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APPROXIMATION OF FUNCTIONS DEFINED ON THE REAL AXIS
BY OPERATORS GENERATED BY A-METHODS OF SUMMATION
OF THEIR FOURIER INTEGRALS

Yu. I. Kharkevych and T. V. Zhyhallo UDC 517.5

We obtain asymptotic equalities for upper bounds of the deviations of operators generated by A-
methods (defined by a collection A = {\ 6(~)} of functions continuous on [0; oo) and depend-

ing on a real parameter G) on classes of (y, B)-differentiable functions defined on the real axis.

1. Auxiliary Assertions and Statement of the Problem

For many years, Stepanets and his followers have investigated the approximation properties of the classes
L‘E; Jt and I:‘g J¢ defined by the property that the generalized (W, )-derivatives of their elements belong to a
certain set J¢. For numerous results concerning these problems, see [1-9].

According to [3] (Chap. IX), the classes i‘g It are defined as follows: Let Lp, p =1, be the set of 2m-pe-

riodic functions @(-) with finite norm [|¢|,, where

27 Up
nmm,=(Jhmnwm) for  pell;e)
0

and |||, =[], =esssup|@(?)|, sothat L, =M.
The spaces ip, p =1, are introduced as the sets of (not necessarily periodic) functions @(-) defined on
the entire real axis R and having a finite norm |[@||;, where

a+2mn

1/p
w%=wﬂ1|wwﬂ for  pell,e)

a

and [ @]l =ess sup|Q(®)|.
It is obvious that, for all p > 1, the inclusion Lp C Lp is always true.
Let ¢ denote the set of functions (v) convex downward for all v > 1 and such that

Uh_r)llo y(@)=0.

We extend every function y € It to the segment [0,1) so that the function obtained (denoted, as before, by

y(-)) is continuous for all v >0, (0)=0, andits derivative y’(v) =Wy (v+0) has a small variation on the
segment [0, o). Denote the set of these functions by 2[. The subset of functions y € 2 for which
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T w(t
J‘Mdt < oo
1 t

is denoted by F.
We set

o) = G = L[ pr
() = wﬁ(t) = .([\u(v) cos(vt+ 5 )dv,

where y e F and B is a certain fixed number.
If yeF, then, as shown in [4], forany Be R the transformation \y(r) is summable on the entire axis:

J |W()|dt < eo.

Let lA}g denote the set of functions f(x) € il that, for almost all x € R, can be represented in the form

f@) = A + [ox+nymdr, (1)

—oo

where A, is a certain constant, @(-)€ L, and the integral is understood as the limit of integrals over symmet-
rically expanding intervals.

If f()e i‘g and, in addition, eI, where Il is a certain subset of continuous functions from il,

then we assume that f(-) € ﬁg 9¢. The subsets of continuous functions from i‘g (IA,”[; %) are denoted by CA‘B"

(CA‘BV 9?) If 9t coincides with the set of functions @(-) satisfying the condition esssup|@(-)|<1, then the

class CA‘E’ 9t is denoted by (Afg'm If fe i“ﬁ’ and H 1y Hl <1, then we say that f e i‘\lﬁjl

In [3] (Chap. IX), it was shown that if @(-) is a 2m-periodic summable function, then the sets i‘g%,
i“[;,p and ég’w transform into the classes L‘g €N, L“[;,p and CE{M, respectively. In the periodic case where
relation (1) holds, we have ¢(-) = f[;" (-) almost everywhere. In this connection, any function equivalent to the
function @(-) in relation (1) is called, as in the periodic case [see, e.g., [1] (Chap.I) and [4] (Chap.II)], the
(v, B)-derivative of f(-) and is denoted by f[;y ().

