La, Pr, Y, Er) при 870 K і кристалічна структура нової тернарної сполуки La₃In_{1,67}S₇.

Експериментальна частина

Для дослідження фазових рівноваг у системах R_2S_3 – Cu_2S – In_2S_3 (R=La, Pr, Y, Er) синтезовано 77, 64, 77 та 64 зразків відповідно. Зразки виготовлялися сплавлянням розрахованих і зважених елемен-

[©] Гуч М. Р., Гулай Л. Д., Олексеюк І. Д., 2007

тів (чистотою більше ніж 99,9 вагових %) у вакуумованих кварцових ампулах. Синтез проводився в печі шахтного типу. Ампули нагрівали до максимальної температури 1420 К зі швидкістю 30 К/год. При максимальній температурі зразки витримувалися 4 год. Гомогенізаційний відпал проводився при температурі 870 К протягом 240 год. Після відпалу ампули зі зразками загартовувались у холодній воді.

Дифрактограми зразків для проведення фазового аналізу отримані з допомогою порошкового дифрактометра ДРОН-4-13 (СиК_{α}-випромінювання, 10°≤2Θ≤80°, крок зйомки 0,05°, час відліку в точці – 1 с). Дифрактограму зразка La₃In_{1,67}S₇ для обрахунку кристалічної структури сполуки отримано з допомогою порошкового дифрактометра ДРОН-4-13 (СиК_{α}-випромінювання, 10°≤2Θ≤100°, крок зйомки 0,05°, час відліку в точці – 20 с). Визначення кристалічних структур сполук проводилося з використанням програми DBWS-9411 [10].

Результати дослідження та їх обговорення Квазіподвійні системи

У системі R_2S_3 — Cu_2S (R=La, Pr) підтверджено існування сполук RCuS₂. Система Y_2S_3 — Cu_2S має сполуку YCuS₂ та твердий розчин $Y_{0,84}Cu_{1,48}S_2$ — $Y_{2/3}Cu_2S_2$, а в системі Er_2S_3 — Cu_2S існують сполуки ErCuS₂, ErCu₅S₄ та твердий розчин $Er_{0,86}Cu_{1,42}S_2$ — $Er_{2/3}Cu_2S_2$.

У системі La₂S₃–In₂S₃ виявлено утворення сполук La₃In_{1,67}S₇, La₄In_{4,67}S₁₃ та підтверджено існування сполуки La₃InS₆. Відповідно до результатів фазового аналізу, зразок із La₃In_{1,67}S₇ додатково містив на дифрактограмі піки, що відповідають сполуці La₄In_{4,67}S₁₃. Дифрактограма сполуки La₃In_{1,67}S₇ проіндексована в гексагональній сингонії з параметрами комірки, які подані в табл. 1.

Таблиця 1

Кристалографічні характеристики та деталі структурних досліджень сполуки La₃In_{1.67}S₇

Сполука	$La_{3}In_{1,67}S_{7}$
Формульна маса	832,94
Просторова група	<i>P</i> 63 (№ 173)
а (нм)	1,02142(4)
с (нм)	^{0,} 62761 ⁽²⁾
Об'єм (нм ³)	^{0.} 56706(6)
Число формульних одиниць	2
Число атомів у комірці	23,33
Розрахована густина (г/см ³)	4.8742
Спосіб обрахунку	Повнопрофільний
Число атомних положень	6
Визначення та угочнення структури	DBWS-9411
R _I	^{0,0} 703
R_P	⁰ 0490*
Вісь та параметри текстури	[0 0 1] 0,13(1)

* Присутність La₄In_{4,67}S₁₃ враховувалася при обрахунку.

Склад зразка, інтенсивність рефлексів і розраховані параметри комірки вказують на те, що дана сполука кристалізується в структурному типі $Ce_3Al_{1,67}S_7$ (просторова група $P6_3$) [11]. Координати атомів та температурні фактори подано в табл. 2. Одна позиція для атомів In (In1) зайнята частково. Значення фактору заповнення для дефектної позиції атомів (In1) було зафіксовано при обрахунку з метою збереження електронейтральності формули.

