APPROXIMATION OF (ψ, β) -DIFFERENTIABLE FUNCTIONS BY POISSON INTEGRALS IN THE UNIFORM METRIC

T. V. Zhyhallo and Yu. I. Kharkevych

UDC 517.5

We obtain asymptotic equalities for upper bounds of approximations of functions from the class $C^{\psi}_{\beta,\infty}$ by Poisson integrals in the metric of the space *C*.

1. Statement of the Problem and Some Historical Information

Let C be the space of 2π -periodic continuous functions with the norm

$$||f||_C = \max_t |f(t)|,$$

let L_{∞} be the space of 2π -periodic, measurable, essentially bounded functions with the norm

$$||f||_{\infty} = \operatorname{ess\,sup}_{t} |f(t)|,$$

and let L_1 be the space of 2π -periodic summable functions with the norm

$$||f||_{L_1} = ||f||_1 = \int_{-\pi}^{\pi} |f(t)| dt.$$

In 1983, Stepanets proposed a new approach to the classification of periodic functions. This approach is based on the notion of (ψ, β) -derivative (see, e.g., [1–4]). The classes L_{β}^{ψ} of functions $f \in L_1$ are introduced as follows: Let a sequence $\psi = \psi(k)$ and parameter β be such that the series

$$\sum_{k=1}^{\infty} \psi(k) \cos\left(kt + \frac{\beta\pi}{2}\right) \tag{1}$$

is the Fourier series of a certain summable function $\Psi_{\beta}(t)$. Then the following equality holds for any $f \in L_{\beta}^{\psi}$ and almost all $x \in R$:

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(x+t) \Psi_{\beta}(t) dt,$$

0041–5995/09/6111–1757 © 2009 Springer Science+Business Media, Inc.

Volyn National University, Luts'k, Ukraine.

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 61, No. 11, pp. 1497–1515, November, 2009. Original article submitted April 21, 2009.

where $\varphi(\cdot)$ is a certain function from L_1 and

$$\int_{-\pi}^{\pi} \varphi(t) dt = 0$$

The function φ is called the (ψ, β) -derivative of the function f and is denoted by f_{β}^{ψ} .

If $f \in L^{\psi}_{\beta}$ and, in addition, $f^{\psi}_{\beta} \in \mathfrak{N}$, $\mathfrak{N} \subseteq L_1$, then one says that $f \in L^{\psi}_{\beta}\mathfrak{N}$. The subsets of continuous functions from L^{ψ}_{β} and $L^{\psi}_{\beta}\mathfrak{N}$ are denoted by C^{ψ}_{β} and $C^{\psi}_{\beta}\mathfrak{N}$, respectively. Further, if \mathfrak{N} coincides with the unit ball of the space L_{∞} , i.e.,

$$\mathfrak{N} = \left\{ f_{\beta}^{\psi} \in L_{\infty} : \operatorname{ess\,sup}_{t} \left| f_{\beta}^{\psi}(t) \right| \leq 1 \right\},\,$$

then the classes $C^{\psi}_{\beta} \mathfrak{N}$ are denoted by $C^{\psi}_{\beta,\infty}$. For $\psi(k) = k^{-r}$, r > 0, the classes $C^{\psi}_{\beta,\infty}$ coincide with the classes $W^{r}_{\beta,\infty}$, and $f^{\psi}_{\beta}(x) = f^{(r)}_{\beta}(x)$ is the Weyl–Nagy (r, β) -derivative [5]. Furthermore, if $\beta = r$, $r \in N$, then f^{ψ}_{β} is the *r*-th-order derivative of the function f, and the classes $C_{\beta,\infty}^{\psi}$ are the well-known Sobolev classes W_{∞}^{r} .

Following Stepanets (see, e.g., [4, p. 155]), we denote by \mathfrak{M} the set of all convex-downward sequences $\psi(k)$ for which

$$\lim_{k \to \infty} \psi(k) = 0$$

If a sequence $\psi(k)$ satisfies the conditions $\psi \in \mathfrak{M}$ and

$$\sum_{k=1}^{\infty} \frac{\psi(k)}{k} < \infty$$

then, by virtue of Theorem 1.7.3 in [3, p. 28], series (1) is the Fourier series of the function $\Psi_{\beta}(t)$.

Without loss of generality, we can assume that the sequences $\psi(k)$ from the set \mathfrak{M} are restrictions of certain positive, continuous, convex-downward functions $\psi(t)$ of a continuous argument $t \ge 1$ that vanish at infinity to the set of natural numbers. The set of these functions is also denoted by \mathfrak{M} . Thus, in what follows,

$$\mathfrak{M} = \bigg\{ \psi(t): \ \psi(t) > 0, \ \psi(t_1) - 2\psi\left((t_1 + t_2)/2\right) + \psi(t_2) \ge 0 \ \forall t_1, \ t_2 \in [1, \infty), \ \lim_{t \to \infty} \psi(t) = 0 \bigg\}.$$

Let \mathfrak{M}' denote the set of functions $\psi \in \mathfrak{M}$ for which

$$\int_{1}^{\infty} \frac{\psi(t)}{t} dt < \infty.$$

In the set \mathfrak{M} , we select a subset \mathfrak{M}_0 as follows (see, e.g., [4, p. 160]):

$$\mathfrak{M}_0 = \left\{ \psi \in \mathfrak{M} \colon 0 < \frac{t}{\eta(t) - t} \le K \ \forall t \ge 1 \right\},$$

where

$$\eta(t) = \eta(\psi, t) = \psi^{-1}\left(\frac{1}{2}\psi(t)\right),\,$$

 ψ^{-1} is the function inverse to ψ , and K is a constant that may depend on ψ .

Let $f \in L_1$. The quantity

$$P_{\delta}(f;x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} e^{-k/\delta} \left(a_k \cos kx + b_k \sin kx \right), \quad \delta > 0,$$

where a_0 , a_k , and b_k are the Fourier coefficients of the function f, is called the Poisson integral (see, e.g., [6, p. 161]).

In the present paper, we study the asymptotic behavior of the quantity

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \sup_{f \in C_{\beta,\infty}^{\psi}} \left\| f(\cdot) - P_{\delta}(f; \cdot) \right\|_{C}$$
(2)

as $\delta \to \infty$.

If we determine the explicit form of a function $\varphi(\delta) = \varphi(\mathfrak{N}; \delta)$ such that

$$\mathcal{E}(\mathfrak{N}; P_{\delta})_X = \varphi(\delta) + o(\varphi(\delta)) \quad \text{as} \quad \delta \to \infty,$$

then, following Stepanets [4, p. 198], we say that the Kolmogorov–Nikol'skii problem for the Poisson integral $P_{\delta}(f; x)$ is solved on the class \mathfrak{N} in the metric of the space X.

Note that the Kolmogorov–Nikol'skii problem for the functions $P_{\delta}(f; x)$ on the Sobolev classes W_{∞}^1 was solved by Natanson in [7]. In [8], Timan determined the exact values of the upper bounds of deviations of Poisson integrals from functions of the class W_{∞}^r , r > 0. A solution of the Kolmogorov–Nikol'skii problem on the class $W_{\beta,\infty}^r$, r > 0, $\beta \in R$, was obtained by Bausov in [9]. In particular, he obtained the following asymptotic equality for the class $W_{\beta,\infty}^1$:

$$\mathcal{E}\left(W^{1}_{\beta,\infty};P_{\delta}\right)_{C} = \frac{2}{\pi} \left|\sin\frac{\beta\pi}{2}\right| \frac{\ln\delta}{\delta} + O\left(\frac{1}{\delta}\right), \quad \delta \to \infty.$$
(3)

Approximation properties of the method of approximation by Poisson integrals on other classes of differentiable functions were studied in [10, 11].