As mentioned above, the classes ﬂg J¢ were introduced by Stepanets. He also considered the problem of
the approximation of functions from the classes i‘g Jt by using the so-called Fourier operators, which, in the
periodic case, are Fourier sums of order [G]; in the general case, they are entire functions of exponential type
<o (see [4, 5]). In these works, Stepanets obtained a representation on the classes i\g Jt for the deviations of

the operators Ug(f, x, A), which are integral analogs of the polynomial operators generated by triangular A-
methods of summation of Fourier series. These results were applied in [6—9] to the problem of approximation of

functions from the classes i“ﬁ’ It by the operators of Zygmund, Steklov, de la Vallée-Poussin, etc.
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The aim of the present paper is to study the deviations (on the classes L“'1 and C‘BVOO) of the operators

Us(f, x,\) generated by A-methods (defined by a collection A = {A;(-)} of functions continuous on [0, oo)
and depending on a real parameter ©) of summation of Fourier integrals. In the periodic case, for y(@)=v"",
r >0, the most complete results in this direction were obtained in [10]; for functions y decreasing to zero, the

most complete results were obtained in [11].
Let A= {XG(B)} be a collection of functions continuous for all v >0 and depending on a real parameter

c
0. We associate every function f € L“B’ with the expression

Us(A) = Ug(fix,A) = Ay + TfB‘V(x+t)%Tw(v)kc(g)cos(vt+%)dvdt. @)
—oo 0

Further, we assume that the functions y(v) and XG(B) are such that the transformations
c

\Iﬁo = % '([\p(v) kc(%) cos(vt + B?n) dv

are summable on the entire number axis.
Then, using relations (1) and (2), for every function f(:)e CA‘B" we obtain

_ _ o 17 (v B_“)
() = Us(f, x, A) _LfB (x+t)n'(|; rc(c)cos(vt+ | dvat, 3)

where, for v =1,

)+ (o

and, on the segment 0 <v <1, the function rc(
c

equal to zero at the origin, and such that its Fourier transform

Irc(%) cos(vt + B%t) dv

U) is arbitrarily defined so that it is continuous for all v = 0,

ENE

is(t) =

is summable on the entire number axis.
In the present paper, we investigate the quantities

€(CY. Us() . = sup [ 1) = Ug(f: 5 M) (5)
fecp,oo
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Cg)(l’:wl’ UO'(A))" = Sup ||f(x) - Uo(f’ X, A)”A’ (6)
B’ 1 fei‘é’ !

where Ug(f, x, A) are the operators defined by (2).
First, we present several auxiliary definitions and statements necessary for what follows.

Definition 1 [10). Let a function 7T(v) be defined on |[0,), absolutely continuous, and such that

T(0)=0. We say that t(v) €€, if the derivative t'(v) can be defined at the points where it does not exist
so that, for a certain a =0, the following integrals exist:

al2

[ v|av @)
0

. [ -allave).

al2

Let K and K; denote constants that are, generally speaking, different in different relations.

Lemma 1’ [10]. If t(v)€€,, then
al2 oo
T < [t +[t@]+ [v]avw)|+ [ v-aldvw)| =: H@). )
0 al2
Theorem 1’ [10]. Suppose that t(v)e €, and sinB?nT(O)=O. In order that the integral
15T Br
A(T) = —I j’c(u) cos| vt + == |dv|dt (8)
Ty o 2

be convergent, it is necessary and sufficient that the integrals

sinB_n‘Tlr(v)ldU’ j‘»|r(a—u)—r(a+u)|dv
210 v 0 v

be convergent. In this case, the following estimate is true:

A= 5o Be, jifr@-v-t@+0])2) < ke, ©)
Ty v
where E(A, B) is the function defined as follows [12]:
T
24l BI<A}
&A, B) = A (10)
| A| arcsin E‘+\/BZ ZA%, |B|>|Al
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1, O<v<a,
Jo = (11)
0, v2a.

Let y e k. Following [2, pp. 159, 160], we set

TA(0)) 1
o =y (V2) e =

Wy ={yel: O<wy,N<K Vix1},
M, ={ye: 0<K, <uy,nH<K, Vix1}.

If ye? and, moreover, y e, or yeMi, for =1, then, following [4, p. 112], we write y €2,
or y e, respectively.

Theorem 2’ [2, p. 161]. A function y €W belongsto M if and only if the quantity

y()
thy' ()]

o) = . V@) = e+ 0),

satisfies the condition
at)2K>0 Vi=>1.

