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COMPLETE ASYMPTOTICS OF THE DEVIATION OF
A CLASS OF DIFFERENTIABLE FUNCTIONS FROM
THE SET OF THEIR HARMONIC POISSON INTEGRALS

K. M. Zhyhallo  and  Yu. I. Kharkevych UDC 517.5

On a class of differentiable functions W 

r
  and the class  W r   of functions conjugate to them, we

obtain a complete asymptotic expansion of the upper bounds  �  ( � , Aρ )C  of deviations of the

harmonic Poisson integrals of the functions considered. 

1.  Statement of the Problem and Auxiliary Statements

Let  W 
r

 ,  r ∈ N ,  be the set of  2π -periodic functions that have absolutely continuous derivatives up to the

( r – 1 ) th order inclusive and are such that  esssup ( )
x R

rf x
∈

| |  ≤ 1.  Let  W r   denote the class of functions conjugate

to functions from the class  W 
r

 ,  i.e., 

W r   =  f f x f x t t dt f W r: := + ∈








∫( ) – ( ) ,
–

1
2 2π π

π
cot .

For a  2π -periodic function  f  summable over the period, let  Aρ ( f , x )  and  A f xρ( , )   denote the harmonic

Poisson integral and the conjugate harmonic Poisson integral, respectively, i.e., 

Aρ ( f , x )  =  1
π

ρ
π

π
f x t P t dt( ) ( , )

–

+∫ ,      0 ≤ ρ < 1,

where 

P ( ρ , t )  =  1
2

1
1 2

2

2
–

– cos
ρ

ρ ρt +
  =  1

2
 + ρk

k
ktcos

=

∞
∑

1

is the Poisson kernel, and 

A f xρ( , )   =  A f xρ( ),   =  – ( ) ( , )
–

1
π

ρ
π

π
f x t Q t dt+∫ , (1)

where 
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Q ( ρ , t )  =  
ρ
ρ ρ

sin
– cos

t

t1 2 2+
  =  ρk

k
ktsin

=

∞
∑

1
(2)

is the conjugate Poisson kernel. 

It is known (see, e.g., [1, Chap. 1]) that if  f  is continuous on  R  ,  then, for every  x ∈ R  ,  we have

lim ( ; )
–ρ ρ→1

A f x   =  f x( ). 

In the present paper, we study the behavior of the quantity 

� ( � , Aρ )C  =  
  
sup ( ) – ( , )
f

Cf x A f x
∈

|| ||
�

ρ

as  ρ → 1–  in the cases  � ≡ W 
r  and  � ≡ W r   (here,  || f ||C = max ( )

x R
f x

∈
| |  ). 

If there exists an explicit function  g ( ρ ) = g ( � ; ρ )  such that 

� ( � , Aρ )C  =  g ( ρ )  +  o ( g ( ρ ) ) (3)

as  ρ → 1–,  then it is said [2] that the Kolmogorov  – Nikol’skii problem is solved for a given class  �  and an

approximating aggregate  Aρ . 

A formal series  gn
n

( )ρ
=

∞
∑

0
  is called a complete asymptotic expansion, or complete asymptotics [3], of a

function  f ( ρ )  as  ρ → 1–  if, for all  n,  we have 

| gn + 1 ( ρ ) |  =  o ( | gn ( ρ ) | ) (4)

and, for any natural  N, 

f ( ρ )  =  gn
n

N
( )ρ

=
∑

0
  +  o ( gN ( ρ ) ) ,      ρ → 1– . (5)

We denote this as follows: 

f ( ρ )  ≅  gn
n

( )ρ
=

∞
∑

0
.

Natanson [4] obtained the first result of the form (3) for  � = W 
1

 : 

� ( W 
1, Aρ )C  =  2 1 1

π
ρ ρ( – ) ln( – )| |  +  O ( 1 – ρ ) . (6)

Timan [5] improved this result (he obtained the second asymptotic term) and generalized it to the classes

W 
r,  r ∈ N . 
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For the classes  � = W 1,  Sz.-Nagy [6] established the asymptotic equality 

 
�( ),W A C

1
ρ   =  ( 1 – ρ )  +  O ( ( 1 – ρ ) 

2
 ) ,      ρ → 1– . (7)

In equalities (6) and (7), only the first terms of the asymptotics are given with the corresponding constants. 
In the present paper, we obtain complete asymptotic expansions (in the above sense) for the quantities

� ( W 
r

 , Aρ )C ,  and  
  
�( ),W Ar

Cρ ,  r ∈ N . 