2. Some Estimates for Fourier Integrals

To investigate the asymptotic behavior of (2) as $\delta \to \infty$, it is necessary to establish conditions under which the Fourier transform

- -

$$\hat{\tau}(t) = \hat{\tau}_{\delta}(t) = \frac{1}{\pi} \int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du$$
(4)

of the function $\tau(\cdot)$ defined by the relation

$$\tau(u) = \tau_{\delta}(u; \psi) = \begin{cases} (1 - e^{-u}) \frac{\psi(1)}{\psi(\delta)}, & 0 \le u \le \frac{1}{\delta}, \\ (1 - e^{-u}) \frac{\psi(\delta u)}{\psi(\delta)}, & u \ge \frac{1}{\delta}, \end{cases}$$
(5)

is summable on the entire number axis.

To analyze this problem, we need the statements presented below.

Definition 1 [9, p. 18]. Suppose that a function $\tau(u)$ is defined on $[0, \infty)$ and absolutely continuous and $\tau(\infty) = 0$. One says that the function $\tau(u)$ belongs to \mathcal{E}_1 if the definition of the derivative $\tau'(u)$ can be extended to the points where it does not exist so that the following integrals exist:

$$\int_{0}^{1/2} u |d\tau'(u)| \quad and \quad \int_{1/2}^{\infty} |u-1| |d\tau'(u)|.$$

Proposition 1 [9, p. 19]. *If* $\tau(u) \in \mathcal{E}_1$, *then*

$$|\tau(u)| \le H(\tau),\tag{6}$$

where

$$H(\tau) = |\tau(0)| + |\tau(1)| + \int_{0}^{1/2} u \left| d\tau'(u) \right| + \int_{1/2}^{\infty} |u - 1| \left| d\tau'(u) \right|.$$
(7)

Proposition 2 [4, p. 161]. A function $\psi \in \mathfrak{M}$ belongs to \mathfrak{M}_0 if and only if the value

$$\alpha(t) = \frac{\psi(t)}{t |\psi'(t)|}, \qquad \psi'(t) = \psi'(t+0), \tag{8}$$

satisfies the condition $\alpha(t) \ge K > 0 \quad \forall t \ge 1$.

Proposition 3 [4, p. 175]. A function $\psi \in \mathfrak{M}$ belongs to \mathfrak{M}_0 if and only if, for an arbitrary fixed number c > 1, there exists a constant K such that the following inequality holds for all $t \ge 1$:

$$\frac{\psi(t)}{\psi(ct)} \le K.$$

In what follows, K and K_i denote constants that are, generally speaking, different. We set $\mathfrak{M}'_0 = \mathfrak{M}_0 \cap \mathfrak{M}'$. The following statement is true: **Lemma 1.** Suppose that $\psi \in \mathfrak{M}'_0$ and the function $g(u) = u\psi(u)$ is convex upward or downward on $[b, \infty)$, $b \ge 1$. Then, for the function $\tau(\cdot)$ defined by (5), its Fourier transform of the form (4) is summable on the entire number axis, i.e., the integral

$$A(\tau) = \int_{-\infty}^{\infty} \left| \hat{\tau}_{\delta}(t) \right| dt, \quad \delta \to \infty,$$
(9)

is convergent.

Proof. To verify the convergence of integral (9), according to Theorem 1 in [9] we estimate the integrals

$$\int_{0}^{1/2} u \left| d\tau'(u) \right|, \qquad \int_{1/2}^{\infty} |u - 1| \left| d\tau'(u) \right|, \tag{10}$$

$$\left|\sin\frac{\beta\pi}{2}\right| \int_{0}^{\infty} \frac{|\tau(u)|}{u} du, \qquad \int_{0}^{1} \frac{|\tau(1-u) - \tau(1+u)|}{u} du.$$
(11)

To estimate the first integral in (10), we divide the segment [0; 1/2] into two parts: $[0; 1/\delta]$ and $[1/\delta; 1/2]$ (for $\delta > 2b$). Since $\tau''(u) < 0$ on $[0, 1/\delta]$, taking into account that

$$1 - e^{-u} < u, \quad u \ge 0, \tag{12}$$

we obtain

$$\int_{0}^{1/\delta} u \left| d\tau'(u) \right| = \frac{\psi(1)}{\psi(\delta)} \left(1 - \frac{1}{\delta} e^{-1/\delta} - e^{-1/\delta} \right) = O\left(\frac{1}{\delta^2 \psi(\delta)}\right), \quad \delta \to \infty.$$
(13)

Now let $u \in [1/\delta; 1/2]$. We set $\tau(u) = \tau_1(u) + \tau_2(u)$, where

$$\tau_1(u) = \left(1 - e^{-u} - u\right) \frac{\psi(\delta u)}{\psi(\delta)},\tag{14}$$

$$\tau_2(u) = u \frac{\psi(\delta u)}{\psi(\delta)}.$$
(15)

Then

$$\int_{1/\delta}^{1/2} u|d\tau'(u)| \le \int_{1/\delta}^{1/2} u|d\tau'_1(u)| + \int_{1/\delta}^{1/2} u|d\tau'_2(u)|, \quad \delta > 2.$$
(16)

Let us estimate the first integral on the right-hand side of (16). To this end, first, we investigate the function

$$\overline{\mu}(u) = 1 - e^{-u} - u. \tag{17}$$

It follows from the relations $\overline{\mu}'(u) = e^{-u} - 1$, $\overline{\mu}''(u) = -e^{-u}$, $\overline{\mu}(0) = 0$, and $\overline{\mu}'(0) = 0$ that, for $u \ge 0$, we have

$$\overline{\mu}(u) \le 0, \qquad \overline{\mu}'(u) \le 0, \qquad \overline{\mu}''(u) < 0.$$
 (18)

Taking into account relations (18) and (12) and the fact that

$$e^{-u} \le 1-u+\frac{u^2}{2}, \quad u \ge 0,$$

we obtain

$$\left|\overline{\mu}(u)\right| = u - 1 + e^{-u} \le \frac{u^2}{2}, \qquad \left|\overline{\mu}'(u)\right| = 1 - e^{-u} \le u, \qquad \left|\overline{\mu}''(u)\right| = e^{-u} \le 1.$$
 (19)

Since, for $u \ge 1/\delta$, according to (14) and (17), one has

$$\left| d\tau_1'(u) \right| \le \left(\left| \overline{\mu}(u) \right| \frac{\delta^2 \psi''(\delta u)}{\psi(\delta)} + 2 \left| \overline{\mu}'(u) \right| \frac{\delta |\psi'(\delta u)|}{\psi(\delta)} + \left| \overline{\mu}''(u) \right| \frac{\psi(\delta u)}{\psi(\delta)} \right) du, \tag{20}$$

taking (19) into account we get

$$\int_{1/\delta}^{1/2} u |d\tau_1'(u)| \le \frac{1}{\psi(\delta)} \int_{1/\delta}^{1/2} \frac{u^3}{2} \delta^2 \psi''(\delta u) du + \frac{2}{\psi(\delta)} \int_{1/\delta}^{1/2} u^2 \delta \left| \psi'(\delta u) \right| du + \frac{1}{\psi(\delta)} \int_{1/\delta}^{1/2} u \psi(\delta u) du.$$