Theorem 3’ [2, p. 175]. In order that a function €I belong to M, it is necessary and sufficient
that there exist a constant K such that, for all t> 1, the following inequality is true:

RN
y(ct)

where c is an arbitrary constant that satisfies the condition ¢ > 1.
2. Asymptotic Relations for € ( CA’B" s Ug(N) )C

For convenience, performing a change of variables, we rewrite relations (3) and (4) in the form

T 17 Br
f(x) = Us(f, x, A) = (o) _J;of[;"(x+g);£tc(v) cos(vt+?) dvdt, (12)
_ _ y(ov) 1
) = 1,0) = 1-As@) ——=, v=>—, (13)
(o) o
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where, as before, the function 7T5(v) is arbitrarily defined on the segment [O, l] so that it is continuous for all
(9

v 20, equal to zero at the origin, and such that its Fourier transform

(t) = % Tr(v) cos (vt + [%n) dv (14)

0

18 summable on the entire number axis.
Then the following theorem is true:

Theorem 1. Suppose that the following conditions are satisfied:
(i) y)eFNAy;

(ii) t(v)e€,;
(iii) sinB?nt(O)ZO;

(iv) the following integrals converge:

sinB—n‘T—lrc(v)ldv, T|7\,G(a—v)—7\,6(a+v)|dl). (15)
2 5 v 0 v

Then the function

1-2s) YL o<yl
y(o) Y
V) = T50) = ©9) | (16)
_ v 1
(1-Ag) v©) v -

satisfies the following relation:

€(CY.s Us(M) .

= %\V(G)J.ﬁ(sin [%TCTG(U)’ ju[”cc(a—v)—’cc(a+v)])% + O(Y(0)H(ts)), ©—oo, (17)
0
where H(tg), &(A, B), and j, are defined by (7), (10), and (11), respectively.

Proof. Using Theorem 1’, we show that the integral A(t,) converges, and, hence, by virtue of Lemma 1

in [8], the following relation holds as ¢ — oo

8(CY... UG(A))C = Y(0)A(T,). (18)
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One of the conditions of Theorem 1” is the convergence of the integral

]1-|Ic(a—v)—tc(a+v)|dv (19)

’

whereas one of the conditions of Theorem 1 is the convergence of the integral

J-|k0(a V) — kG(a+v)| 20)

Let us show that if y € ¢, then

dv + H(t;)0(), (21)

]"|’cc(a—v)—rc(a+v)|dv _ W(Ga)T|7»G(a—U)—7»G(a+U)|
v y(o) 0 v

where O(1) is a quantity uniformly bounded in 6. Therefore, the convergence of integral (20) yields the con-
vergence of integral (19).
Using relation (16), we get

(l_xc(a_v))m, a—lSvSa,
(I=hgla—v)¥C@=v) o, 1
y(o) c
(-holarn) B3 —asv<i-a
Tsla+v) = 23)
(1-Ag(a+ ))w, vel_g
V(o) o

First, we consider the case a > 1 and represent relation (19) as a sum of two integrals:
(¢

1
a——

.T|rc(a—v)—16(a+v)|dv _ JG|TG(0—U)—TG(0+U)|dU+ ]l‘ |T6(a_v)_ﬂcc(a+v)|dy. (24)
v 0 v 1 v

a——
(o}

Let us estimate the first term on the right-hand side of (24). To this end, we add and subtract the quantity
v(©a) ,
— a—-v)—Agla+v
w(o) (Agla=v)=Asla+v))

under the modulus sign in the integrand. As a result, we obtain
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1

a——

J»G |T5(a—v) = t5(a+v)| "
0

v

1
_ y(ca) JG|XG(a—U)—XG(a+U)|dD
v v

a‘é ’cc(a—v)—’tc(a+v)+w(k6(a—v)—kc(a+v))
+ 0 ¥(©) dv|. (25)
o v
Since relations (22) and (23) are true, for v e I:O, a-— é] we get
=1 YO .-
As(a—v) =1 T Ts(a—v)
and
_1__ VY
Agla+v) =1 vG@t) Ts(a+v).
Then
aL y(ca)
o |Ts(a—v) —15(a+v)+ ——= (Ag(a —v) — Ag(a +v))
(o) dv
5 v
a-1 a L
N _ __y(ca) |dv ° __VY(ca) |dv 2%
< £ |T5(a—v)||1 vioa-m|s * £ |T5(a+v)||1 vioa@s )| s” (26)
Since 14(v) € €,, according to Lemma 1" we get
a-1 al
e tamlli_ VO | ° |__VY(ca) |dv
7 Il B (kv
a 1 a—l