Let  Kn  and  K̃n   denote the well-known Akhiezer – Krein – Favard constants, i.e., 

Kn  =  4 1
2 1

1

1
0π

(– )
( )

( )m n

n
m m

+

+
=

∞

+∑ ,    n ≥ 0,      K̃n   =  4 1
2 1 1

0π
(– )

( )

mn

n
m m + +

=

∞
∑ ,    n ≥ 1.

First, we establish facts concerning the complete asymptotic expansion of the special functions

ϕn ( ρ )  =  

  

L
K

K
1 1

11

1

1
1

00

1 2

t t
t
t

dt dt
n

n

ttn

ln
–
+∫∫∫

ρ
, (8)

ψn ( ρ )  =  

  

L
K

K
arctan t
t t

dt dt
n

n

ttn
1

1
1

00

1 2

∫∫∫
ρ

,    n ∈ N , (9)

in terms of which the estimates of the quantities  � ( W 
r, Aρ )C   and  

 
�( ),W Ar

Cρ   are expressed. 

Lemma 1.  For the functions  ϕn ( ρ ) ,  n ∈ N ,  the following complete asymptotic expansion is true: 

ϕn ( ρ )  ≅  α ρ
ρ

β ρk
n k

k
n k

k
( – ) ln

–
( – )1 1

1
1

1
+






=

∞
∑ ,

where, for  k ∈ N, 

αk
n  =  

(– )
!

1 k

n
k

k
a , (10)

βk
n   =  

(– )
!

( ) ln–

–1
0 2 1

11

1k

n i i
k

n
k

i

k

i

n

k
n

k
a a

i
Sϕ + +





+





==

∑∑ , (11)

Sk
n   =  

0

2
1

11

, ,

, ,–
– –

–

k n

a
A a k ni

k

i n i
k

n
k i

i

k n

i n

k

≤

+ >









== +
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ai
j   =  

0

1 1 1

1

2 1

1 1 1

1
1 1

1
1 1

1
1 1

, ,

(– ) ( – )!, ,

– ( – ), ,

– ( – ), ,

– ( – – ) – ( – – ), ,

–
– –

–
– –

–
– –

i j

j i
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j

i
j

i
j

i
j

i
j

i
j

i
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>
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+ = ≤
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(12)

Ak
n   =  

  

n n n k
k

( – ) ( – )1 1K +
,      ϕn ( 0 )  =  

 

π

π

2

2

K
n

K
n

n

n

, ,

˜ ,

is odd

is even.










Proof.  First, note that, in a complete asymptotic expansion of the form 

ϕn ( ρ )  ≅  α ρ
ρ

β ρk
n k

k
n k

k
( – ) ln

–
( – )1 1

1
1

1
+






=

∞
∑ , (13)

the coefficients  αk
n  and  βk

n   must satisfy the following relations: 

αk
n  = :   lim

–
( – ) ln( – )

( ) ( – ) ln( – ) – ( – )
–

–

ρ ρ ρ
ϕ ρ α ρ ρ β ρ

→ =
+









[ ]∑1 1

11
1 1

1 1 1k n j
n j

j
n j

j

k
, (14)

βk
n   = :   lim

( – )
( ) ( – ) ln( – )

–ρ ρ
ϕ ρ α ρ ρ

→
+



1

1
1

1 1k n k
n k   +  [ ]

=
∑ 




α ρ ρ β ρj
n j

j
n j

j

k
( – ) ln( – ) – ( – )

–
1 1 1

1

1
(15)

[to verify conditions (4) and (5), one must set  g2k – 1 = α ρ
ρk

n k( – ) ln
–

1 1
1

  and  g2k = β ρk
n k( – )1 ].

Hence, to prove Lemma 1, it suffices to show that the coefficients  αk
n  and  βk

n   determined from (14) and
(15) have the forms (10) and (11), respectively. 

Applying the l’Hospital rule  k  times to indeterminacies of the type  0 / 0,  for  k = 1  and  n > 1  we get 

α1
n  =  lim

– ( )
( – ) ln( – )–ρ

ϕ ρ
ρ ρ→1 1 1

n   =  
  
lim

–
ln( – )

ln
–– –

–( )

–

ρ

ρ

ρ ρ→ +
+∫∫∫1 1 1

1

1
1 1

000

1
1 1

1 1
1

21

L
K

K
t t

t

t
dt dt

n
n

ttn

  =  0,

β1
n   =  lim

( )
––ρ

ϕ ρ
ρ→1 1

n   =  
  

lim ln
–– –

–

–

ρ ρ→
+∫∫∫1 0 1 1

1

1
1 1

000

1 1 1
1

21

L
K

K
t t

t
t

dt dt
n

n

ttr n

  =  ϕn – 1 ( 0 ) .