Таолиия 2	Таб	อ้านนя	2
-----------	-----	--------	---

Атом	ПСТ	x/a	у/b	z/c	Зайнятість	B_{i30} $10^2 ({\rm Hm}^2)$
La	6 <i>c</i>	0,2289(5)	0,3767(6)	0,758(2)	1	0,62(9)
In1	2 <i>a</i>	0	0	0,951(4)	0,67	0,62(9)
In2	2 <i>b</i>	1/3	2/3	0,333*	1	0,62(9)
S1	2 <i>b</i>	1/3	2/3	0,967(7)	1	0,62(9)
S2	6 <i>c</i>	0,420(3)	0,907(2)	0,494(4)	1	0,62(9)
S3	6 <i>c</i>	0,911(2)	0,155(2)	0,704(4)	1	0,62(9)

Координати атомів та температурні фактори сполуки La₃In_{1,67}S₇

* Зафіксовано.

Експериментальна і обрахована дифрактограми та різницева між ними для сполуки La₃In_{1,67}S₇ (1 – La₃In_{1,67}S₇, 2 – La₄In_{4,67}S₁₃; масове співвідношення La₃In_{1,67}S₇: La₄In_{4,67}S₁₃ дорівнює 71:29) подані на рис. 1.

Рис. 1. *Експериментальна, обрахована та різницева дифрактограми для сполуки La*₃*In*_{1,67}*S*₇ ($1 - La_3In_{1,67}S_7, 2 - La_4In_{4,67}S_{13}$; масове співвідношення La₃*In*_{1,67}*S*₇: La₄*In*_{4,67}*S*₁₃ дорівнює 71:29)

Міжатомні відстані (*d*, нм) і координаційні числа (к. ч.) для атомів у структурі сполуки La₃In_{1,67}S₇ подані в табл. З. Усі міжатомні відстані добре узгоджуються з сумою радіусів відповідних іонів [12].

Таблиця З

X <i>T</i> ¹	• •	••••	•	•	т т .	0
VI INTOTONITI	DITOTOIII	TO KOON THURSDAY			l o l n	<u> </u>
VIIMALUMHI	вилстант	та кооплинациинг	числа для атомпь у		L/d31111 67	177
						~ /

Ат	ГОМИ	<i>d</i> , нм	к. ч.
1	2	3	4
La	-1S3 -1S1	0,290(2) _{0,291(2)}	7
	^{-1S} 2	0,292(3) 0,292(3)	
	-183	0,304(3)	
	⁻¹⁸ 3	0,304(2)	

TT ~	• 7	ח	`	•	• • • • • • • • • • • • • • • • • • • •	T 7
Havrogun	RICHILL	Капинськаза	<i>Aonweaguasa</i>	<i>VHIRONCHMOMV</i>	1M0H1 /10C1	Vvnauvu
IIuynoonn	uchan 1	JUMANCONUCU	<i>ocpantaonoco</i>	ymocpcumenty		s npumna
•						

	-1S2	0,309(3)	
			Закінчення таблиці 3
1	2	3	4
In 1	-3\$3	0,268(3)	6
1111	-3\$3	0,270(3)	0
In 2	-1S1	0,229	4
1112	⁻³⁸ 2	0,237	- 4
C 1	-1In2	0,229	4
51	⁻ 3 ^{La}	0,291(2)	- 4
	-1In2	0,237	
S2	-1La	0,292(3)	
	-1La	0,292(3)	- 4
	-1La	0,309(3)	-
	-1In1	0,268(3)	
S 3	-1In1	0,270(3)	7
	-1La	0,290(2)	5
	-1La	0,304(3)	7
	-1La	0,304(2)	1

Елементарна комірка і координаційні многогранники для атомів La (a), In1 (б), In2 (в), S1 (г), S2 (д), S3 (е) у структурі сполуки La₃In_{1,67}S₇ зображені на рис. 2. Атоми La розміщені в деформованій тригональній призмі з одним додатковим атомом. Октаедричне оточення характерне для атомів In1. Атоми In2, S1 та S2 мають тетраедричне оточення. Атом S3 перебуває в оточенні п'яти сусідів.