Integrating the first integral on the right-hand side of the last inequality by parts, we obtain

$$\int_{1/\delta}^{1/2} u |d\tau_1'(u)| \le \frac{1}{\psi(\delta)} \left. \frac{u^3}{2} \delta \psi'(\delta u) \right|_{1/\delta}^{1/2} + \frac{7}{2\psi(\delta)} \int_{1/\delta}^{1/2} u^2 \delta \left| \psi'(\delta u) \right| du + \frac{1}{\psi(\delta)} \int_{1/\delta}^{1/2} u \psi(\delta u) du.$$
(21)

Using the conditions of Proposition 2, for $\psi \in \mathfrak{M}_0$ we obtain

$$\frac{1}{\psi(\delta)}\int_{1/\delta}^{1/2} u^2 \delta \left| \psi'(\delta u) \right| du \leq \frac{K}{\psi(\delta)} \int_{1/\delta}^{1/2} u \psi(\delta u) du.$$

By virtue of Proposition 3, relation (21) yields

$$\int_{1/\delta}^{1/2} u \left| d\tau_1'(u) \right| \le K_1 + \frac{K_2}{\delta^2 \psi(\delta)} + \frac{K_3}{\psi(\delta)} \int_{1/\delta}^{1/2} u \psi(\delta u) du.$$
(22)

We consider the integral on the right-hand side of inequality (22) on the segments $[1/\delta, b/\delta]$ and $[b/\delta, 1/2]$, $\delta > 2b$. Since the function $g(u) = u\psi(u)$ is bounded on [1, b], we have

$$\frac{1}{\psi(\delta)} \int_{1/\delta}^{b/\delta} u\psi(\delta u) du = \frac{1}{\delta^2 \psi(\delta)} \int_1^b g(u) du \le \frac{K}{\delta^2 \psi(\delta)}.$$
(23)

Further, since the function g(u) is convex upward or downward for $u \ge b$ and $g(u) \ne 0$, the following two cases are possible for $u \in [b, \delta]$: either $u\psi(u) \le b\psi(b)$ or $u\psi(u) \le \delta\psi(\delta)$. Thus,

$$\frac{1}{\psi(\delta)} \int_{b/\delta}^{1/2} u\psi(\delta u) du = \frac{1}{\delta^2 \psi(\delta)} \int_b^{\delta/2} g(u) du \le \frac{1}{\delta^2 \psi(\delta)} \int_b^{\delta} g(u) du = O\left(1 + \frac{1}{\delta \psi(\delta)}\right) \quad \text{as} \quad \delta \to \infty.$$
(24)

With regard for (23) and (24), we obtain the following relation from (22):

$$\int_{1/\delta}^{1/2} u|d\tau_1'(u)| = O\left(1 + \frac{1}{\delta\psi(\delta)}\right), \quad \delta \to \infty.$$
(25)

Let us estimate the second integral on the right-hand side of (16) on the segment $[1/\delta, b/\delta]$, $\delta > 2b$. It follows from (15) that

$$\tau_2''(u) = 2\delta \frac{\psi'(\delta u)}{\psi(\delta)} + \delta^2 \frac{u\psi''(\delta u)}{\psi(\delta)}.$$
(26)

Using relation (26) and taking into account that the function $\psi(u)$ is decreasing and convex downward for $u \ge 1$, we obtain

$$\int_{1/\delta}^{b/\delta} u \left| d\tau_2'(u) \right| \le \frac{\delta^2}{\psi(\delta)} \int_{1/\delta}^{b/\delta} u^2 \psi''(\delta u) du + \frac{2\delta}{\psi(\delta)} \int_{1/\delta}^{b/\delta} u \left| \psi'(\delta u) \right| du.$$

Since $\psi(\delta u) \leq \psi(1)$ for $u \in [1/\delta, b/\delta]$, $\delta > 2b$, by virtue of Proposition 2 we obtain the following relation for a function $\psi \in \mathfrak{M}_0$:

$$\frac{\delta}{\psi(\delta)}\int_{1/\delta}^{b/\delta} u \left| \psi'(\delta u) \right| du \leq \frac{K}{\psi(\delta)}\int_{1/\delta}^{b/\delta} \psi(\delta u) du \leq \frac{K\psi(1)(b-1)}{\delta\psi(\delta)}.$$

Integrating by parts, we get

$$\frac{\delta^2}{\psi(\delta)} \int_{1/\delta}^{b/\delta} u^2 \psi''(\delta u) du \le \frac{K_1}{\delta \psi(\delta)}.$$

Therefore,

$$\int_{1/\delta}^{b/\delta} u|d\tau_2'(u)| \le \frac{K_2}{\delta\psi(\delta)}.$$
(27)

Let us estimate the second integral on the right-hand side of (16) on the segment $[b/\delta, 1/2]$, $\delta > 2b$. Since the function $g(u) = u\psi(u)$ is convex on $[b; \infty)$, we have

$$\int_{b/\delta}^{1/2} u \left| d \tau_2'(u) \right| = \left| \int_{b/\delta}^{1/2} u d \tau_2'(u) \right| = \left| \left(u \tau_2'(u) - \tau_2(u) \right) \right|_{b/\delta}^{1/2} \right| = O\left(1 + \frac{1}{\delta \psi(\delta)} \right).$$
(28)

Using relations (13), (16), (25), (27), and (28), we obtain

$$\int_{0}^{1/2} u|d\tau'(u)| = O\left(1 + \frac{1}{\delta\psi(\delta)}\right), \quad \delta \to \infty.$$
(29)

We estimate the second integral in (10). For $u \in [1/\delta; \infty)$, according to (5), we have

$$\psi(\delta)d\tau'(u) = \left\{ (1 - e^{-u})\delta^2\psi''(\delta u) + 2\delta e^{-u}\psi'(\delta u) - e^{-u}\psi(\delta u) \right\} du.$$
(30)

Using relation (30) and properties of the function $\psi \in \mathfrak{M}$, we get

$$\int_{1/2}^{\infty} |u-1| \left| d\tau'(u) \right| \leq \int_{1/2}^{\infty} u \left| d\tau'(u) \right|$$

$$\leq \frac{1}{\psi(\delta)} \int_{1/2}^{\infty} u \left(1 - e^{-u} \right) \delta^2 \psi''(\delta u) du + \frac{2\delta}{\psi(\delta)} \int_{1/2}^{\infty} u e^{-u} \left| \psi'(\delta u) \right| du$$

$$+ \frac{1}{\psi(\delta)} \int_{1/2}^{\infty} u e^{-u} \psi(\delta u) du. \tag{31}$$

Since $1 - e^{-u} \le 1$ for $u \ge 0$, $ue^{-u} \le K$, and $\psi(\delta u) \le \psi(\delta/2)$ for $u \in [1/2; \infty)$, $\delta \ge 2$, relation (31) yields

$$\int_{1/2}^{\infty} |u-1| \left| d\tau'(u) \right| \le \frac{\delta^2}{\psi(\delta)} \int_{1/2}^{\infty} u\psi''(\delta u) du + \frac{2K\delta}{\psi(\delta)} \int_{1/2}^{\infty} \left| \psi'(\delta u) \right| du + \frac{\psi\left(\frac{\delta}{2}\right)}{\psi(\delta)} \int_{1/2}^{\infty} ue^{-u} du.$$
(32)

By virtue of Proposition 3, we obtain the following relation for the continuous function $\psi(\delta u) \in \mathfrak{M}_0$, $u \ge 1/2$, $\delta \ge 2$:

$$\frac{\delta}{\psi(\delta)} \int_{1/2}^{\infty} \left| \psi'(\delta u) \right| du = -\frac{1}{\psi(\delta)} \int_{1/2}^{\infty} d\psi(\delta u) \le K.$$
(33)