_ _EI y(o(a —v)) —y(ca)| °ly(o(a +v)) - w(ca)| )
= )0 { vy(o(a —v)) w ! vy(o(a +v)) vl @D
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Let us show that, as ¢ — oo,

1

I - J. |\|!(G(a _ U)) W(G Cl)l dv = 0(1)
S )

1

I — jc |W(G(a+v))—\|!(6a)|dv :0(1)
Ty wlo@+) ’

y(ca)/ y(o(a—v))

where the quantity O(1) is uniformly bounded in ©. Indeed, the function 1=
v

forall ve [8, a-— l:l, 0<d<a- l, and, furthermore, by virtue of Theorem 2’, we have
o o

i 1= Woa) ylot@=v) _ o|y’(ca)| <
v—0 v y(ca)

Therefore, 1) ;= 0(1) as G —> oo,
Passing to the estimation of the integral I, 5, we note that

1
a_,

J °y(ao) ~y(o@+v) .
\|I(2a6 =) v

12’0 <

Performing the change of variables u =c(a +v), we get

(@) -yw , _ 1 Zj“ V(o) - v ,

Ls < J \V
’ \|I(2a<5 ) u— ac v(2ac -1) o u—ac

Using Lemma 1.5 from [13] and Theorem 3’ for the right-hand side of the last inequality, we obtain

Kyy(ao) < K>y(ao) <
y(2ac -1)  y(ac)

Thus, equalities (28) and (29) are true.
Combining relations (25)—(29), we get

1 1
a—— a——

_[G |r5(a—v)—rc(a+v)|dv _ v(ca) J'G |7L6(a—v)—7tc(a+v)|dv + H(1g)0(1).

0 v W(G) 0 1%

Let us estimate the second term on the right-hand side of (24). It is obvious that

1517

(28)

(29)

is bounded

(30)
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]’» |1:G(a—v)—1:0(a+v)|dv

1 v

a——
(o)

_ y(©ca ]1 |?»G(a—v)—7\,0(a+v)|dv
(o) 1 v

9

L lrga=v) = tg@+ )+ YOCD 0 _(a—v) - Agla+v)
vo| | v(o) &l @3N
1 v
Using relations (22) and (23), for v e —a - l, a] we get
o
y(o) 3
Agla—v) =1 - (D Ts(a—v) (32)
and
hglatv) = 1- — YO o (i)
y(o(a +v))
Hence, by virtue of Lemma 1’, we obtain
o |Tela—v)—15(a+v)+ v(©a) (Ag(a—v)—Ag(a+v))
'[ y(o) dv
1 v
y(ca) y(ca)
Tsla—v)|1- —T5a+v)|l - ———F—
_ t U)( w() ) (@ U)( y(ota+ v))) )
= 1 -
— H(TO-)O j |W(1) W(Ga)l dv + J‘ |W(G(a + U)) - W(Ga)l v . (33)
1w 1 vyls(at)
We estimate the right-hand side of (33) as follows:
j lv® - w(oa)| (1 _ w(ca)) n—% — oq), 34)
v vy ) gl

)
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By analogy with the proof of relation (29), we get

]“ W@+ -voa)l , _ 1 *F lyw-wea)l

T vy(o(a +v)) Y(2a0) 5,54 u—ac
1 z‘j" -yl , o wa@o) _ %)
~ y(2a0) o U—ac " y(2a0) '

Using relations (31)—(35), we obtain
T [tela—v)~T5a+v)|  _ w(oa) J [Aol@—v)=Agla+v)| HT)0(). 36)
el v (o) 1 v N
(& o

Combining relations (36) and (30), we arrive at equality (21).

By analogy with the proof of relation (21), for a> 1 one can show that equality (21) is also valid for
o

L<aSl.

20 c

For O0<a< ZL’ relation (32) is true and
c

Agla+v) =1 - m’ltc(a+v).

Then

j’-|’cc(a—v)—r6(a+v)|dv _ vy jl‘|7»6(a—v)—7»6(a+v)|dv.
0 v W(G)O %

The convergence of integral (20) yields the convergence of integral (19). Thus, for a =0, all conditions of

Theorem 1” are satisfied. Then, substituting relation (9) into equality (18), we get (17).
Theorem 1 is proved.

Note that an analogous theorem was proved in [10] in the periodic case where y()=v"", r >0, and in
[11] for the classes CE”OO, yelle.