Рис. 2. Елементарна комірка і координаційні поліедри для атомів La (а), In1 (б), In2 (в), S1 (г), S2 (д), S3 (е) у структурі

Кристалічна структура сполуки La₄In_{4,67}S₁₃ буде предметом окремої публікації. У системі Pr₂S₃–In₂S₃ виявлено утворення сполуки Pr₄In_{4,67}S₁₃. та підтверджено існування сполуки Pr₃InS₆. Кристалічна структура сполуки Pr₄In_{4,67}S₁₃ буде предметом окремої публікації. У системі Y_2S_3 –In₂S₃ встановлено існування сполуки $Y_3In_5S_{12}$. Її кристалічна структура буде предметом подальших досліджень.

У системі Er_2S_3 -In₂S₃ тернарних сполук не виявлено.

У системі підтверджено існування сполуки CuInS₂. Встановлено утворення твердого розчину на основі *b*-In₂S₃, склад якого відповідає формулі Cu_xIn_{2-x/3}S₃ (*x*=0-3/8) (структурний тип MgAl₂O₄, просторова група *Fd* $\overline{3}$ *m*). Зміна параметра комірки *a* в межах твердого розчину показана на рис. 3. *a*, HM

Зменшення параметра комірки *a* зі збільшенням вмісту Cu в твердому розчині добре узгоджується з іонними радіусами Cu та In [12]. Відома з літератури сполука CuIn₅S₈, яка кристалізується в структурному типі MgAl₂O₄ (просторова група $Fd\overline{3}m$, a = 1,0688 нм) [8], відповідає кінцевому складу (x = 3/8) дослідженого в цій роботі твердого розчину Cu_xIn_{2-x/3}S₃ (x = 0-3/8).

Квазіпотрійні системи

У системі La₂S₃–Cu₂S–In₂S₃ підтверджено існування тетрарної сполуки La₂CuInS₅. Ізотермічний переріз системи при 870 К показано на рис. 4.

У системі Pr_2S_3 - Cu_2S - In_2S_3 виявлено існування тетрарної сполуки Pr_2CuInS_5 . Ізотермічний переріз системи при 870 К подано на рис. 5.

Рис. 5. Ізотермічний переріз діаграми стану системи Pr₂S₃-Cu₂S-In₂S₃ при 870 К

У системі Y_2S_3 -Cu₂S-In₂S₃ виявлено існування тетрарної сполуки складу $Y_4Cu_2In_4S_{13}$, кристалічну структуру якої встановити не вдалося. Ізотермічний переріз системи при 870 К наведено на рис. 6.

У системі Er_2S_3 – Cu_2S – In_2S_3 виявлено існування тетрарної сполуки складу $Er_4Cu_2In_4S_{13}$, кристалічну структуру якої встановити не вдалося. Ізотермічний переріз системи при 870 К показано на рис. 7.

Дифрактограми сполук $Y_4Cu_2In_4S_{13}$ і $Er_4Cu_2In_4S_{13}$ подібні між собою, що вказує на їхню ізоструктурність. Кристалічні структури сполук $Y_4Cu_2In_4S_{13}$ і $Er_4Cu_2In_4S_{13}$ будуть предметом подальших досліджень.