Further, we show that, for any function $\psi \in \mathfrak{M}$, one has

$$\lim_{u \to \infty} u\psi'(u) = 0. \tag{34}$$

Indeed, since the function $|\psi'(u)|$ is decreasing for $u \ge 1$, we get

$$\frac{1}{2}\lim_{u\to\infty}u|\psi'(u)| = \lim_{\delta\to\infty}\frac{\delta}{2}|\psi'(\delta)| = \lim_{\delta\to\infty}\left(\delta - \frac{\delta}{2}\right)|\psi'(\delta)|$$
$$\leq \lim_{\delta\to\infty}\int_{\delta/2}^{\delta}|\psi'(u)|du \leq -\lim_{\delta\to\infty}\int_{\delta/2}^{\infty}\psi'(u)du = \lim_{\delta\to\infty}\psi\left(\frac{\delta}{2}\right) = 0.$$

Let us estimate the first integral on the right-hand side of (32). Taking into account relations (33) and (34) and Propositions 2 and 3, we obtain

$$\frac{\delta^2}{\psi(\delta)} \int_{1/2}^{\infty} u\psi''(\delta u) du = \frac{\delta}{\psi(\delta)} \int_{1/2}^{\infty} u d\psi'(\delta u)$$
$$= \frac{\delta}{\psi(\delta)} \lim_{u \to \infty} u\psi'(\delta u) + \frac{\frac{\delta}{2} \left| \psi'\left(\frac{\delta}{2}\right) \right|}{\psi(\delta)} + \frac{\delta}{\psi(\delta)} \int_{1/2}^{\infty} \left| \psi'(\delta u) \right| du \le K_1.$$
(35)

Combining relations (32), (33), and (35), we get

$$\int_{1/2}^{\infty} |u - 1| \left| d \tau'(u) \right| = O(1).$$
(36)

To estimate the first integral in (11), we divide the segment $[0; \infty)$ into three parts: $[0; 1/\delta]$, $[1/\delta; 1]$, and $[1, \infty)$. Using relations (5) and (12), we obtain

$$\int_{0}^{1/\delta} \frac{\tau(u)}{u} du = \frac{\psi(1)}{\psi(\delta)} \int_{0}^{1/\delta} (1 - e^{-u}) \frac{du}{u} \le \frac{\psi(1)}{\psi(\delta)} \int_{0}^{1/\delta} u \frac{du}{u} = \frac{\psi(1)}{\delta\psi(\delta)}.$$
(37)

Using relations (5), (17), and (19) and estimates (23) and (24), we get

$$\begin{aligned} \left| \int_{1/\delta}^{1} \frac{\tau(u)}{u} du - \frac{1}{\psi(\delta)} \int_{1/\delta}^{1} \psi(\delta u) du \right| &\leq \frac{1}{\psi(\delta)} \int_{1/\delta}^{1} \frac{\left| \overline{\mu}(u) \right|}{u} \psi(\delta u) du \\ &\leq \frac{1}{2\psi(\delta)} \left(\int_{1/\delta}^{b/\delta} + \int_{b/\delta}^{1} \right) u \psi(\delta u) du = O\left(1 + \frac{1}{\delta\psi(\delta)} \right). \end{aligned}$$

Hence,

$$\int_{1/\delta}^{1} \frac{\tau(u)}{u} du = \frac{1}{\delta\psi(\delta)} \int_{1}^{\delta} \psi(u) du + O\left(1 + \frac{1}{\delta\psi(\delta)}\right), \quad \delta \to \infty.$$
(38)

Taking into account that the function $\psi(u)$ decreases for $u \ge 1$, we obtain

$$\left|\int_{1}^{\infty} \frac{\tau(u)}{u} du - \frac{1}{\psi(\delta)} \int_{\delta}^{\infty} \frac{\psi(u)}{u} du\right| = \frac{1}{\psi(\delta)} \int_{1}^{\infty} \frac{e^{-u}}{u} \psi(\delta u) du \le \int_{1}^{\infty} \frac{e^{-u}}{u} du \le K.$$
(39)

It follows from relations (37)–(39) that

$$\int_{0}^{\infty} \frac{|\tau(u)|}{u} du = \frac{1}{\delta\psi(\delta)} \int_{1}^{\delta} \psi(u) du + \frac{1}{\psi(\delta)} \int_{\delta}^{\infty} \frac{\psi(u)}{u} du + O\left(1 + \frac{1}{\delta\psi(\delta)}\right).$$
(40)

Let us estimate the second integral in (11). Using relation (5), we get

$$\tau(1-u) = \begin{cases} \left(1-e^{-(1-u)}\right)\frac{\psi(1)}{\psi(\delta)}, & 1-\frac{1}{\delta} \le u \le 1, \\ \left(1-e^{-(1-u)}\right)\frac{\psi(\delta(1-u))}{\psi(\delta)}, & u \le 1-\frac{1}{\delta}, \end{cases}$$
(41)

$$\tau(1+u) = \begin{cases} \left(1 - e^{-(1+u)}\right) \frac{\psi(1)}{\psi(\delta)}, & -1 \le u \le \frac{1}{\delta} - 1, \\ \left(1 - e^{-(1+u)}\right) \frac{\psi(\delta(1+u))}{\psi(\delta)}, & u \ge \frac{1}{\delta} - 1. \end{cases}$$
(42)

We represent the second integral in (11) as a sum of two integrals:

$$\int_{0}^{1} \frac{|\tau(1-u) - \tau(1+u)|}{u} du = \int_{0}^{1-1/\delta} \frac{|\tau(1-u) - \tau(1+u)|}{u} du + \int_{1-1/\delta}^{1} \frac{|\tau(1-u) - \tau(1+u)|}{u} du.$$
(43)

First, we estimate the first term on the right-hand side of (43). To this end, we add and subtract the term

$$e^{-(1-u)} - e^{-(1+u)}$$

under the modulus sign in the integrand. As a result, we get

$$\int_{0}^{1-1/\delta} \frac{|\tau(1-u)-\tau(1+u)|}{u} du$$

$$\leq \int_{0}^{1-1/\delta} \frac{\left|e^{-(1-u)}-e^{-(1+u)}\right|}{u} du + \int_{0}^{1-1/\delta} \frac{\left|\tau(1-u)-\tau(1+u)+e^{-(1-u)}-e^{-(1+u)}\right|}{u} du. \quad (44)$$

For the first integral on the right-hand side of (44), we obtain the obvious estimate

$$\int_{0}^{1-1/\delta} \left| e^{-1+u} - e^{-1-u} \right| \frac{du}{u} = O(1).$$
(45)

By virtue of (41) and (42), we obtain the following relations for $u \in [0, 1 - 1/\delta]$:

$$e^{-(1-u)} = 1 - \frac{\psi(\delta)}{\psi(\delta(1-u))}\tau(1-u), \qquad e^{-(1+u)} = 1 - \frac{\psi(\delta)}{\psi(\delta(1+u))}\tau(1+u).$$

Then

$$\int_{0}^{1-1/\delta} \frac{\left|\tau(1-u) - \tau(1+u) + e^{-(1-u)} - e^{-(1+u)}\right|}{u} du$$

$$\leq \int_{0}^{1-1/\delta} \left|\tau(1-u)\right| \left|1 - \frac{\psi(\delta)}{\psi(\delta(1-u))}\right| \frac{du}{u} + \int_{0}^{1-1/\delta} \left|\tau(1+u)\right| \left|1 - \frac{\psi(\delta)}{\psi(\delta(1+u))}\right| \frac{du}{u}.$$
(46)