For  k ≤ n – 1,  taking into account that 
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d
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+
, (16)

where the coefficients  ai
k ,  i = 1, k ,  are successively determined from the recurrence relations (12), and

d
d

k

k
k

ρ
ρ ρ( )( – ) ln( – )1 1   =  (– ) ! ln( – )1 1 1

1

k

i

k
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ρ +
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we obtain 
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n  =  0,
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1
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1(– ) !
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k
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∑ .

In the case  k = n ,  by using relation (17), we obtain 
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Now consider the case  k > n .  For this purpose, we use the relations 

d
d

k

kρ
ρ ρµ{ }( – ) ln( – )1 1   =  

(– ) ! ( – – )!

( – ) –
1 1

1

1µ

µ
µ µ

ρ

+ k
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which follows from (17), and 
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where  ai
j   are satisfy relations (12).  To establish (19), it suffices to pass to the limit as  ρ → 1–  in the relation 
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and take into account that 
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By using relations (14), (15), (18), and (19), we obtain the following formulas for the calculation of  αk
n

and  βk
n   for  k > n : 
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Lemma 1 is proved. 

Lemma 2.  For the functions  ψn ( ρ ) ,  n ∈ N ,  the following complete asymptotic expansion is true: 

ψn ( ρ )  =  4 1
1π
γ ρk

n k

k
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=

∞
∑ ,

where, for  k ∈ N, 

γ k
n   =  
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(21)

Proof.  In a complete asymptotic expansion of the form 

ψn ( ρ )  ≅  γ ρk
n k

k
( – )1

1=

∞
∑ ,

the coefficients  γ k
n   must satisfy the following relations: 

γ k
n   = :  lim

( – )
( ) – ( – )

–

–

r k n j
n j

j

k

→ =
∑






1 1

11
1

1
ρ

ψ ρ γ ρ . (22)

Hence, to prove Lemma 2, it suffices to show that the coefficients  γ k
n   determined from (22) have the form

(20). 
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Applying the l’Hospital rule  k  times to indeterminacies of the form  0 / 0  and using the fact that 

d

d

k
n
k

ψ ρ
ρ

( )
  =  

  

b t
t t

dt dt
k

k
n

tt

n

n
1 1

1000
1 1

21

ρ

ρ

L
K

K
arctan

1 –
–

–

∫∫∫  

+  
b t

t t
dt dt

k

k
n

tt

n

n
2 1

2000
1 2

22

ρ

ρ

L
K

K
arctan

1 –
–

–

∫∫∫   + … +  
b t

t
dtn

k

k
–1 1

1
1

0ρ

ρ
arctan∫

+  
bn

k

kρ
ρarctan   +  

bn
k

k
+

+
1
1 2

1
1ρ ρ–   +  

bn
k

k
+

+
2
2 2 2

1
1ρ ρ– ( )

  + … +  
bk

k

k k n k nρ ρ– ( – ) –( )2 1 2
1

1+ +
,

where the coefficients  bi
k ,  i = 1, k ,  are successively determined from the recurrence relations (21), we obtain 
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Lemma 2 is proved. 

2.  Main Results for Classes  W r

Theorem 1.  If  r = 2 l ,  l ∈ N ,  then the following complete asymptotic expansion is true: 

  
�( ),W Ar

Cρ   ≅  2 1 1
1

1
1π

α ρ β ρk
r k

k
r k

k r
( – ) ln

–
( – )+






=

∞
∑ , (23)

where the coefficients  αk
r   and  βk

r   are determined from relations (10) – (12). 

Proof.  Taking into account relations (1) and (2), we obtain 

f x( )  –  A f xρ( ),   =  – ( ) – sin
–

1 1
2 2 1π

ρ
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π
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k
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∞
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Hence, integrating  r  times by parts, we get 
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Since  f ∈ W 
r  and  Fr , ρ ( t )  is odd for  r = 2 l ,  l ∈ N ,  we have 
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π
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On the other hand, if  sign F tr , ( )ρ  = ±  sign sin t ,  then a function  f  such that 
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)

 ( t )  =  sign( ), ( )F tr ρ ,      t ∈ [ – π , π ] ,

is continuously and periodically extendable to  R  and belongs to the class  W 
r  [7, pp. 104 – 106].  Therefore, for

r = 2 l ,  l ∈ N,  we have 

 
�( ),W Ar

Cρ   ≥  2

0π ρ

π
| |∫ F t dtr , ( )

and, hence, 

 
�( ),W Ar

Cρ   =  2

0π ρ

π
| |∫ F t dtr , ( )   =  2

0π ρ

π
F t dtr , ( )∫  . (24)