Corollary 1. Suppose that the conditions of Theorem 1 are satisfied. If

|T5(a—v) —T5(a+v)| <

, vel0,a], a>0, (37)

sin BTTC‘ |T5(V)

then
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dv

sin B—n sin [3_1t
2 2

&(CY.. Us), = 2v(o)

2
Tltc(v)l
0 v

dev+ O| y(o)
0 v

+ O(W(QG)J. |7\,G(a—U);7\«G(a+U)|dU) + O(W(G)H(Tc)), 0. (38)
0

If

sin[%n‘hc(vﬂ < |tga—v)—15(a+v)|, ve[0,a], a>0. (39)

then

|7u6(a—v)—7»6(a+v)| "
v

€ (CY o Usm)) = %w(m)f
0

2
|7u0(a—v)—7uc(a+v)| ”

v

o
+ 0 w(ac)j 2
0

sin B_n
2

+ 0w

[zt dv) O(WOHES), 0>, (40)
0 1Y

Proof. Relation (38) follows directly from equality (17) and the definition of the function &(A, B). To
prove relation (40), note that, by virtue of (39) and (40), the following equalities are true:

dv
v

T&(sin B%E T (v), jy[ts(a—v)—15(a+ v)])
0

‘sin an‘|'tc(v)|

sin [%n‘ | T5(v)| arcsin

:

|T5(a—v) — T5(a+v)|

2
+ \/ (tg(a—v) — T5(a+v))* — (sin %"ro(v)) dv
1%

2 1

. 7T 2

sm’cc(v)) -

sinB—n‘|‘cc(v)| 1- ( 2 i sinB—nJ|T°(U)|dv . G (41)
2 (tsla—v)—15(@a+v))" | v 5

g




APPROXIMATION OF FUNCTIONS DEFINED ON THE REAL AXIS BY OPERATORS GENERATED BY A-METHODS 1521

Since relation (39) is true, we conclude that

2
(sinﬁznrc(v))

(’CG(a— v)—Ts(a+ v))2

e [0,1] if vel0,a].

Using relation (41) and the expansion of the function /1—v, ve€[0,1], ina power series, we obtain

B o &
&(sm 5 ), j[ts(a—v) Tc(a+v)]) v

o3

|t )]

v

|

Substituting (42) into (17) and using relation (21), we get (40).
Corollary 1 is proved.

sinB—n‘|Ic(v)|@ + 0 sin BT
2 v 2

o—,3

dv), O —> oo, 42)

Corollary 2. Let A:{kn’k}, where n,k=1,2,... and M\,o=1 for all n, be a rectangular nu-
merical matrix that associates every function f € ég’m with series (2). Suppose that the matrix A is such
that series (2) is the Fourier series of a certain continuous function denoted by U, (f, x, A). Also assume that
the matrix A is determined by a sequence of functions A,(u), 0 < u <eoo, such that M\, ; = Kn(k) and
Mo =1 forall n. "

The asymptotic equalities for the quantities

(e U) = sup [ f0=Tlfo M)
feC&w

can be obtained by setting 6 =n, ne N, in relations (17), (38), and (40), provided that all conditions of The-
orem I are satisfied. We get

€(CY. U,),, = 2y jg(sin BT o ), Jultala—v) —ty(a+ v)]) Dy O(y(o)H (). © -,
’ T 0 2 v
where the functions T,(v), n=1,2, ..., are defined by the equalities
) I
1-As()—=, 0sv<—
(1=2a®) y(n)

_ Y (nv) 1
(1-2As)) — v

’

T,) =

If
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[T, (a—v)—T,(a+v)| sin[?)?n‘hn(vﬂ, vel0,a], a>0,

then
2
€(CY .. Uu),, = —\|!(n) sm— le 2Oy, 4 0| i |sin BT | %O 4,
0 21y v
O(W(an) | [Aula=v) = Aya+v)] dv) + O(yH(t,)), ©—> .
0 v

If

. Pr

sm7‘|1n(v)| < |t,(a=v)=1,(a+v)|, wve[0a], a>0,
then

- — 4 TN, (@—v)—A,(a+v)|
¢(Cy.., Un(A))C = ) g dv

v

2

+ 0| y(an) J' jU|7\,n(a—v)—7\.n(a+v)|dU
0

v

sin —

+ Ol v(n)

flT 0l ]+ O(W(mH(t,)), n—>ee.