Since a function $\tau(\cdot)$ of the form (5) belongs to the set \mathcal{E}_1 , Proposition 1 is true. According to this proposition,

$$\int_{0}^{1-1/\delta} |\tau(1-u)| \left| 1 - \frac{\psi(\delta)}{\psi(\delta(1-u))} \right| \frac{du}{u} + \int_{0}^{1-1/\delta} |\tau(1+u)| \left| 1 - \frac{\psi(\delta)}{\psi(\delta(1+u))} \right| \frac{du}{u}$$
$$= H(\tau) O\left(\int_{0}^{1-1/\delta} \frac{|\psi(\delta(1-u)) - \psi(\delta)|}{u\psi(\delta(1-u))} du + \int_{0}^{1-1/\delta} \frac{|\psi(\delta(1+u)) - \psi(\delta)|}{u\psi(\delta(1+u))} du \right).$$
(47)

We show that, as $\delta \to \infty$,

$$I_{1,\delta} := \int_{0}^{1-1/\delta} \frac{|\psi(\delta(1-u)) - \psi(\delta)|}{u\psi(\delta(1-u))} du = O(1),$$
(48)

$$I_{2,\delta} := \int_{0}^{1-1/\delta} \frac{|\psi(\delta(1+u)) - \psi(\delta)|}{u\psi(\delta(1+u))} du = O(1),$$
(49)

where O(1) is a quantity uniformly bounded in δ .

Indeed, the function

$$\frac{1-\psi(\delta)/\psi(\delta(1-u))}{u}$$

is bounded for all $u \in [\delta, 1 - 1/\delta]$, $0 < \delta < 1 - 1/\delta$, and, moreover, with regard for Propositions 2, for $\psi \in \mathfrak{M}_0$ we have

$$\lim_{u \to 0} \frac{1 - \psi(\delta)/\psi(\delta(1 - u))}{u} = \frac{\delta |\psi'(\delta)|}{\psi(\delta)} \le K.$$

Thus, $I_{1,\delta} = O(1), \ \delta \to \infty$. Passing to the estimation of the integral $I_{2,\delta}$, note that

$$I_{2,\delta} < \frac{1}{\psi(2\delta-1)} \int_{0}^{1-1/\delta} \frac{\psi(\delta) - \psi\left(\delta\left(1+u\right)\right)}{u} du.$$

Performing the change of variables $v = \delta(1 + u)$, we get

$$I_{2,\delta} < \frac{1}{\psi(2\delta-1)} \int_{\delta}^{2\delta-1} \frac{\psi(\delta) - \psi(v)}{v - \delta} dv < \frac{1}{\psi(2\delta-1)} \int_{\delta}^{2\delta} \frac{\psi(\delta) - \psi(v)}{v - \delta} dv.$$

Applying Lemma 5.5 from [3, p.97] to the right-hand side of the last inequality, taking into account that $\psi(2\delta - 1) \ge \psi(2\delta)$, $\delta \ge 1$, and using Proposition 3, we obtain

$$I_{2,\delta} < \frac{K_1\psi(\delta)}{\psi(2\delta-1)} \le \frac{K_1\psi(\delta)}{\psi(2\delta)} \le K_2.$$

Combining relations (46)–(49), we get

$$\int_{0}^{1-1/\delta} \frac{\left|\tau(1-u) - \tau(1+u) + e^{-(1-u)} - e^{-(1+u)}\right|}{u} du = H(\tau)O(1), \quad \delta \to \infty.$$

APPROXIMATION OF (ψ, β) -Differentiable Functions by Poisson Integrals in the Uniform Metric

According to (5), (29), and (36), quantities $H(\tau)$ of the form (7) satisfy the estimate

$$H(\tau) = O\left(1 + \frac{1}{\delta\psi(\delta)}\right), \quad \delta \to \infty.$$
(50)

Thus,

$$\int_{0}^{1-1/\delta} \frac{\left|\tau(1-u) - \tau(1+u) + e^{-(1-u)} - e^{-(1+u)}\right|}{u} du = O\left(1 + \frac{1}{\delta\psi(\delta)}\right) \quad \text{as} \quad \delta \to \infty.$$
(51)

Comparing (44), (45), and (51), we obtain

$$\int_{0}^{1-1/\delta} \frac{|\tau(1-u) - \tau(1+u)|}{u} du = O\left(1 + \frac{1}{\delta\psi(\delta)}\right).$$
(52)

Let us estimate the second term on the right-hand side of (43). We have

$$\int_{1-1/\delta}^{1} \frac{|\tau(1-u)-\tau(1+u)|}{u} du$$
$$= \int_{1-1/\delta}^{1} \frac{\left|e^{-(1-u)}-e^{-(1+u)}\right|}{u} du + O\left(\int_{1-1/\delta}^{1} \frac{\left|\tau(1-u)-\tau(1+u)+e^{-(1-u)}-e^{-(1+u)}\right|}{u} du\right).$$
(53)

Using relations (41) and (42), we obtain the following equalities for $u \in [1 - 1/\delta; 1]$:

$$e^{-(1-u)} = 1 - \frac{\psi(\delta)}{\psi(1)}\tau(1-u), \qquad e^{-(1+u)} = 1 - \frac{\psi(\delta)}{\psi(\delta(1+u))}\tau(1+u).$$

Using these equalities and Proposition 1, we get

$$\int_{1-1/\delta}^{1} \frac{\left|\tau(1-u) - \tau(1+u) + e^{-(1-u)} - e^{-(1+u)}\right|}{u} du$$

$$= \int_{1-1/\delta}^{1} \left|\tau(1-u)\left(1 - \frac{\psi(\delta)}{\psi(1)}\right) - \tau(1+u)\left(1 - \frac{\psi(\delta)}{\psi(\delta(1+u))}\right)\right| \frac{du}{u}$$

$$= H(\tau)O\left(\int_{1-1/\delta}^{1} \frac{|\psi(1) - \psi(\delta)|}{u\psi(1)} du + \int_{1-1/\delta}^{1} \frac{|\psi(\delta(1+u)) - \psi(\delta)|}{u\psi(\delta(1+u))} du\right).$$
(54)

Further, we obtain

$$\int_{1-1/\delta}^{1} \frac{|\psi(1) - \psi(\delta)|}{u\psi(1)} du = \left(1 - \frac{\psi(\delta)}{\psi(1)}\right) \ln \frac{1}{1 - 1/\delta} = O(1).$$
(55)

Repeating the arguments used in the derivation of estimate (49), we show that

$$\int_{1-1/\delta}^{1} \frac{|\psi(\delta(1+u)) - \psi(\delta)|}{u\psi(\delta(1+u))} du = O(1) \quad \text{as} \quad \delta \to \infty.$$
(56)

Combining (53)–(56) and using relation (50) and the fact that

$$\int_{1-1/\delta}^{1} \frac{\left|e^{-(1-u)} - e^{-(1+u)}\right|}{u} du = O(1),$$

we obtain

$$\int_{1-1/\delta}^{1} \frac{\left|\tau(1-u) - \tau(1+u)\right|}{u} du = O\left(1 + \frac{1}{\delta\psi(\delta)}\right), \quad \delta \to \infty.$$
(57)

Using equality (43) and estimates (52) and (57), we get

$$\int_{0}^{1} |\tau(1-u) - \tau(1+u)| \frac{du}{u} = O\left(1 + \frac{1}{\delta\psi(\delta)}\right), \quad \delta \to \infty.$$
(58)

Thus, by virtue of Theorem 1 in [9], an integral $A(\tau)$ of the form (9) is convergent. Lemma 1 is proved.