The fact that, for  r = 2 l ,  l ∈ N,  the function  F tr , ( )ρ   changes its sign on  ( 0, π )  [ i.e.,  sign F tr , ( )ρ  =

±  sign sin t ]  is established by the following reasoning: 

It is clear that, for  r = 2 l ,  l ∈  N,  we have  Fr , ( )ρ 0  = Fr , ( )ρ π  = 0.  Therefore, under the assumption that

F tr , ( )ρ  = 0  for some  t0 ∈ ( 0, π ) ,  by virtue of the Rolle theorem there exist  t0
1( )  ∈  ( 0, t0 )   and  t0

2( ) ∈  ( t0 , π )
such that  ′F tr ,

( )( )ρ 0
1  = ′F tr ,

( )( )ρ 0
2  = 0.  Hence, 

F tr– ,
( )( )1 0
1

ρ   =  F tr– ,
( )( )1 0
2

ρ   =  0
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and, consequently, there exists  t1 ∈ ( ),t t0
1

0
2   such that  ′F tr– , ( )1 1ρ  = 0,  i.e.,  F tr– , ( )2 1ρ  = 0.  Therefore, by anal-

ogy with the arguments presented above, we conclude that there exist  t1
1( )  ∈  ( 0, t1 )   and  t1

2( ) ∈  ( t1 , π  )  such

that 

F tr– ,
( )( )3 1
1

ρ   =  F tr– ,
( )( )3 1
2

ρ   =  0,

and so on.  Repeating this procedure as many times as necessary, we establish that, under the original assump-
tion concerning the function 

F t1, ( )ρ   =  –
–

cos
1

1

ρk

k k
kt

=

∞
∑ ,

there exist  tl–
( )

1
1 , tl–

( )
1

2  ∈ ( 0, π ) ,  tl–
( )

1
1  ≠ tl–

( )
1

2 ,  such that 

F tl1 1
1

, –
( )( )ρ   =  F tl1 1

2
, –

( )( )ρ   =  0.

However, this contradicts the fact that, according to relations (1.441.2) and (1.448.2) in [8], the function

F t1, ( )ρ   can be represented in the form 

F t1, ( )ρ   =  1
2

2 1
1 2 2ln

( – cos )
– cos

t

tρ ρ+
,      t ∈ ( 0, π ) ,

and, as can easily be verified, the equation  F t1, ( )ρ  = 0  has only one root on the interval  ( 0, π ) . 

Thus, by using relation (24), for  r = 2 l ,  l ∈ N,  we obtain 

�( ),W Ar
Cρ   =  4 1

2 1

2 1

1
0π

ρ–
( )

k

r
k k

+

+
=

∞

+∑ .

Hence, taking into account that [5] 

2
1
2 1

2 1

1
0

–
( )

ρ k

n
k k

+

+
=

∞

+∑   =  ϕn ( ρ ) ,

where  ϕn ( ρ )  is the function defined by (8), and using Lemma 1, we obtain the statement of Theorem 1. 

Remark 1.  For  r = 1,  expansion (23) is a refined version of the asymptotic equality (7). 

Theorem 2.  If  r = 2 l – 1,  l ∈ N ,  then the following complete asymptotic expansion is true: 

�( ),W Ar
Cρ   ≅  4 1

1π
γ ρk

r k

k
( – )

=

∞
∑ ,

where the coefficients  γ k
r   are determined from relations (20) and (21). 
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Proof.  According to [6, p. 187], we have 

 
�( ),W A C

1
ρ   =  4 1

1
2 1

2 1

2
0π

ρ
(– )

–
( )

k
k

k k

+

=

∞

+∑  .

Let  r = 2 l + 1,  l ∈ N .  Then, by analogy with the proof of Theorem 1, one can show that 

 
�( ),W Ar

Cρ   =  1
π ρ

π

π
sup ( ) ( )( )

,
–f W

r
r

r
f t F t dt

∈
∫   =  1

2π
π

ρ ρ
π

π
sup ( ) ( )–( )

, ,
–f W

r
r r

r
f t F t F dt

∈











∫  .

Since  f ∈ W 
r

   and  F tr , ( )ρ   is even for  r = 2 l + 1,  l ∈ N ,  we have 

  
�( ),W Ar

Cρ   ≤  2
20π
π

ρ ρ

π
F t F dtr r, ,( ) – 



∫ .