3. Asymptotic Relations for %( B oo G(A))

In this section, we study the behavior of upper bounds of (6).
First, we give several definitions and auxiliary results.

Assume that f € 154 , Y eF, and the function 7T5(v) is defined by (13) and such that its Fourier trans-

form T(¢)= %G(t) (14) is summable on R. Then, at almost every point x € R, we have
f(x) = Ug(f, x, A) = y(o) jfB (x+ ) jrc(u) cos(vt+B )dvdt (43)

Note that the function 7T5(v) can be chosen so that it is continuous for v = 0 and its Fourier transform
T,(t) is summable on R. Using relation (43), we establish the following statement:
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Lemma 1. Suppose that € F, the function 75() is defined by (13) and continuous for all v = 0,
and integral (8) converges. Then the following relation holds as G — oo:

(L s Us(N). = sup | £0x) = Ug(f- 2 Ml = W(©)AlTo) + w(0)¥(0). (44)
feLBl

where Y(6)<0 and

o |

11228
2

_[‘cc(v) cos(vt + B2 ) dv

0

|v(0)] dr |. (45)

Proof. Taking into account that

sup J

i aeR -1

(x + ) T (t)dt

]f (x+a+ ) Ts(Mdt|dx < | fll; T |T(t)|dt

and using equalities (6) and (43), we get

€(L) ), Us(W). = sup [ f(x) = Us(f, 2. Mj < W(©0) [ |T50]dr = w(o)ATy). (46)
feL —oo

On the other hand, by virtue of Proposition 1.1 in [3, p. 169], we have i‘g L(()O,Zrc) = L“B’, where L(()o, 2m) is

the set of 2m-periodic functions with mean value zero on (0, 27). Therefore, I:gl D L\g 1 Hence,

sup j f(x+ ) SMdt| = sup j f(x+ ) oY (47)
feLBl —oo f feLBl —co 1
Moreover, it is shown in [11, p. 41] that
sup (o) | J(e+ oot = w0140 + wiori(o) (48)
feL’ SN 1

where y(c) <0 and relation (45) is true.
Using (46)—(48), we obtain relation (44).
The lemma is proved.

In the periodic case, an analogous lemma was proved in [11] for the classes L\‘B" 1
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Comparing the lemma proved with Lemma 1 in [8], we conclude that the quantities %'é(lt“é’l, UG(A))i and

%(CA‘E',M, UG(A))C may differ only by a quantity that does not exceed 7Y(o) in order, i.e., the following relation

holds as ¢ — o=

%(L‘g’], UG(A))i = %(cgfw, UG(A))C + 0(y(0)).
Using the last equality, we can prove an analog of Theorem 1 for functions of the classes lA“g’l.

Theorem 2. Suppose that the following conditions are satisfied:
(i) ywyeFNAy;

(ii) 1) e€,;
(iii) sin B%t‘cc(O) =0;

(iv) integrals (15) converge.

Then, for the function T(v)=1T5(v) defined by (16), the following asymptotic equality is true:

. 4 T.( . Bn . d
(L 1, Us (M), = V(O g F;(sm % T (), Jy[Te(a—v) = T5(a+ v)]) jv

2

+ O y(o) J (sin —B; () + j,[Ts(a—v) — T5(a + v)]) v
v
0

+ O(y(0)H(T5)), G —> oo,
where H(ts), &(A, B), and j, are defined by (7), (10), and (11), respectively.

If, in addition, inequality (37) is true, then

sin B_Jt sin B—n
2 2

%G(i‘\[!i’,l’ U(S(A))i = %W(G)

2
OoT
J‘ |TG(U)| dU
0 v

j—l ()] dv + O] y(o)
v
0

v

+ O(q;(ac)j |7“6(“_”)_k“(“+“)|dv) + O(Y(O)H(Ty)), ©— oo,
0

If inequality (39) is true, then
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1.
2.

10.

11.

12.

13.

|k0(a-—v)—-kc(a—+v)|dv

o (Lf Us(W); = %w(ao) f
0

v
2
+ 0| y(ao) J' jlec(a_v)_xc(a'kv)ldv
0 Y
+ O(qf(c) sin%C dev) + O(y(0)H(t5)), © —> oo
)
0
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