3. Asymptotic Equalities for Upper Bounds of Deviations of Poisson Integrals from Functions of the Classes $C_{\beta,\infty}^{\psi}$ in the Uniform Metric

The following statement is true:

Theorem 1. Let $\psi \in \mathfrak{M}'_0$ and let the function $g(u) = u\psi(u)$ be convex upward or downward on $[b, \infty)$, $b \ge 1$. Then the following equality holds as $\delta \to \infty$:

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \psi(\delta)A(\tau, \delta) + O\left(\frac{1}{\delta}\right),\tag{59}$$

where $A(\tau)$ is defined by (9) and satisfies the estimate

$$A(\tau,\delta) = \frac{2}{\pi} \left| \sin \frac{\beta \pi}{2} \right| \left(\frac{1}{\delta \psi(\delta)} \int_{1}^{\delta} \psi(u) du + \frac{1}{\psi(\delta)} \int_{\delta}^{\infty} \frac{\psi(u)}{u} du \right) + O\left(1 + \frac{1}{\delta \psi(\delta)} \right).$$
(60)

Proof. It is shown in Lemma 1 that the Fourier transform of the function $\tau(u)$ defined by (5) is summable on the entire number axis, i.e., an integral $A(\tau)$ of the form (9) is convergent. Repeating the arguments used in [4, p. 183], we establish that the following equality holds for any function $f \in C^{\psi}_{\beta,\infty}$ at every point $x \in R$:

$$f(x) - P_{\delta}(f;x) = \psi(\delta) \int_{-\infty}^{+\infty} f_{\beta}^{\psi}\left(x + \frac{t}{\delta}\right) \hat{\tau}_{\delta}(t) dt, \quad \delta > 0.$$
(61)

Using (2) and (61) and taking into account that the classes $C^{\psi}_{\beta,\infty}$ are invariant under translation of the argument (see [3, p. 109]), we obtain

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \sup_{f \in C_{\beta,\infty}^{\psi}} \left| \psi(\delta) \int_{-\infty}^{+\infty} f_{\beta}^{\psi}\left(\frac{t}{\delta}\right) \hat{\tau}(t) dt \right|.$$

Hence,

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} \leq \frac{\psi(\delta)}{\pi} \int_{-\infty}^{+\infty} \left| \int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du \right| dt.$$
(62)

On the other hand, for any function $\varphi_0 \in L_1$ such that

$$\int_{-\pi}^{\pi} \varphi_0(t) dt = 0 \quad \text{and} \quad \operatorname{ess\,sup}_t |\varphi_0(t)| \le 1,$$

the class $C_{\beta,\infty}^{\psi}$ contains a function $f(x) = f(\varphi_0; x)$ for which $f_{\beta}^{\psi}(x) = \varphi_0(x)$. Therefore, the class $C_{\beta,\infty}^{\psi}$ contains a function $\hat{f}(t)$ such that

$$\hat{f}_{\beta}^{\Psi}(t) = \operatorname{sign} \int_{0}^{\infty} \tau(u) \cos\left(u\delta t + \frac{\beta\pi}{2}\right) du, \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$
(63)

Further, since

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} \geq \frac{\psi(\delta)}{\pi} \left| \int_{-\infty}^{+\infty} \hat{f}_{\beta}^{\psi}\left(\frac{t}{\delta}\right) \int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du dt \right|, \tag{64}$$

using (63) we obtain

$$\frac{\psi(\delta)}{\pi} \left| \int_{-\infty}^{+\infty} \hat{f}_{\beta}^{\psi} \left(\frac{t}{\delta} \right) \int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2} \right) du dt \right|$$

$$\geq \delta \psi(\delta) \left| \int_{-\pi/2}^{\pi/2} \operatorname{sign} \hat{\tau}(t\delta) \hat{\tau}(t\delta) dt \right| - \psi(\delta) \int_{|t| \ge (\delta\pi/2)} |\hat{\tau}_{\delta}(t)| dt$$

$$= \psi(\delta) \int_{-\infty}^{+\infty} |\hat{\tau}_{\delta}(t)| dt + \gamma(\delta), \tag{65}$$

where $\gamma(\delta) \leq 0$ and

 $|\gamma(\delta)| = O\left(\psi(\delta) \int_{|t| \ge (\delta\pi/2)} |\hat{\tau}_{\delta}(t)| dt\right).$

Combining relations (62), (64), and (65), we get

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \psi(\delta)A(\tau) + O\left(\psi(\delta) \int_{|t| \ge (\delta\pi/2)} |\hat{\tau}_{\delta}(t)| \, dt\right) \quad \text{as} \quad \delta \to \infty.$$
(66)

Moreover, using inequalities (2.14) and (2.15) of [9, p. 25] and relations (29), (36), (40), and (58) of the present paper, we obtain equality (60).

Let us estimate the remainder on the right-hand side of (66). To this end, we rewrite the transform $\hat{\tau}_{\delta}(t)$ defined by (4) as follows:

$$\hat{\tau}(t) = \frac{1}{\pi} \left(\int_{0}^{1/\delta} + \int_{1/\delta}^{\infty} \right) \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du.$$
(67)

Integrating both integrals in (67) twice by parts and taking into account that $\tau(0) = 0$ and

$$\lim_{u \to \infty} \tau(u) = \lim_{u \to \infty} \tau'(u) = 0,$$

we obtain

$$\int_{0}^{1/\delta} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du = \frac{1}{t} \tau\left(\frac{1}{\delta}\right) \sin\left(\frac{t}{\delta} + \frac{\beta\pi}{2}\right) + \frac{1}{t^2} \tau'\left(\frac{1}{\delta}\right) \cos\left(\frac{t}{\delta} + \frac{\beta\pi}{2}\right)$$
$$-\frac{1}{t^2} \tau'(0) \cos\frac{\beta\pi}{2} - \frac{1}{t^2} \int_{0}^{1/\delta} \tau''(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du, \tag{68}$$

Approximation of (ψ, β) -Differentiable Functions by Poisson Integrals in the Uniform Metric

$$\int_{1/\delta}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du = -\frac{1}{t} \tau\left(\frac{1}{\delta}\right) \sin\left(\frac{t}{\delta} + \frac{\beta\pi}{2}\right) - \frac{1}{t^2} \tau'\left(\frac{1}{\delta}\right) \cos\left(\frac{t}{\delta} + \frac{\beta\pi}{2}\right) - \frac{1}{t^2} \int_{1/\delta}^{\infty} \tau''(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du.$$
(69)

Combining relations (68) and (69), we get

$$\int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du$$
$$= -\frac{1}{t^2} \tau'(0) \cos\frac{\beta\pi}{2} - \frac{1}{t^2} \int_{0}^{1/\delta} \tau''(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du - \frac{1}{t^2} \int_{1/\delta}^{\infty} \tau''(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du.$$

Hence,

$$\left|\int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du\right| \le \frac{K_1}{t^2 \psi(\delta)} + \frac{1}{t^2} \left(\int_{0}^{1/\delta} + \int_{1/\delta}^{1} + \int_{1}^{\infty}\right) \left|\tau''(u)\right| du.$$
(70)