On the other hand, if  sign( ( )), ,( ) –F t Fr rρ ρ π /2  = ±  sign cos t  ,  then a function  f  such that  f  
(
 
r

 
)

 ( t ) =

sign( ( )), ,( ) –F t Fr rρ ρ π /2 ,  t ∈  [ – π , π  ] ,  is continuously and periodically extendable to  R  and belongs to the

class  W 
r  [7, pp. 187 – 188].  Therefore, for  r = 2 l + 1,  l ∈ N,  we have 

  
�( ),W Ar

Cρ   ≥  2
20π
π

ρ ρ

π
F t F dtr r, ,( ) – 



∫

and, hence, 

 
�( ),W Ar

Cρ   =  2
20π
π

ρ ρ

π
F t F dtr r, ,( ) – 



∫   

=  2
2 20

2

0

2

π
π π π

ρ ρ ρ ρ

ππ
F t F dt F t F dtr r r r, , , ,( ) – – ( – ) –























//

∫∫   

=  2

0

2

π
πρ ρ

π
( ), ,( ) – ( – )F t F t dtr r

/

∫  . (25)

The equality  sign( ( )), ,( ) –F t Fr rρ ρ π /2  = ±  sign cos t  is established by the following reasoning: 

Under the assumption that  F tr , ( )ρ  – Fr , ( )ρ π /2  = 0,  r = 2 l + 1,  l ∈ N ,  for some  t0 ∈ ( 0, π ) ,  t0 ≠ π  / 2,  by

virtue of the Rolle theorem there exists  t0
1( )  ∈ ( 0, π )  such that  ′F tr ,

( )( )ρ 0
1  = 0,  whence 

F tr– ,
( )( )1 0
1

ρ   =  0.
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However, this contradicts the fact that  sign F tr– , ( )1 ρ  = ±  sign sin t  for  r = 2 l + 1,  l ∈  N .  Consequently,

t = π  / 2  is a unique solution of the equation  F tr , ( )ρ  – Fr , ( )ρ π /2  = 0  on the segment  [ 0, π  ] .  Furthermore,

since  sign ′F tr , ( )ρ  = ±  sign sin t  for  r = 2 l + 1,  l ∈  N  ,  the function  F tr , ( )ρ  – Fr , ( )ρ π /2   is monotone on

( 0, π ) . 
Hence, by using relation (25), for  r = 2 l + 1,  l ∈ N ,  we get 

  
�( ),W Ar

Cρ   =  
1
2 1

2 1
2 1

00

2 –
( )

cos( )
ρπ k

r
k k

k t dt
+

=

∞/

+
+∑∫  .

Thus, for  r = 2 l – 1,  l ∈ N ,  we have 

  
�( ),W Ar

Cρ   =  4 1
1
2 1

2 1

1
0π

ρ
(– )

–
( )

k
k

r
k k

+

+
=

∞

+∑ .

Hence, taking into account that [5] 

(– )
–

( )
1

1
2 1

2 1

1
0

k
k

n
k k

ρ +

+
=

∞

+∑   =  ψn ( ρ ) ,

where  ψn ( ρ )  is the function defined by (9), and using Lemma 2, we obtain the statement of Theorem 2. 

3.  Statement for Classes  W 
r
 

Theorem 3.  The following complete asymptotic expansions are true: 

� ( W 
r

 , Aρ )C  ≅  

2 1 1
1

1 2 1

4 1 2

1

1

π
α ρ β ρ

π
γ ρ

k
r k

k
r k

k

k
r k

k

r
r l l N

r l l N

( – ) ln
–

( – ) , – , ,

( – ) , , ,

+







= ∈

= ∈










=

∞

=

∞

∑

∑

where the coefficients  αk
r   and  βk

r   are determined from relations (10) – (12), and the coefficients  γ k
r   are

determined from relations (20) and (21). 

Proof.  According to relation (7) in [5], we have 

� ( W 
r

 , Aρ )C  =  4 1
1
2 1

1
2 1

1
0π

ρ
(– )

–
( )

( )k r
k

r
k k

+
+

+
=

∞

+∑  . (26)

For  r = 2 l ,  l ∈ N ,  the right-hand side of equality (26) identically coincides with the function  ψ r ( ρ ) ,  0 ≤
ρ < 1  [see (8)];  for  r = 2 l – 1,  l ∈ N ,  it identically coincides with the function  ϕr ( ρ ) ,  0 ≤ ρ < 1  [see (9)].
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The complete asymptotic expansions of these functions are given in Lemmas 1 and 2, respectively.  Theorem 3
is proved. 

Remark 2.  In the case  r = 1,  the statement of Theorem 3 was established in [9]. 
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