20

Рис. 7. Ізотермічний переріз діаграми стану системи Er₂S₂-Си₂S-In₂S₂ при 870 К

Висновки

Вивчена взаємодія між компонентами в системах R₂S₃-Cu₂S-In₂S₃ (R=La, Pr, Y, Er) при 870 К.
Досліджена кристалічна структура нової тернарної сполуки La₃In_{1,67}S₇ (структурний тип Ce₃Al_{1.67}S₇, просторова група *P*6₃).

3. У системах R_2S_3 -Cu₂S-In₂S₃ (R=La i Pr) підтверджено існування тетрарних сполук R_2 CuInS₅ (структурний тип La₂CuInS₅, просторова група *Pnma*).

4. У системах R_2S_3 -Cu₂S-In₂S₃ (R=Y i Er) виявлено існування нових тетрарних сполук ~Y₄Cu₂In₄S₁₃ (структура невідома).

Література

- 1. Julien-Pouzol M., Guittard M. Étude cristallochimique des combinaisons ternaries cuivre-terre rare soufre ou Sélénium, siyuées le long des binares Cu₂X–L₂X₃// Ann. Chim.– 1972.– Vol. 7.– P. 253–262.
- 2. Gulay L. D., Shemet V. Ya., Olekseyuk I. D. Crystal structures of the compounds $YCuS_2$, Y_3CuSnS_7 and $YCuPbS_3$ // J. Alloys Comp.– 2005.– Vol. 388.– P. 59–64.
- 3. Gulay L. D., Shemet V. Ya., Olekseyuk I. D., Stępień-Damm J. et all. Investigation of the R₂S₃-Cu₂S-PbS (R=Y, Dy, Ho and Er) systems // J. Alloys Comp.- 2007.- Vol. 431.- P. 77-84.
- 4. Рустамов П. Г., Алиев О. М., Гусейнов Г. Г., Алиджанов М. А., Агаев А. Б. Тройные соединения типа А₅^IВ^{III}С₄^{VI} // Изв. АН СССР. Неорган. материалы.– 1976.– Т. 12.– С. 1192–1195.
- Carre D., Guittard M., Adolphe C. Structure Cristalline du Sulfure de Lanthane et d'Indium La₃InS₆ // Acta Cryst.– 1978.– Vol. 34.– P. 3499–3501.
- Eliseev A. A., Kuzmichyeva G. M. Handbook on the physics and chemistry of rare earths. Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements.– Elsevier Science Publishers B. V.– 1990.–Vol. 13.– Ch. 89.– P. 191–281.
- Abrahams S. C., Bernstein J. L. Piezoelectric nonlinear optic CuGaS₂ and CuInS₂ crystal structure: Sublattice distortion in A(I) B(III) C(VI)2 and A(II) B(IV) C(V)2 type chalcopyrites // J. of Chemical Physics.– 1973.– Vol. 59.– P. 5415–5420.
- Dedryvere R., Olivier-Fourcade J., Jumas J. C., Denis S. and Perez Vicente C. Lithium insertion in copper, indium, tin thiospinels characterized by ¹¹⁹Sn Mössbauer spectroscopy and rietveld analysis // Chemistry of Materials.– 2000.– Vol. 12.– P. 1439.
- Huch M. R., Gulay L. D., Olekseyuk I. D., Pietrazko A. Crystal structures of the R₂CuInS₅ (R=La, Ce, Pr, Nd and Sm) compounds // J. Alloys Comp.– 2006.– Vol. 425.– P. 230–234.
- Young R. A., Sakthivel A., Moss T. S., Paria-Santos C. O. in: Program DBWS-9411 for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, Georgia Institute of Technology, Atlanta, GA, 1995.
- 11. de Saint-Giniez D., Laruelle P., Flahaut J. Structure cristalline du sulfure double de cerium et d'aluminium Ce₆Al_{3.33}S₁₄// Sciences Chimiques Serie C.– 1968.– Vol. 267.– P. 1029–1032.
- 12. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Cryst.- 1976.- Vol. A39.- P. 751-767.

Статтю подано до редколегії 18.10.2007 р.