Let us estimate the integrals on the right-hand side of (70). Taking into account that $\tau''(u) < 0$ for $u \in [0; 1/\delta]$ and using inequality (12), we get

$$\int_{0}^{1/\delta} |\tau''(u)| du = -\int_{0}^{1/\delta} \tau''(u) du = \frac{\psi(1)}{\psi(\delta)} e^{-u} |_{0}^{1/\delta} = O\left(\frac{1}{\delta\psi(\delta)}\right).$$
(71)

Taking (5), (14), and (15) into account, we estimate the second integral on the right-hand side of (70):

$$\int_{1/\delta}^{1} |\tau''(u)| du \le \int_{1/\delta}^{1} |\tau_1''(u)| du + \int_{1/\delta}^{1} |\tau_2''(u)| du.$$
(72)

With regard for (19) and (20), we get

$$\int_{1/\delta}^{1} |\tau_1''(u)| du \le \frac{1}{\psi(\delta)} \int_{1/\delta}^{1} \frac{u^2}{2} \delta^2 \psi''(\delta u) du + \frac{2}{\psi(\delta)} \int_{1/\delta}^{1} u\delta \left| \psi'(\delta u) \right| du + \frac{1}{\psi(\delta)} \int_{1/\delta}^{1} \psi(\delta u) du.$$
(73)

Integrating the first integral on the right-hand side of the last inequality by parts and taking into account the conditions of Proposition 2, we obtain the following inequality for the function $\psi(u) \in \mathfrak{M}_0$, $u \ge 1$:

$$\frac{\delta^2}{2\psi(\delta)} \int_{1/\delta}^1 u^2 \psi''(\delta u) du \le K + \frac{|\psi'(1)|}{2\delta\psi(\delta)} + \frac{\delta}{\psi(\delta)} \int_{1/\delta}^1 u \left|\psi'(\delta u)\right| du.$$
(74)

Since

$$\int_{1/\delta}^{1} \psi(\delta u) du = \frac{1}{\delta} \int_{1}^{\delta} \psi(u) du \le \psi(1) \left(1 - \frac{1}{\delta}\right),$$

using Proposition 2 we establish that

$$\frac{\delta}{\psi(\delta)} \int_{1/\delta}^{1} u \left| \psi'(\delta u) \right| du \le \frac{K_1}{\psi(\delta)} \int_{1/\delta}^{1} \psi(\delta u) du \le \frac{K_2}{\psi(\delta)}.$$
(75)

Combining relations (73)–(75), we get

$$\int_{1/\delta}^{1} |\tau_1''(u)| du \le K + \frac{K_1}{\delta\psi(\delta)} + \frac{K_2}{\psi(\delta)}.$$
(76)

To estimate the second integral on the right-hand side of inequality (72), we represent it in the form

$$\int_{1/\delta}^{1} |\tau_2''(u)| du = \left(\int_{1/\delta}^{b/\delta} + \int_{b/\delta}^{1}\right) |\tau_2''(u)| du, \quad \delta > b.$$

$$(77)$$

With regard for relation (26), we get

$$\int_{1/\delta}^{b/\delta} |\tau_2''(u)| du \leq \frac{\delta^2}{\psi(\delta)} \int_{1/\delta}^{b/\delta} u\psi''(\delta u) du + \frac{2\delta}{\psi(\delta)} \int_{1/\delta}^{b/\delta} |\psi'(\delta u)| du$$
$$= \frac{b\psi'(b) - \psi'(1)}{\psi(\delta)} - \frac{3\delta}{\psi(\delta)} \int_{1/\delta}^{b/\delta} \psi'(\delta u) du = O\left(\frac{1}{\psi(\delta)}\right).$$
(78)

Since, according to the conditions of the theorem, the function $g(u) = u\psi(u)$ is convex on $[b; \infty)$, using (15) we obtain the following estimate:

$$\int_{b/\delta}^{1} |\tau_2''(u)| du = \left| \int_{b/\delta}^{1} \tau_2''(u) du \right| = O\left(\frac{1}{\psi(\delta)}\right) \quad \text{as} \quad \delta \to \infty.$$
(79)

It follows from (72) and (76)–(79) that

$$\int_{1/\delta}^{1} |\tau''(u)| du = O\left(\frac{1}{\psi(\delta)}\right), \quad \delta \to \infty.$$
(80)

1775

Consider the integral on the right-hand side of (70) on the interval $[1, \infty)$. Using (30), we obtain

$$\int_{1}^{\infty} |\tau''(u)| du \leq \frac{\delta^2}{\psi(\delta)} \int_{1}^{\infty} \left(1 - e^{-u}\right) \psi''(\delta u) du + \frac{2\delta}{\psi(\delta)} \int_{1}^{\infty} e^{-u} \left|\psi'(\delta u)\right| du + \frac{1}{\psi(\delta)} \int_{1}^{\infty} e^{-u} \psi(\delta u) du.$$

Using the inequalities $1 - e^{-u} \le u$ and $e^{-u} \le 1$ for $u \ge 0$ and $\psi(\delta u) \le \psi(\delta)$ for $u \ge 1$, Propositions 2 and 3, and relation (34), we get

$$\int_{1}^{\infty} |\tau''(u)| du = O(1), \quad \delta \to \infty.$$
(81)

Relations (71), (80), and (81) yield

$$\int_{0}^{\infty} |\tau''(u)| du = O\left(\frac{1}{\psi(\delta)}\right).$$

Taking into account the last estimate and inequality (70), we obtain

$$\int_{|t| \ge \delta \pi/2} \left| \int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta \pi}{2}\right) du \right| dt = O\left(\frac{1}{\delta \psi(\delta)}\right), \quad \delta \to \infty.$$
(82)

Equality (59) follows from relations (82) and (66).

Theorem 1 is proved.

Note that, for the classes $C_{\beta,\infty}^{\psi}$ of periodic functions, an analogous theorem was established in [9, p. 31] in the case of

$$\psi(u) = \frac{1}{u^r}, \quad 0 < r < 1, \quad u \ge 1.$$

Corollary 1. Suppose that the conditions of Theorem 1 are satisfied,

$$\sin\frac{\beta\pi}{2}\neq 0,$$

and

$$\lim_{t\to\infty}\alpha(t)=\infty,$$

where $\alpha(t)$ is defined by (8). Then the following asymptotic equality is true:

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \frac{2}{\pi} \left| \sin \frac{\beta \pi}{2} \right| \int_{\delta}^{\infty} \frac{\psi(u)}{u} du + O\left(\psi(\delta)\right) \quad as \quad \delta \to \infty.$$
(83)

Proof. To verify equality (83), we first note that, for $\varepsilon_0 \in (0, 1)$, the function $u^{\varepsilon_0}\psi(u)$ increases beginning with a certain number $u_0 \ge 1$. Indeed,

$$\left(u^{\varepsilon_0}\psi(u)\right)' = \varepsilon_0 u^{\varepsilon_0-1}\psi(u) - u^{\varepsilon_0}|\psi'(u)| = u^{\varepsilon_0}|\psi'(u)|\left(\varepsilon_0\alpha(u) - 1\right).$$

Since

$$\lim_{u\to\infty}\alpha(u)=\infty,$$

there exists $u_0 = u_0(\varepsilon_0)$ such that $(u^{\varepsilon_0}\psi(u))' > 0$ for $u > u_0$. Then the following relation holds for any $\varepsilon \in (\varepsilon_0, 1)$ and sufficiently large δ :

$$\frac{1}{\delta\psi(\delta)}\int_{1}^{\delta}\psi(u)du = \frac{1}{\delta\psi(\delta)}\int_{1}^{\delta}\frac{u^{\varepsilon}\psi(u)}{u^{\varepsilon}}du \le \frac{\delta^{\varepsilon}\psi(\delta)}{\delta\psi(\delta)}\int_{1}^{\delta}\frac{du}{u^{\varepsilon}} = O(1).$$
(84)

Since $\psi \in \mathfrak{M}'_0$, using the l'Hospital rule and the fact that

$$\lim_{u\to\infty}\alpha(u)=\infty$$

we get

$$\lim_{x \to \infty} \frac{\int_x^\infty \frac{\psi(u)}{u} du}{\psi(x)} = \lim_{x \to \infty} \frac{\psi(x)}{x |\psi'(x)|} = \infty.$$
(85)

Thus,

$$\psi(\delta) = o\left(\int_{\delta}^{\infty} \frac{\psi(u)}{u} du\right) \quad \text{as} \quad \delta \to \infty.$$
(86)

Combining (84) and (86) with (59) and (60), we obtain (83).

Examples of functions that satisfy the conditions of Corollary 1 are functions of the form

$$\psi(u) = \frac{1}{\ln^{\alpha}(u+K)},$$

where $\alpha > 1$ and K > 0.

Corollary 2. Suppose that $\psi \in \mathfrak{M}_0$ *,*

$$\sin\frac{\beta\pi}{2}\neq 0$$

the function $u\psi(u)$ is convex upward or downward on $[b,\infty)$, $b \ge 1$, and

$$\lim_{u \to \infty} u\psi(u) = \infty, \tag{87}$$

1777

$$\lim_{\delta \to \infty} \frac{1}{\delta \psi(\delta)} \int_{1}^{\delta} \psi(u) du = \infty.$$
(88)

Then the following asymptotic equality is true:

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \frac{2}{\pi} \left|\sin\frac{\beta\pi}{2}\right| \frac{1}{\delta} \int_{1}^{\delta} \psi(u) du + O\left(\psi(\delta)\right) \quad as \quad \delta \to \infty.$$
(89)

Proof. If the function ψ satisfies conditions (87) and (88), then, using the l'Hospital rule, we obtain

$$\frac{1}{1-\lim_{x\to\infty}\alpha(x)} = \lim_{x\to\infty}\frac{\psi(x)}{\psi(x)+x\psi'(x)} = \lim_{x\to\infty}\frac{\int_1^x\psi(u)du}{x\psi(x)} = \infty.$$

Hence,

$$\lim_{x \to \infty} \alpha(x) = 1. \tag{90}$$

It follows from (85) and (90) that

$$\int_{\delta}^{\infty} \frac{\psi(u)}{u} du = O\left(\psi(\delta)\right).$$

Using the last estimate and relations (59), (60), (87), and (88), we get (89).

Examples of functions that satisfy the conditions of Corollary 2 are functions of the form

$$\psi(u) = \frac{1}{u} \ln^{\alpha}(u+K),$$

where K > 0 and $\alpha > 0$.

Corollary 3. Suppose that $\psi \in \mathfrak{M}_0$,

$$\sin\frac{\beta\pi}{2}\neq 0,$$

the function $u\psi(u)$ is convex downward on $[b, \infty)$, $b \ge 1$, and

$$\lim_{u \to \infty} u\psi(u) = K < \infty, \tag{91}$$

$$\lim_{\delta \to \infty} \int_{1}^{\delta} \psi(u) du = \infty.$$
(92)

Then the following asymptotic equality is true:

$$\mathcal{E}\left(C_{\beta,\infty}^{\psi}; P_{\delta}\right)_{C} = \frac{2}{\pi} \left| \sin \frac{\beta \pi}{2} \right| \frac{1}{\delta} \int_{1}^{\delta} \psi(u) du + O\left(\frac{1}{\delta}\right) \quad as \quad \delta \to \infty.$$
(93)

Proof. Taking into account that, under the conditions of Corollary 3, the function $u\psi(u)$ is decreasing for $u \ge b \ge 1$, for sufficiently large δ ($\delta > b$) we get

$$\frac{1}{\psi(\delta)} \int_{\delta}^{\infty} \frac{\psi(u)}{u} du = \frac{1}{\psi(\delta)} \int_{\delta}^{\infty} \frac{u\psi(u)}{u^2} du \le \delta \int_{\delta}^{\infty} \frac{du}{u^2} = O(1)$$

We obtain equality (93) by substituting the last expression into (60) and taking relations (59), (91), and (92) into account.

Examples of functions for which Corollary 3 is true are functions of the form

$$\psi(u) = \frac{1}{u}(K + e^{-u})$$
 and $\psi(u) = \frac{1}{u}\ln^{\alpha}(u + K)$.

where K > 0 and $-1 \le \alpha \le 0$. If

$$\psi(u) = \frac{1}{u}, \quad u \ge 1, \quad \beta \in R,$$

then relation (93) yields equality (3) (see [9, p. 31]). For

$$\psi(u) = \frac{1}{u^r}, \quad u \ge 1, \quad \beta = r = 1,$$

relation (93) yields the following asymptotic equality:

$$\mathcal{E}(W^1_{\infty}; P_{\delta})_C = \frac{2}{\pi} \frac{\ln \delta}{\delta} + O\left(\frac{1}{\delta}\right) \quad \text{as} \quad \delta \to \infty.$$

This estimate for upper bounds of approximations by Poisson integrals on the Sobolev classes W_{∞}^1 was obtained by Natanson in [7].

Note that, under the conditions of Corollaries 1–3, equalities (83), (89), and (93) give a solution of the Kolmogorov–Nikol'skii problem for Poisson integrals on the classes $C_{\beta,\infty}^{\psi}$ in the uniform metric in the case where the functions ψ decrease slowly to zero, i.e., in the case where

$$\int_{1}^{\infty} \psi(u) du = \infty.$$

This work was supported by the Ukrainian State Foundation for Fundamental Research (grant No. 25.1/043).

REFERENCES

- 1. A. I. Stepanets, *Classes of Periodic Functions and Approximation of Their Elements by Fourier Sums* [in Russian], Preprint No. 83.10, Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1983).
- 2. A. I. Stepanets, "Deviations of Fourier sums on classes of infinitely differentiable functions," Ukr. Mat. Zh., 36, No. 6, 750–758 (1984).
- 3. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).
- 4. A. I. Stepanets, *Methods of Approximation Theory* [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).
- B. Sz.-Nagy, "Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I," *Berichte Akad. Wiss.*, 90, 103– 134 (1938).
- 6. A. Zygmund, Trigonometric Series, Vol. 1, Cambridge University, Cambridge (1959).
- I. P. Natanson, "On the order of approximation of a continuous 2π-periodic function by its Poisson integral," *Dokl. Akad. Nauk SSSR*, 72, No. 1, 11–14 (1950).
- A. F. Timan, "Sharp estimate for a remainder in the approximation of periodic differentiable functions by Poisson integrals," *Dokl. Akad. Nauk SSSR*, 74, No. 1, 17–20 (1950).
- 9. L. I. Bausov, "Linear methods for summation of Fourier series with given rectangular matrices. I," *Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, 46, No. 3, 15–31 (1965).
- K. M. Zhyhallo and Yu. I. Kharkevych, "Complete asymptotics of the deviation of a class of differentiable functions from the set of their harmonic Poisson integrals," Ukr. Mat. Zh., 54, No. 1, 43–52 (2002).
- 11. K. M. Zhyhallo and Yu. I. Kharkevych, "Approximation of conjugate differentiable functions by their Abel–Poisson integrals," *Ukr. Mat. Zh.*, **61**, No. 1, 73–82 (2009).